Improving SLEUTH Calibration with a Genetic Algorithm

Keith C. Clarke

Abstract

A review of calibration methods used for cellular automaton models of land use and land cover change was performed. Calibration advances have been achieved through machine learning algorithms to either extract land change rules, or optimize model performance. Many models have now automated the calibration process, reducing the need for subjective choices. Here, the brute force calibration procedure for the SLEUTH CA-based land use change model was replaced with a genetic algorithm (GA). The GA calibration process populates a “chromosome” with five parameter combinations (genes). These combinations are then used for model calibration runs, and the most successful selected for mutation, while the least successful are replaced with randomly selected values. Default values for the constants and rates of the genetic algorithm were selected from SLEUTH applications. Model calibrations were completed using both brute force calibration and the GA. The GA model performed as well as the brute force method, but used vastly less computation time with speed up of about 3 to 22. The optimal values for GA calibration are set as the defaults for SLEUTH-GA, a new version of the model. This paper is a contraction of Clarke (in press), which reports on the full set of results.

References

  1. Blecic, I., Cecchini, A. and Trunfio, G. A. (2010) A Comparison of Evolutionary Algorithms for Automatic Calibration of Constrained Cellular Automata. Taniar, D. et al. (Eds.): ICCSA 2010, LNCS 6016, 166-181. Springer-Verlag: Berlin.
  2. Cao, K. Huang, B., Li, M. and Li, W. (2014) Calibrating a cellular automata model for understanding rural-urban land conversion: a Pareto front-based multiobjective optimization approach, International Journal of Geographical Information Science, 28:5, 1028-1046, DOI: 10.1080/13658816.2013.851793
  3. Cao, K., Wang, S., Li, X. and Chen, R. (2011) Modeling Conversion of Rural-Urban Land Use Based on Cellular Automata and Genetic Algorithm Geoinformatics, 19th IEEE International Conference on, Shanghai 1-5. DOI: 10.1109/GeoInformatics.2011.5981029
  4. Clarke, K. C., Hoppen, S. and Gaydos, L. (1996) Methods and Techniques for Rigorous Calibration of a Cellular Automaton Model of Urban Growth. Proceedings, 3rd Int. Conference/Workshop on Integrating GIS and Environmental Modeling, January 21- 25th, Santa Fe, NM.
  5. Clarke, K. C., Hoppen, S. and L. Gaydos (1997) A selfmodifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24, 247-261.
  6. Clarke, K. C., and L. Gaydos (1998) Loose Coupling A Cellular Automaton Model and GIS: Long-Term Growth Prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12, 7, 699-714.
  7. Clarke, K.C. (2008a) Mapping and Modelling Land Use Change: an Application of the SLEUTH Model, in Landscape Analysis and Visualisation: Spatial Models for Natural Resource Management and Planning, (Eds. Pettit, C., Cartwright, W., Bishop, I., Lowell, K., Pullar, D. and Duncan, D.), Springer, Berlin, 353-366.
  8. Clarke, K.C. (2008b) A Decade of Cellular Urban Modeling with SLEUTH: Unresolved Issues and Problems, Ch. 3 in Planning Support Systems for Cities and Regions (Ed. Brail, R. K., Lincoln Institute of Land Policy, Cambridge, MA, pp 47-60.
  9. Clarke, K. C. (2014a) Why Simulate Cities? GeoJournal 79:129-136
  10. Clarke, K. C. (2014b) Cellular Automata and Agent-Based Models. Chapter 62 in Fischer, M. M. and Nijkamp, P. (eds) Handbook of Regional Science. Springer-Verlag, Berlin Heidelberg.
  11. Clarke-Lauer, M. D., and Clarke, K. C. (2011). Evolving simulation modeling: Calibrating SLEUTH using a genetic algorithm. Proc., 11th Int. Conf. on Geo Computation, Univ. College London, London.
  12. Chaudhuri, G. and Clarke, K. C. (2013) The SLEUTH Land Use Change Model: A Review. Int. Journal of Environmental Resources Research, 1, 1, 88-104.
