AN INVERSE PROBLEM APPROACH TO BRDF MODELING

Kei Iwasaki, Yoshinori Dobashi, Fujiichi Yoshimoto, Tomoyuki Nishita

2009

Abstract

This paper presents a BRDF modeling method, based on an inverse problem approach. Our method calculates BRDFs to match the appearance of the object specified by the user. By representing BRDFs by a linear combination of basis functions, outgoing radiances of the object surface can be represented using basis functions. The calculation of the desired BRDF results from calculating the corresponding coefficients of basis functions that minimize the sum of differences between the outgoing radiances, represented using basis functions and user specified radiances. The properties that BRDFs must satisfy are described by linear constraint conditions. This minimization problem can be solved, interactively, using a linearly constrained least squares approach. Thus, our method allows the user to design BRDFs directly, under fixed complex lighting and viewpoint, and to view the rendering results interactively, under dynamic lighting and viewpoint.

References

  1. Akerlund, O., Unger, M., and Wang, R. (2007). Precomputed visibility cuts for interactive relighting with dynamic BRDFs. In Proceedings of Pacific Graphics 2007, pages 161-170.
  2. Ashikhmin, M., Premoze, S., and Shirley, P. (2000). A microfacet-based BRDF generator. In Proceedings of SIGGRAPH 2000, pages 65-74.
  3. Ben-Artzi, A., Egan, K., Ramamoorthi, R., and Durand, F. (2008). A precomputed polynomial representation for interactive BRDF editing with global illumination. ACM Transactions on Graphics, 27(2):13.
  4. Ben-Artzi, A., Overbeck, R., and Ramamoorthi, R. (2006). Real-time BRDF editing in complex lighting. ACM Transaction on Graphics, 25(3):945-954.
  5. Colbert, M., Pattanaik, S., and Krivanek, J. (2006). BRDFshop: Creating physically correct bidirectional reflectance distribution functions. IEEE Computer Graphics and Applications, 26(1):30-36.
  6. Dobashi, Y., Kaneda, K., Yamashita, H., and Nishita, T. (1995). A quick rendering method using basis functions for interactive lighting design. Computer Graphics Forum, 14(3):229-240.
  7. Dobashi, Y., Kaneda, K., Yamashita, H., and Nishita, T. (1996). Method for calculation of sky light luminance aiming at an interactive architectural design. Computer Graphics Forum, 15(3):112-118.
  8. Hasan, M., Pellacini, F., and Bala, K. (2006). Direct-toindirect transfer for cinematic relighting. ACM Transaction on Graphics, 25(3):1089-1097.
  9. Jaroskiewicz, R. and McCool, M. D. (2003). Fast extraction of BRDFs and material maps from images. In Proceedings of Graphics Interface 2003, pages 1-10.
  10. Kautz, J., Sloan, P., and Snyder, J. (2002). Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. In Proc. Eurographics Workshop on Rendering 2002, pages 301-308.
  11. Khan, E. A., Reinhard, E., Fleming, R. W., and Bulthoff, H. H. (2006). Image-based material editing. ACM Transactions on Graphics, 25(3):654-663.
  12. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. (2006). Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics, 25(3):735-745.
  13. Lehtinen, J. and Kautz, J. (2003). Matrix radiance transfer. In Proc. Symposium on Interactive 3D Graphics 2003, pages 59-64.
  14. Liu, X., Sloan, P., Shum, H., and Snyder, J. (2004). Allfrequency precomputed radiance transfer for glossy objects. In Proc. Eurographics Symposium on Rendering 2004, pages 337-344.
  15. NAG (2007). Numerical algorithm group c library.
  16. Narcowich, F. J. and Ward, J. D. (1996). Nonstationary wavelets on them-sphere for scattered data. Applied and Computational Harmonic Analysis, 3(4):324- 336.
