loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Mariana Carvalho 1 ; Ana Borges 1 ; Alexandra Gavina 2 ; Lídia Duarte 1 ; Joana Leite 3 ; 4 ; Maria Polidoro 5 ; 6 ; Sandra Aleixo 6 ; 7 and Sónia Dias 8 ; 9

Affiliations: 1 CIICESI, ESTG, Polytechnic of Porto, Rua do Curral, Casa do Curral, Margaride, Felgueiras, 4610-156, Portugal ; 2 Lema-ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, Porto, 4249-015, Portugal ; 3 Polytechnic University of Coimbra, Rua da Misericórdia, Lagar dos Cortiços, S. Martinho do Bispo, 3045-093 Coimbra, Portugal ; 4 CEOS.PP Coimbra, Polytechnic University of Coimbra, Bencanta, 3045-601 Coimbra, Portugal ; 5 ESTG, Polytechnic of Porto, Rua do Curral, Casa do Curral, Margaride, Felgueiras, 4610-156, Portugal ; 6 CEAUL – Centro de Estatı́stica e Aplicações da Universidade de Lisboa, Portugal ; 7 Department of Mathematics, ISEL – Instituto Superior de Engenharia de Lisboa, Portugal ; 8 ESTG, Instituto Politécnico de Viana do Castelo, Portugal ; 9 LIAAD-INESC TEC, Portugal

Keyword(s): Textile Dyeing, Non-Conformity, Data Mining, Knowledge Discovery, Prediction, Random Forest, Gradient Boosted Trees.

Abstract: The textile industry, a vital sector in global production, relies heavily on dyeing processes to meet stringent quality and consistency standards. This study addresses the challenge of identifying and mitigating non-conformities in dyeing patterns, such as stains, fading and coloration issues, through advanced data analysis and machine learning techniques. The authors applied Random Forest and Gradient Boosted Trees algorithms to a dataset provided by a Portuguese textile company, identifying key factors influencing dyeing non-conformities. Our models highlight critical features impacting non-conformities, offering predictive capabilities that allow for preemptive adjustments to the dyeing process. The results demonstrate significant potential for reducing non-conformities, improving efficiency and enhancing overall product quality.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.118.254.77

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Carvalho, M., Borges, A., Gavina, A., Duarte, L., Leite, J., Polidoro, M., Aleixo, S. and Dias, S. (2024). Enhancing Dyeing Processes with Machine Learning: Strategies for Reducing Textile Non-Conformities. In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KDIR; ISBN 978-989-758-716-0; ISSN 2184-3228, SciTePress, pages 363-370. DOI: 10.5220/0012992800003838

@conference{kdir24,
author={Mariana Carvalho and Ana Borges and Alexandra Gavina and Lídia Duarte and Joana Leite and Maria Polidoro and Sandra Aleixo and Sónia Dias},
title={Enhancing Dyeing Processes with Machine Learning: Strategies for Reducing Textile Non-Conformities},
booktitle={Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KDIR},
year={2024},
pages={363-370},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012992800003838},
isbn={978-989-758-716-0},
issn={2184-3228},
}

TY - CONF

JO - Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KDIR
TI - Enhancing Dyeing Processes with Machine Learning: Strategies for Reducing Textile Non-Conformities
SN - 978-989-758-716-0
IS - 2184-3228
AU - Carvalho, M.
AU - Borges, A.
AU - Gavina, A.
AU - Duarte, L.
AU - Leite, J.
AU - Polidoro, M.
AU - Aleixo, S.
AU - Dias, S.
PY - 2024
SP - 363
EP - 370
DO - 10.5220/0012992800003838
PB - SciTePress