Authors:
Evelio González
1
;
Cristhian Núñez
1
;
José Salinas
2
;
Jorge Rodas
3
;
Mariela Rodas
4
;
Enrique Paiva
3
;
Yassine Kali
5
;
Maarouf Saad
5
;
Fernando Lesme
1
;
Jose Lesme
1
;
Luis Gonzalez
1
;
Belen Maldonado
1
and
José Rodríguez-Piñeiro
6
Affiliations:
1
Unidad Pedagógica de Caacupé, Universidad Católica Nuestra Señora de la Asunción, Caacupé, Paraguay
;
2
TECHA, Caacupé, Paraguay
;
3
Laboratory of Power and Control Systems, Facultad de Ingeniería, Universidad Nacional de Asunción, Luque, Paraguay
;
4
Instituto Paraguayo de Tecnología Agraria, Caacupé, Paraguay
;
5
GRÉPCI Laboratory, École de Technologie Supérieure, Montreal, Canada
;
6
College of Electronics and Information Engineering, Tongji University, Shanghái, China
Keyword(s):
Drones, Multispectral Imaging, Digital Signal Processing, Precision Agriculture.
Abstract:
Drones are important in precision agriculture applications since they represent a new tool that can increase crop production. In this context, the digital processing of the images obtained from multispectral cameras integrated into the drones makes it possible to analyze the stress state of the crops, their vigor, a burned area, among others. The latter are usually obtained through proprietary applications with very high subscription costs. For this reason, this article presents the step-by-step implementation process of the different methods or algorithms to be applied to multispectral images using the open-source Python programming language. We use a soybean crop as an example of the application, and the results obtained from applying the digital image processing algorithms are presented.