Modeling Inhibitory and Excitatory Synapse Learning in the Memristive Neuron Model

Max Talanov, Evgeniy Zykov, Victor Erokhin, Evgeni Magid, Salvatore Distefano, Yuriy Gerasimov, Jordi Vallverdú

Abstract

In this paper we present the results of simulation of exitatory Hebbian and inhibitory “sombrero” learning of a hardware architecture based on organic memristive elements and operational amplifiers implementing an artificial neuron we recently proposed. This is a first step towards the deployment on robots of a bio-plausible simulation, currently developed in the neuro-biologically inspired cognitive architecture (NeuCogAr) implementing basic emotional states or affects in a computational system, in the context of our “Robot dream” project. The long term goal is to re-implement dopamine, serotonin and noradrenaline pathways of NeuCogAr in a memristive hardware.

Download


Paper Citation


in Harvard Style

Talanov M., Zykov E., Erokhin V., Magid E., Distefano S., Gerasimov Y. and Vallverdú J. (2017). Modeling Inhibitory and Excitatory Synapse Learning in the Memristive Neuron Model . In Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-264-6, pages 514-521. DOI: 10.5220/0006478805140521


in Bibtex Style

@conference{icinco17,
author={Max Talanov and Evgeniy Zykov and Victor Erokhin and Evgeni Magid and Salvatore Distefano and Yuriy Gerasimov and Jordi Vallverdú},
title={Modeling Inhibitory and Excitatory Synapse Learning in the Memristive Neuron Model},
booktitle={Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2017},
pages={514-521},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006478805140521},
isbn={978-989-758-264-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Modeling Inhibitory and Excitatory Synapse Learning in the Memristive Neuron Model
SN - 978-989-758-264-6
AU - Talanov M.
AU - Zykov E.
AU - Erokhin V.
AU - Magid E.
AU - Distefano S.
AU - Gerasimov Y.
AU - Vallverdú J.
PY - 2017
SP - 514
EP - 521
DO - 10.5220/0006478805140521