Author:
Avi Bleiweiss
Affiliation:
Intel Corporation, United States
Keyword(s):
SoC, Mixture Model, Clustering, Likelihood, Expectation-Maximization, KNN, Ranked Information Retrieval.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Clustering and Classification Methods
;
Computational Intelligence
;
Evolutionary Computing
;
Information Extraction
;
Knowledge Discovery and Information Retrieval
;
Knowledge-Based Systems
;
Machine Learning
;
Mining Text and Semi-Structured Data
;
Soft Computing
;
Symbolic Systems
Abstract:
The fast cadence for evolving mobile compute systems, often extends their default processor configuration by incorporating task specific, companion cores. In this setting, the problem of matching a compute program to efficiently execute on a dynamically selected processor, poses a considerable challenge to employing traditional compiler technology. Rather, we propose an unsupervised machine learning methodology that mines a large data corpus of unlabeled compute programs, with the objective to discover optimal program-processor relations. In our work, we regard a compute program as a text document, comprised of a linear sequence of bytecode mnemonics, and further transformed into an effective representation of a bag of instruction term frequencies. Respectively, a set of concise instruction vectors is forwarded onto a finite mixture model, to identify unsolicited cluster patterns of source-target compute pairings, using the expectation-maximization algorithm. For classification, we e
xplore k-nearest neighbor and ranked information retrieval methods, and evaluate our system by simultaneously varying the dimensionality of the training set and the SoC processor formation. We report robust performance results on both the discovery of relational clusters and feature matching.
(More)