
 
are not preceding them. Giving up this principle 
would jeopardise the efficiency and thus 
practicability.  
We have presented two example systems solving 
quite different tasks and operating in a different way. 
This demonstrates exemplarily that the GESTALT 
interpreter is a useful tool for a broad range of 
recognition applications. However, it cannot solve 
the problems alone.  
Preliminary to its application iconic image 
processing tools and segmentation procedures for 
the primitives are required. It is hard to mend on the 
interpretation level what has been missed and 
spoiled in the processing chain before.  
Moreover, for many tasks, a final or approximate 
interpretation configuration is not sufficient as 
result. Further processing and decisions are needed 
after the interpretation has been terminated. This 
may be quite simple, such as giving the best object 
ematrix as result in the system presented in section 
4.2. Or a little more complicated – such as giving a 
threshold for the quality of the objects 
ematrix and 
in case there is no better one take the best object 
homography. Such system may also interact with a 
Kalman filter for flight control of an unmanned 
aircraft in both directions – getting prior information 
from it and handing measurements of epipole and 
rotation to it.  
The decision system following on top of the 
saliency recognition system outlined in section 4.1. 
may either be an AI-reasoning system or also a 
human interpreter. Both require a sophisticated 
interface. 
REFERENCES 
Christensen, H. I., Nagel, H.-H. (eds), 2006.Cognitive 
Vision Systems, Springer, Berlin LNCS 3948, pp. 183-
198 
Draper, B., Collins, R., Brolio, J., Hanson, A., Riseman, 
E., 1989. The Schema System, IJCV, Vol. 2 pp. 209-
250. 
Janzen, M., 1988. confluent String Rewriting, Springer, 
Berlin. 
Lütjen, K., 1986. Ein Blackboard-basiertes 
Produktionssystem für die automatische 
Bildauswertung. In: Hartmann, G. (ed.) 
Mustererkennung 1986, DAGM 1986, Springer, 
Berlin, Informatik Fachberichte 125, pp. 164-168. 
Lütjen, K., 2001. Systeme und Verfahren für strukturelle 
Musteranalysen mit Produktionsnetzen, Diss., Univ. of 
Karlsruhe, institute for communications engineering, 
ISSN: 1433-3821. 
Matsuyama, T., Hwang, V. S.-S., 1990. Sigma a 
Knowledge-based Image Understanding System, 
Plenum Press, New York.  
Michaelsen E., Stilla U., 2002. Probabilistic Decisions in 
Production Nets: An Example from Vehicle 
Recognition.  In: Caelli T., Amin A., Duin R. P. W., 
Kamel M., Ridder D. de (eds). Structural, Syntactic 
and Statistical Pattern Recognition SSPR/SPR 2002, 
Springer, Berlin, LNCS 2396, pp. 225-233. 
Michaelsen E., Soergel U., Thoennessen U., 2006a. 
Perceptual Grouping in Automatic Detection of Man-
Made Structure in high resolution SAR data. Pattern 
Recognition Letters, Vol. 27, No. 4, pp. 218-225. 
Michaelsen, E., von Hansen, W., Kirchhof, M., Meidow, 
J., Stilla U., 2006b. Estimating the Essential Matrix: 
GOODSAC versus RANSAC. ISPRS Symposium on 
Photogrammetric Computer Vision (PCV 2006). 
Niemann, H., 1989. Pattern Analysis and Understanding, 
Springer, Berlin. 
Nister, D.,  2004. An Efficient Solution to the Five Point 
Relative Pose Problem, IEEE PAMI, vol. 26, no. 6, 
pp. 756–769.  
Sagerer, G., 1982. Darstellung und Nutzung von 
Expertenwissen für ein Bildanalysesystem, Diss., 
Univ. of Erlangen-Nürnberg, Springer, Inormatik 
Fachberichte 104, Berlin. 
Stilla U., Michaelsen E., 1997. Semantic modelling of 
man-made objects by production nets. In: Gruen A., 
Baltsavias EP., Henricsson O. (eds). Automatic 
extraction of man-made objects fromaerial and space 
images (II). Birkhäuser, Basel, pp. 43-52.   
 
MEANING AND EFFICIENCY IN THE GESTALT-SYSTEM - An Approach to Automatic Image Description
193