Sensor Fusion for Semantic Place Labeling

Roman Roor, Jonas Hess, Matteo Saveriano, Michael Karg, Alexandra Kirsch


In order to share knowledge about road situations vehicle-to-vehicle (V2V) communication is used. Autonomous driving vehicles are able to drive and park themself without driver interactions or presence, but are still inefficient about the drivers needs as they don’t anticipate the users’ behaviour. For instance, if a user wants to stop for quick grocery shopping, there is no need looking for long term parking in far distance, a short-term parking zone near the grocery shop would be adequate. To enable autonomous cars to make such decisions, they could benefit from awareness of their drivers’ context. Knowledge about a users’ activities and position may help to retrieve context information. To be able to describe the meaning of a visited place for user, we introduce a variant of semantic place labeling based on various sensor data. Data sourced by, e.g. smartphones or vehicles, is taken into account for gathering personalized context information, including Bluetooth, motion activity, status data and WLAN, and also to compensate for potential inaccuracies. For the classification of place types, over 80 features are generated for each stop. Thereby, geographic data is enriched with point of interest (POI)-information from different location-based context providers. In our experiments, we classify semantic categories of locations using parameter optimized multi-class and smart binary classifiers. An overall accuracy of 88.55% correctly classified stops is achieved using END classifier. A classification without GPS data yields an accuracy of 85.37%, demonstrating that alternative smartphone data can largely compensate for inaccurate localizations based on the fact of 88.55% accuracy, where GPS data was used. Knowing the semantics of a location, the provided context can be used to further personalize autonomous vehicles.


