Ben-Tal, A. and Zibulevsky, M. (1997). Penalty/barrier
multiplier methods for convex programming prob-
lems. SIAM J. on Optimization, 7:347–366.
Bertsekas, D. P. (1982.). Constrained optimization and La-
grange multiplier methods. Academic Press, London.
Chen, B. M. (1998). H
∞
Control and Its Applications, vol-
ume 235 of Lectures Notes in Control and Informa-
tion Sciences. Springer Verlag, New York, Heidelberg,
Berlin.
Conn, A. R., Gould, N., and Toint, P. L. (1991). A globally
convergent augmented Lagrangian algorithm for opti-
mization with general constraints and simple bounds.
SIAM J. Numer. Anal., 28(2):545 – 572.
Conn, A. R., Gould, N. I. M., Sartenaer, A., and Toint, P. L.
(1993a). Global Convergence of two Augmented La-
grangian Algorithms for Optimization with a Com-
bination of General Equality and Linear Constraints.
Technical Report TR/PA/93/26, CERFACS, Toulouse,
France.
Conn, A. R., Gould, N. I. M., Sartenaer, A., and Toint, P. L.
(1993b). Local convergence properties of two aug-
mented Lagrangian algorithms for optimization with a
combination of general equality and linear constraints.
Technical Report TR/PA/93/27, CERFACS, Toulouse,
France.
Conn, A. R., Gould, N. I. M., Sartenaer, A., and Toint, P. L.
(1996). Convergence properties of an augmented La-
grangian algorithm for optimization with a combina-
tion of general equality and linear constraints. SIAM
J. on Optimization, 6(3):674 – 703.
Fares, B., Apkarian, P., and Noll, D. (2000). An Augmented
Lagrangian Method for a Class of LMI-Constrained
Problems in Robust Control Theory. In Proc. Amer-
ican Control Conf., pages 3702–3705, Chicago, Illi-
nois.
Fares, B., Apkarian, P., and Noll, D. (2001). An Augmented
Lagrangian Method for a Class of LMI-Constrained
Problems in Robust Control Theory. Int. J. Control,
74(4):348–360.
Fares, B., Noll, D., and Apkarian, P. (2002). Robust Control
via Sequential Semideﬁnite Programming. SIAM J. on
Control and Optimization, 40(6):1791–1820.
Gangsaas, D., Bruce, K., Blight, J., and Ly, U.-L. (1986).
Application of modern synthesis to aircraft control:
Three case studies. IEEE Trans. Aut. Control,AC-
31(11):995–1014.
Hassibi, A., How, J., and Boyd, S. (1999). A pathfollowing
method for solving bmi problems in control. In Proc.
American Control Conf., pages 1385–1389.
Henrion, D., M.Kocvara, and Stingl, M. (2003). Solving
simultaneous stabilization BMI problems with PEN-
NON. In IFIP Conference on System Modeling and
Optimization, volume 7, Sophia Antipolis, France.
Hestenes, M. R. (1969). Multiplier and gradient method. J.
Optim. Theory Appl., 4:303 – 320.
Hung, Y. S. and MacFarlane, A. G. J. (1982). Multivari-
able feedback: A classical approach. Lectures Notes
in Control and Information Sciences. Springer Verlag,
New York, Heidelberg, Berlin.
Keel, L. H., Bhattacharyya, S. P., and Howze, J. W. (1988).
Robust control with structured perturbations. IEEE
Trans. Aut. Control, 36:68–77.
Kocvara, M. and Stingl, M. (2003). A Code for Convex
Nonlinear and Semideﬁnite Programming. Optimiza-
tion Methods and Software, 18(3):317–333.
Leibfritz, F. (1998). Computational design of stabiliz-
ing static output feedback controller. Rapports 1 et
2 Mathematik/Informatik, Forschungsbericht 99-02,
Universitt Trier.
Lewis, A. (1996). Derivatives of spectral functions. Math-
ematics of Operations Research, 21:576–588.
Lewis, A. (2001). Twice differentiable spectral functions.
SIAM J. on Matrix Analysis and Applications, 23:368–
386.
Lewis, A. and S.Sendov, H. (2002). Quadratic expan-
sions of spectral functions. Linear Algebra and Appl.,
340:97–121.
Lin, C. and More, J. (1998). Newton’s method for large
bound–constrained optimization problems. Techni-
cal Report ANL/MCS-P724–0898, Mathematics and
Computer Sciences Division, Argonne National Lab-
oratory.
Mosheyev, L. and Zibulevsky, M. (2000). Penalty/barrier
multiplier algorithm for semideﬁnite programming.
Optimization Methods and Software, 13(4):235–261.
Noll, D., Torki, M., and Apkarian, P. (2002). Partially
Augmented Lagrangian Method for Matrix Inequality
Constraints. submitted. Rapport Interne , MIP, UMR
5640, Maths. Dept. - Paul Sabatier University.
Powell, M. J. D. (1969). A method for nonlinear constraints
in minimization problem. In Fletcher, R., editor, Op-
timization. Academic Press, London, New York.
Schnabel, R. B. and Eskow, E. (1999). A revised modiﬁed
cholesky factorization algorithm. SIAM J. on Opti-
mization, 9(4):1135–1148.
Shapiro, A. (2002). On differentiability of symmetric ma-
trix valued functions. School of Industrial and Sys-
tems Engineering, Georgia Institute of Technology.
Preprint.
Zibulevsky, M. (1996). Penalty/Barrier Multiplier Methods
for Large-Scale Nonlinear and Semideﬁnite Program-
ming. Ph. D. Thesis, Technion Isral Institute of Tech-
nology.
ICINCO 2004 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION
248