Authors:
Eman H. Ahmed
and
Mohamed Moustafa
Affiliation:
The American University in Cairo, Egypt
Keyword(s):
Support Vector Regression, Neural Networks, House Price Estimation, Houses Dataset.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Artificial Intelligence and Decision Support Systems
;
Biomedical Engineering
;
Biomedical Signal Processing
;
Computational Intelligence
;
Data Manipulation
;
Enterprise Information Systems
;
Health Engineering and Technology Applications
;
Human-Computer Interaction
;
Methodologies and Methods
;
Neural Network Software and Applications
;
Neural Networks
;
Neurocomputing
;
Neurotechnology, Electronics and Informatics
;
Pattern Recognition
;
Physiological Computing Systems
;
Sensor Networks
;
Signal Processing
;
Soft Computing
;
Support Vector Machines and Applications
;
Theory and Methods
Abstract:
Most existing automatic house price estimation systems rely only on some textual data like its neighborhood area and the number of rooms. The final price is estimated by a human agent who visits the house and assesses it visually. In this paper, we propose extracting visual features from house photographs and combining them with the house’s textual information. The combined features are fed to a fully connected multilayer Neural Network (NN) that estimates the house price as its single output. To train and evaluate our network, we have collected the first houses dataset (to our knowledge) that combines both images and textual attributes. The dataset is composed of 535 sample houses from the state of California, USA. Our experiments showed that adding the visual features increased the R-value by a factor of 3 and decreased the Mean Square Error (MSE) by one order of magnitude compared with textual-only features. Additionally, when trained on the textual-only features housing dataset (
Lichman, 2013), our proposed NN still outperformed the existing model published results (Khamis and Kamarudin, 2014).
(More)