  13. Colonna, A., Di Stefano, V., Lombardo, S., Papini, L., Rabino, G. A. (1998). Learning urban cellular automata in a real world: The case study of Rome metropolitan area. In: ACRI'98 third conference on cellular automata for research and industry, Trieste, 7-9 October 1998. London: Springer, 165-18.
  14. Dietzel, C. and Clarke, K. C. (2007) Toward Optimal Calibration of the SLEUTH Land Use Change Model. Transactions in GIS, 11, 1, 29-45.
  15. Feng, Y., Liu, Y., Tong, X., Liu, M., and Deng, S. (2011). Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 102(3), 188-196. http://dx.doi.org/10.1016/j.landurbplan.2011.04.004.
  16. Feng, Y. and Liu, Y., 2012. An optimised cellular automata model based on adaptive genetic algorithm for urban growth simulation. In: W. Shi, A. Yeh, Y. Leung and C. Zhou, eds. Advances in spatial data handling and GIS: 14th international symposium on spatial data handling. Heidelberg, Germany: Springer, 27-38.
  17. García , A. M. I. Santé , M. Boullón and R. Crecente (2013) Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm. Application to a small urban settlement of NW Spain, International Journal of Geographical Information Science, 27:8, 1593-1611, DOI: 10.1080/13658816.2012.762454
  18. Goldstein, N.C. (2004). Brains vs. Brawn: Comparative strategies for the calibration of a cellular automatabased urban growth model. In: P. Atkinson, G. Foody, S. Darby and F. Wu, eds., GeoDynamics. Boca Raton, FL: CRC Press.
  19. Gong, Z., Tang, W., and Thill, J. C. (2012). Parallelization of ensemble neural networks for spatial land-use modeling. In Proceedings of the 5th ACM SIGSPATIAL international workshop on locationbased social networks (pp. 48-54). ACM.
  20. Guan, Q., Wang, L. and Clarke, K. C. (2005) An Artificial-Neural-Network-based, Constrained CA Model for Simulating Urban Growth . Cartography and Geographic Information Science. 32, 4, 369-380.
  21. Houet, T., Aguejdad, R., Doukari, O., Battaia G. and Clarke, K. (2016) “Description and validation of a 'non path-dependent' model for projecting contrasting urban growth futures”, Cybergeo : European Journal of Geography, Systèmes, Modélisation, Géostatistiques, document 759 http://cybergeo.revues.org/27397
  22. Holland J. H. (1998). Emergence: From Chaos to Order. Addison-Wesley, Redwood City, CA.
  23. Hu, Z., and Lo, C. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667-688.
  24. Jafarnezhad, J., Salmanmahiny, A., and Sakieh, Y. (2015). Subjectivity versus objectivity-Comparative study between Brute Force method and Genetic Algorithm for calibrating the SLEUTH urban growth model. Urban Planning and Development. doi:10.1061/(ASCE)UP.1943-5444.0000307.
  25. Kirtland, D. Gaydos, L. Clarke, K. C., DeCola, L., Acevedo, W. and Bell, C. (1994) An analysis of human-induced land transformations in the San Francisco Bay/Sacramento area. World Resources Review, 6, 2, 206-217.
  26. Li, X. and Gar-On Yeh, A. (2002) Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographic Information Science. 16, 4, 323-343.
  27. Li, X., and Yeh, A. G. O. (2004). Data mining of cellular automata's transition rules. International Journal of Geographical Information Science, 18, 723-744.
  28. Liu, Y., and Phinn, S. R. (2003). Modelling urban development with cellular automata incorporating fuzzy-set approaches. Computers, Environment, and Urban Systems, 27, 637-658.
  29. Long, Y., Mao, Q., and Dang, A. (2009). Beijing urban development model: Urban growth analysis and simulation. Tsinghua Science and Technology, 14(6), 782-794.
  30. National Research Council (2014) Advancing Land Change Modeling: Opportunities and Research Requirements. Geographical Sciences Committee: Washington D. C.; National Academy Press.
  31. Pijanowski, B.C., B. Shellito and S. Pithadia. 2002. Using artificial neural networks, geographic information systems and remote sensing to model urban sprawl in coastal watersheds along eastern Lake Michigan. Lakes and Reservoirs 7: 271-285.
