loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Hope Hodges 1 ; Carolyn Garrity 2 and James Pope 3

Affiliations: 1 Mississippi State University, Starkville, MS, U.S.A. ; 2 Stephens College of Business, University of Montevallo, Montevallo, AL, U.S.A. ; 3 Intelligent Systems Laboratory, University of Bristol, Bristol, U.K.

Keyword(s): Deep Learning, Feature Selection, Home Mortgage Disclosure Act, Loan Classification, Financial Technology.

Abstract: Analysis of home mortgage applications is critical for financial decision-making for commercial and government lending organisations. The Home Mortgage Disclosure Act (HMDA) requires financial organisations to provide data on loan applications. Accordingly, the Consumer Financial Protection Bureau (CFPB) provides loan application data by year. This loan application data can be used to design regression and classification models. However, the amount of data is too large to train for modest computational resources. To address this, we used reservoir sampling to take suitable subsets for processing. A second issue is that the number of features are limited to the original 78 features in the HMDA records. There are a large number of other data source and associated features that may improve model accuracy. We augment the HMDA data with ten economic indicator features from an external data source. We found that the additional economic features do not improve the model’s accuracy. We desig ned and compared several classical and recent classification approaches to predict the loan approval decision. We show that the Decision Tree, XG Boost, Random Forest, and Support Vector Machine classifiers achieve between 82-85% accuracy while Naive Bayes results in the lowest accuracy of 79%. We found that a Deep Neural Network classifier had the best classification perfor-mance with almost 89% f1 accuracy on the HMDA data. We performed feature selection to determine what features are the most important loan classification. We found that the more obvious loan amount and applicant income were important. Interestingly we found that when we left race and gender in the feature set, unfortunately, they were selected as an important feature by the machine learning methods. This highlights the need for diligence in financial systems to make sure the machine is not biased. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.136.18.156

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Hodges, H. ; Garrity, C. and Pope, J. (2024). Deep Learning, Feature Selection and Model Bias with Home Mortgage Loan Classification. In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM; ISBN 978-989-758-684-2; ISSN 2184-4313, SciTePress, pages 248-255. DOI: 10.5220/0012326800003654

@conference{icpram24,
author={Hope Hodges and Carolyn Garrity and James Pope},
title={Deep Learning, Feature Selection and Model Bias with Home Mortgage Loan Classification},
booktitle={Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM},
year={2024},
pages={248-255},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012326800003654},
isbn={978-989-758-684-2},
issn={2184-4313},
}

TY - CONF

JO - Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM
TI - Deep Learning, Feature Selection and Model Bias with Home Mortgage Loan Classification
SN - 978-989-758-684-2
IS - 2184-4313
AU - Hodges, H.
AU - Garrity, C.
AU - Pope, J.
PY - 2024
SP - 248
EP - 255
DO - 10.5220/0012326800003654
PB - SciTePress