  17. Ng, R., Ramamoorthi, R., and Hanrahan, P. (2003). Allfrequency shadows using non-linear wavelet lighting approximation. ACM Transactions on Graphics, 22(3):376-381.
  18. Ngan, A., Durand, F., and Matusik, W. (2006). Imagedriven navigation of analytical BRDF models. In Proceedings of Eurographics Symposium on Rendering 2006, pages 399-408.
  19. Okabe, M., Matsushita, Y., Shen, L., and Igarashi, T. (2007). Illumination brush: Interactive design of allfrequency lighting. In Proceedings of Pacific Graphics 2007, pages 171-180.
  20. Pacanowski, R., Grainer, X., Schick, C., and Poulin, P. (2008). Sketch and paint-based interface for highlight modeling. In Eurographics Workshop on SketchBased Interfaces and Modeling.
  21. Pellacini, F., Battaglia, F., Morley, R., and Finkelstein, A. (2007). Lighting with paint. ACM Transactions on Graphics, 26(2):9.
  22. Pellacini, F. and Lawrence, J. (2007). Appwand: Editing measured materials using appearance-driven optimization. ACM Transactions on Graphics, 26(3):54.
  23. Poulin, P. and Fournier, A. (1992). Lights from highlights and shadows. In Proceedings of Symposium on Interactive 3D Graphics 1992, pages 31-38.
  24. Ramamoorthi, R. and Hanrahan, P. (2002). Frequency space environment map rendering. ACM Transactions on Graphics, 21(3):517-526.
  25. Schoeneman, C., Dorsey, J., Smits, B., Arvo, J., and Greenberg, D. (1993). Painting with light. In Proceedings of SIGGRAPH'93, pages 143-146.
  26. Sloan, P., Hall, J., Hart, J., and Snyder, J. (2003a). Clustered principal components for precomputed radiance transfer. ACM Transactions on Graphics, 22(3):382- 391.
  27. Sloan, P., Kautz, J., and Snyder, J. (2002). Precomputed radiance transfer for real-time rendering in dynamic scenes. ACM Transactions on Graphics, 21(3):527- 536.
  28. Sloan, P., Liu, X., Shum, H., and Snyder, J. (2003b). Biscale radiance transfer. ACM Transactions on Graphics, 22(3):370-375.
  29. Sloan, P., Luna, B., and Snyder, J. (2005). Local, deformable precomputed radiance transfer. ACM Transactions on Graphics, 24(3):1216-1224.
  30. Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., and Guo, B. (2007). Interactive relighting with dynamic BRDFs. ACM Transaction on Graphics, 26(3):27.
  31. Tsai, Y.-T. and Shih, Z.-C. (2006). All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Transaction on Graphics, 25(3):967-976.
  32. Wang, R., Tran, J., and Luebke, D. (2004). Allfrequency relighting of non-diffuse objects using separable BRDF approximation. In Proc. Eurographics Symposium on Rendering 2004, pages 345-354.
  33. Ward, G. J. (1992). Measuring and modeling anisotropic reflection. ACM SIGGRAPH Compute Graphics, 26(2):265-272.
Download


Paper Citation


in Harvard Style

Iwasaki K., Dobashi Y., Yoshimoto F. and Nishita T. (2009). AN INVERSE PROBLEM APPROACH TO BRDF MODELING . In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009) ISBN 978-989-8111-67-8, pages 129-136. DOI: 10.5220/0001784601290136


in Bibtex Style

@conference{grapp09,
author={Kei Iwasaki and Yoshinori Dobashi and Fujiichi Yoshimoto and Tomoyuki Nishita},
title={AN INVERSE PROBLEM APPROACH TO BRDF MODELING},
booktitle={Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)},
year={2009},
pages={129-136},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001784601290136},
isbn={978-989-8111-67-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)
TI - AN INVERSE PROBLEM APPROACH TO BRDF MODELING
SN - 978-989-8111-67-8
AU - Iwasaki K.
AU - Dobashi Y.
AU - Yoshimoto F.
AU - Nishita T.
PY - 2009
SP - 129
EP - 136
DO - 10.5220/0001784601290136