  32. Pontius Jr, R. G., W. Boersma, J-C. Castella, K. Clarke, T. de Nijs, C. Dietzel, D. Zengqiang, E. Fotsing, N. Goldstein, K. Kok, E. Koomen, C. D. Lippitt, W. McConnell, A. M. Sood, B. Pijanowski, S. Pithadia, S. Sweeney, T. N. Trung, A. T. Veldkamp, and P. H. Verburg. (2007) Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 42, 1 , 11-37.
  33. Rienow, A. and Goetzke, R. (2014) “Supporting SLEUTH-Enhancing a cellular with support vector machines for urban growth modeling. Computers, Environment and Urban Systems. 49, 66-81.
  34. Sakieh, Y. (2013) Urban sustainability analysis through the SLEUTH urban growth model and multi-criterion evaluation. A case study of Karaj City. PhD Dissertation, University of Tehran, Iran.
  35. Santé, I., Garcia, A. M., Miranda, D. and Maseda, R. C. (2010). Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning, 96 (2), 108-122.
  36. Shan, J., Alkheder, S., and Wang, J., 2008. Genetic algorithms for the calibration of cellular automata urban growth modeling. Photogrammetric Engineering and Remote Sensing, 74 (10), 1267-1277.
  37. Silva, E.A. and Clarke, K.C. (2002) Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal Computers, Environment and Urban Systems, 26, 6, 525-52 DOI 10.1016/S0198-9715(01)00014-X
  38. Silva, E. A., and Clarke, K. C. (2005). “Complexity, emergence and cellular urban models: Lessons learned from applying SLEUTH to two Portuguese metropolitan areas.” European Planning Studies, 13(1), 93-115.
  39. Syphard, A. D., Clarke, K. C. Franklin, J., Regan, H. M. and Mcginnis, M. (2011) Forecasts of habitat loss and fragmentation due to urban growth are sensitive to source of input data, Journal of Environmental Management, 92, 7, 1882-1893.
  40. Straatman, B., White, R., and Engelen, G., 2004. Towards an automatic calibration procedure for constrained cellular automata. Computers, Environment and Urban Systems, 28, 149-170.
  41. Torrens, P. T. and O'Sullivan, D (2001) Cellular automata and urban simulation: where do we go from here? Environment and Planning B: Planning and Design 28(2):163-168
  42. Wu, F. and Webster, C. J. (1998) Simulation of land development through the integration of cellular automata and multi-criteria evaluation. Environment and Planning B: Planning and Design 25(1):103-126
  43. Wu, F. (2002) Calibration of stochastic cellular automata: the application to rural-urban land conversions, International Journal of Geographical Information Science. 16 (8), 795-818.
  44. Wu, X., Y. Hu, H. He, R. Bu, J. Onsted, and F. Xi (2009) Performance Evaluation of the SLEUTH Model in the Shenyang Metropolitan Area of Northeastern China Environmental Modeling and Assessment 14, 2, 221- 230.
  45. Xiang, W-N, and K. C. Clarke (2003) The use of scenarios in land use planning. Environment and Planning B: Planning and Design, 30, 885-909.
  46. Yang, Q. S. and X. Li, (2007) Calibrating urban cellular automata using genetic algorithms, Geographical Research. 26, 2, 229-237.
  47. Yang, Q., Li, X., and Shi, X. (2008). Cellular automata for simulating land use changes based on support vector machines. Computers and Geosciences, 34(6), 592- 602.
Download


Paper Citation


in Harvard Style

Clarke K. (2017). Improving SLEUTH Calibration with a Genetic Algorithm . In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GAMOLCS, ISBN 978-989-758-252-3, pages 319-326. DOI: 10.5220/0006381203190326


in Bibtex Style

@conference{gamolcs17,
author={Keith C. Clarke},
title={Improving SLEUTH Calibration with a Genetic Algorithm},
booktitle={Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GAMOLCS,},
year={2017},
pages={319-326},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006381203190326},
isbn={978-989-758-252-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GAMOLCS,
TI - Improving SLEUTH Calibration with a Genetic Algorithm
SN - 978-989-758-252-3
AU - Clarke K.
PY - 2017
SP - 319
EP - 326
DO - 10.5220/0006381203190326