loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Claudio Rota and Marco Buzzelli

Affiliation: Department of Informatics Systems and Communication, University of Milano – Bicocca, Italy

Keyword(s): Video Restoration, Video Enhancement, Multiple Distortions, Denoising, Compression Artifacts.

Abstract: Video restoration techniques aim to remove artifacts, such as noise, blur, and compression, introduced at various levels within and outside the camera imaging pipeline during video acquisition. Although excellent results can be achieved by considering one artifact at a time, in real applications a given video sequence can be affected by multiple artifacts, whose appearance is mutually influenced. In this paper, we present Multi-distorted Video Restoration Network (MdVRNet), a deep neural network specifically designed to handle multiple distortions simultaneously. Our model includes an original Distortion Parameter Estimation sub-Network (DPEN) to automatically infer the intensity of various types of distortions affecting the input sequence, novel Multi-scale Restoration Blocks (MRB) to extract complementary features at different scales using two parallel streams, and implements a two-stage restoration process to focus on different levels of detail. We document the accuracy of the DPE N module in estimating the intensity of multiple distortions, and present an ablation study that quantifies the impact of the DPEN and MRB modules. Finally, we show the advantages of the proposed MdVRNet in a direct comparison with another existing state-of-the-art approach for video restoration. The code is available at https://github.com/claudiom4sir/MdVRNet. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.147.6.122

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Rota, C. and Buzzelli, M. (2022). MdVRNet: Deep Video Restoration under Multiple Distortions. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP; ISBN 978-989-758-555-5; ISSN 2184-4321, SciTePress, pages 419-426. DOI: 10.5220/0010828900003124

@conference{visapp22,
author={Claudio Rota and Marco Buzzelli},
title={MdVRNet: Deep Video Restoration under Multiple Distortions},
booktitle={Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP},
year={2022},
pages={419-426},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010828900003124},
isbn={978-989-758-555-5},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP
TI - MdVRNet: Deep Video Restoration under Multiple Distortions
SN - 978-989-758-555-5
IS - 2184-4321
AU - Rota, C.
AU - Buzzelli, M.
PY - 2022
SP - 419
EP - 426
DO - 10.5220/0010828900003124
PB - SciTePress