
 
ACKNOWLEDGEMENTS 
This research was funded by Millenium Nucleus 
Center for Web Research, Grant P04-067-F, Chile. 
Portions of the research in this paper use the FERET 
database of facial images collected under the FERET 
program. 
REFERENCES 
BioID, 2005.Face Database. Available on August 2005 in: 
http://www.bioid.com/downloads/facedb/index.php 
Cristinacce, D. and Cootes, T., 2003. “A Comparison of 
two Real-Time Face Detection Methods”, 4th IEEE 
Int. Workshop on Performance Evaluation of Tracking 
and Surveillance – PETS 2003, pp. 1-8, Graz, Austria. 
Fröba, B. and Küblbeck, Ch., 2002. Robust face detection 
at video frame rate based on edge orientation features. 
5th Int. Conf. on Automatic Face and Gesture 
Recognition FG - 2002, pp. 342–347. 
Fröba, B. and Ernst, A., 2004. “Face detection with the 
modified census transform”, 6th Int. Conf. on Face 
and Gesture Recognition - FG 2004, pp. 91–96, Korea. 
Delakis, M. and Garcia, C., 2004. “Convolutional face 
finder: A neural architecture for fast and robust face 
detection”, IEEE Trans. Pattern Anal. Mach. Intell., 
26(11):1408 – 1423. 
Dudek, G., and Jenkin, M., 2002. Computational 
Principles of Mobile Robotics, Cambridge University 
Press. 
Isard, M., and Blake, A., 1998. “Condensation – 
Conditional Density Propagation for Visual Tracking”, 
Int. J. of Computer Vision, Vol. 29, N. 1, pp. 5—28. 
Lastra, R., Vallejos, P., and J. Ruiz-del-Solar, 2004. 
“Integrated Self-Localization and Ball Tracking in the 
Four-Legged Robot Soccer League”, 1st IEEE Latin 
American Robotics Symposium – LARS 2004, pp. 54 
– 59, Oct. 28 – 29, México City, México. 
Li, S.Z., Zhu, L., Zhang, Z.Q., Blake, A., Zhang, H.J. and 
Shum, H., 2002. “Statistical Learning of Multi-view 
Face Detection”, 7th European Conf. on Computer 
Vision – ECCV 2002, (Lecture Notes in Computer 
Science; Vol. 2353), pp. 67 – 81. 
PETS, 2003. Home Page. Available on August 2005 in: 
http://www.cvg.cs.rdg.ac.uk/PETS-ICVS/pets-icvs-
db.html 
Phillips, P. J., Wechsler, H., Huang, J.and Rauss, P., 1998. 
“The FERET database and evaluation procedure for 
face recognition algorithms,” Image and Vision 
Computing J., Vol. 16, no. 5, pp. 295-306. 
Rowley, H., Baluja, S. and Kanade, T., 1998. “Neural 
Network-Based Detection”, IEEE Trans. Pattern Anal. 
Mach. Intell., Vol.20, No. 1, 23-28. 
Ruiz-del-Solar, J., Vallejos, P., Lastra, R., Loncomilla, P., 
Zagal, J.C., Morán, C., and Sarmiento, I., 2005b. 
“UChile1 2005 Team Description Paper”, RoboCup 
2005 Symposium, July 13 – 17, Osaka, Japan. 
Schapire, R.E.  and Singer, Y., 1999. Improved Boosting 
Algorithms using Confidence-rated Predictions, 
Machine Learning, 37(3):297-336. 
Schneiderman, H., 2004. Feature-Centric Evaluation for 
Efficient Cascade Object Detection, IEEE Conference 
of Computer Vision and Pattern Recognition – CVPR 
2004, pp. 29 - 36. 
Sung, K. and Poggio, T., 1998. “Example-Based Learning 
for Viewed-Based Human Face Deteccion”, IEEE 
Trans. Pattern Anal. Mach. Intell., Vol.20, N. 1, 39-51. 
UCHFACE, 2005. Computational Vision Group, 
Universidad de Chile. Available on August 2005 in: 
http://vision.die.uchile.cl/ 
Verschae, R. and Ruiz-del-Solar, J., 2003. “A Hybrid Face 
Detector based on an Asymmetrical Adaboost Cascade 
Detector and a Wavelet-Bayesian-Detector”, Lecture 
Notes in Computer Science 2686 (IWANN 2003), 
Springer, pp. 742-749, Menorca, Spain. 
Verschae, R., Ruiz-del-Solar, J., Correa, M., 2006a. 
Gender Classification of Faces Using Adaboost, In 
Proc of CIARP, LNCS 4225. 
Verschae, R., Ruiz-del-Solar, J., Correa, M. and Vallejos, 
P.  2006b. A Unified Learning Framework for Face, 
Eyes and Gender Detection using Nested Cascades of 
Boosted Classifiers,  Tech.Report UCH-DIE-VISION-
2006-02, Dept. of Elect. Eng., Universidad de Chile. 
Viola, P. and Jones, M., 2001. "Rapid object detection 
using a boosted cascade of simple features", IEEE 
Conf. on Computer Vision and Pattern Recognition - 
CVPR, Kauai, HI, USA, 2001, pp. 511 - 518. 
Wu, B., AI, H. , Huang, C. and Lao, S., 2004. “Fast 
rotation invariant multi-view face detection based on 
real Adaboost”, 6th Int. Conf. on Face and Gesture 
Recognition - FG 2004, pp. 79–84, Seoul, Korea. 
 
 
Figure 5: Examples of the face detection and tracking 
system for AIBO robots. The system detect faces and 
performs gender classification. When the resolution of the 
faces is larger than 50x50 pixels it detects also the eyes. 
VISAPP 2007 - International Conference on Computer Vision Theory and Applications
30