  1. Arase, Y., Ren, F., and Xie, X. (2010). User activity understanding from mobile phone sensors. In Proceedings of the 12th ACM international conference adjunct papers on Ubiquitous computing-Adjunct, pages 391- 392. ACM.
  2. Bao, L. and Intille, S. S. (2004). Activity recognition from user-annotated acceleration data. In International Conference on Pervasive Computing, pages 1- 17. Springer.
  3. Bar-David, R. and Last, M. (2014). Context-aware location prediction. In International Workshop on Modeling Social Media, pages 165-185. Springer.
  4. Berchtold, M., Budde, M., Gordon, D., Schmidtke, H. R., and Beigl, M. (2010). Actiserv: Activity recognition service for mobile phones. In International Symposium on Wearable Computers (ISWC), pages 1-8. IEEE.
  5. Bouten, C. V., Koekkoek, K. T., Verduin, M., Kodde, R., and Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Transactions on Biomedical Engineering, 44(3):136-147.
  6. Chang, K.-H., Chen, M. Y., and Canny, J. (2007). Tracking free-weight exercises. In International Conference on Ubiquitous Computing, pages 19-37. Springer.
  7. Consolvo, S., McDonald, D. W., Toscos, T., Chen, M. Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., et al. (2008). Activity sensing in the wild: a field trial of ubifit garden. InProceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1797-1806. ACM.
  8. Dashdorj, Z. and Sobolevsky, S. (2015). Characterization of behavioral patterns exploiting description of geographical areas. CoRR, abs/1510.02995.
  9. Eagle, N. and Pentland, A. S. (2006). Reality mining: sensing complex social systems. Personal and ubiquitous computing, 10(4):255-268.
  10. Farringdon, J., Moore, A. J., Tilbury, N., Church, J., and Biemond, P. D. (1999). Wearable sensor badge and sensor jacket for context awareness. In Wearable Computers. Digest of Papers. The Third International Symposium on, pages 107-113. IEEE.
  11. Ghosh, S. and Ghosh, S. K. (2016). Thump: Semantic analysis on trajectory traces to explore human movement pattern. In Proceedings of the 25th International Conference Companion on World Wide Web, pages 35-36.
  12. Jensen, C. S., Lahrmann, H., Pakalnis, S., and Runge, J. (2004). The infati data. arXiv preprint cs/0410001.
  13. Junker, H., Lukowicz, P., and Troster, G. (2004). Sampling frequency, signal resolution and the accuracy of wearable context recognition systems. In Wearable Computers, Eighth International Symposium on, volume 1, pages 176-177. IEEE.
  14. Kern, N., Schiele, B., and Schmidt, A. (2003). Multi-sensor activity context detection for wearable computing. In European Symposium on Ambient Intelligence, pages 220-232. Springer.
  15. Kiukkonen, N., Blom, J., Dousse, O., Gatica-Perez, D., and Laurila, J. (2010). Towards rich mobile phone datasets: Lausanne data collection campaign. Proc. ICPS, Berlin.
  16. Laurila, J. K., Gatica-Perez, D., Aad, I., Blom, J., Bornet, O., Do, T. M. T., Dousse, O., Eberle, J., Miettinen, M., Liao, L., Fox, D., and Kautz, H. (2013). From big smartphone data to worldwide research: The Mobile Data Challenge. The International Journal of Robotics Research, 26(6):119-134.
  17. Lester, J., Choudhury, T., Kern, N., Borriello, G., and Hannaford, B. (2005). A hybrid discriminative/generative approach for modeling human activities. In Proceedings of the 19th International Joint Conference on Artificial Intelligence , pages 766-772.
  18. Lung, H.-Y., Chung, C.-H., and Dai, B.-R. (2014). Predicting locations of mobile users based on behavior semantic mining. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 168-180. Springer.
  19. Mantyjarvi, J., Himberg, J., and Seppanen, T. (2001). Recognizing human motion with multiple acceleration sensors. In Systems, Man, and Cybernetics, IEEE International Conference on, volume 2, pages 747-752. IEEE.
  20. Montoliu, R., Martínez-Uso, A., Mart ínez-Sotoca, J., and McInerney, J. (2012). Semantic place prediction by combining smart binary classifiers. In Nokia Mobile Data Challenge Workshop., volume 1.
  21. Perrin, O., Terrier, P., Ladetto, Q., Merminod, B., and Schutz, Y. (2000). Improvement of walking speed prediction by accelerometry and altimetry, validated by satellite positioning. Medical and Biological Engineering and Computing, 38(2):164-168.
  22. Preece, S. J., Goulermas, J. Y., Kenney, L. P., Howard, D., Meijer, K., and Crompton, R. (2009). Activity identification using body-mounted sensorsa review of classification techniques. Physiological measurement, 30(4):R1.
  23. Ravi, N., Dandekar, N., Mysore, P., and Littman, M. L. (2005). Activity recognition from accelerometer data. In AAAI, volume 5, pages 1541-1546.
  24. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., and Srivastava, M. (2010). Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks (TOSN), 6(2):13.
  25. Siewiorek, D. P., Smailagic, A., Furukawa, J., Krause, A., Moraveji, N., Reiger, K., Shaffer, J., and Wong, F. L. (2003). Sensay: A context-aware mobile phone. In ISWC, volume 3, page 248.
  26. Stikic, M., Van Laerhoven, K., and Schiele, B. (2008). Exploring semi-supervised and active learning for activity recognition. In 12th International Symposium on Wearable Computers, pages 81-88. IEEE.
  27. Yu Zheng, Hao Fu, X. X. W.-Y. M. Q. L. (2011). Geolife GPS trajectory dataset - User Guide.
  28. Zhu, Y., Zhong, E., Lu, Z., and Yang, Q. (2012). Feature engineering for place category classification. Mobile Data Challenge 2012.
  29. Zinnen, A., Blanke, U., and Schiele, B. (2009). An analysis of sensor-oriented vs. model-based activity recognition. In International Symposium on Wearable Computers, pages 93-100. IEEE.

Paper Citation

in Harvard Style

Roor R., Hess J., Saveriano M., Karg M. and Kirsch A. (2017). Sensor Fusion for Semantic Place Labeling . In Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS, ISBN 978-989-758-242-4, pages 121-131. DOI: 10.5220/0006365601210131

in Bibtex Style

author={Roman Roor and Jonas Hess and Matteo Saveriano and Michael Karg and Alexandra Kirsch},
title={Sensor Fusion for Semantic Place Labeling},
booktitle={Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,},

in EndNote Style

JO - Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,
TI - Sensor Fusion for Semantic Place Labeling
SN - 978-989-758-242-4
AU - Roor R.
AU - Hess J.
AU - Saveriano M.
AU - Karg M.
AU - Kirsch A.
PY - 2017
SP - 121
EP - 131
DO - 10.5220/0006365601210131