
 
approaches. Also we report the identification rates of 
the face, iris and ear matchers on the CMC curves to 
show the differences. 
6 CONCLUSIONS 
The design of a multimodal biometric system is a 
challenging task due to heterogeneity of the 
biometric sources in terms of the type of 
information, the magnitude of information content, 
correlation among the different sources and 
conflicting performance requirements of the 
practical applications. Extensive research has been 
done to identify better methods to combine the 
information obtained from multiple sources. In this 
research, we combine face, ear and iris biometric 
information using rank level fusion method. We 
introduce Markov chain approach for biometric rank 
fusion and obtain better identification rate over other 
rank fusion approaches. Thus, Markov chain method 
can be a reliable solution of integrating biometric 
ranking lists to obtain a consensus rank list and can 
be effectively used in various security systems. 
REFERENCES 
Agresti, A., 2007. An introduction to categorical data 
analysis. Wiley-Interscience, 2
nd
 edition. 
Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J., 
1997. Eigenfaces vs. Fisherfaces: Recognition using 
class specific linear projection. IEEE Transaction on 
Pattern Analysis and Machine Intelligence, vol. 19, 
no. 7, pages 711-720. 
Bhatnagar, J., Kumar, A., and Saggar, N., 2007. A novel 
approach to improve biometric recognition using rank 
level fusion. In Proc. IEEE Conference on Computer 
Vision and Pattern Recognition, pages 1-6, 
Minneapolis, USA. 
Borda, J. C., 1781. M´emoire sur les ´elections au scrutin. 
Histoire de l’Acad´emie Royale des Sciences, France. 
Bubeck, U. M., 2003. Multibiometric authentication – An 
overview of recent developments. San Diego 
University. 
http://www.thuktun.org/cs574/papers/multibiometrics.
pdf 
CASIA: CASIA iris image database, 2004. Retrieved on 
May 23, 2008. www.sinobiometrics.com 
Chandran, J. G. C., and Rajesh, R. S., 2009. Performance 
analysis of multimodal biometric system 
authentication.  IJCSNS International Journal of 
Computer Science and Network Security, vol. 9, no.3, 
 pages 290-296. 
Condorcet, M.-J., 1785. E´ssai sur l’application de 
l’analyse a` la probabilite´ des de´cisions rendues a` 
la pluralite´ desvoix. 
Copeland, H., 1951. A reasonable social welfare function. 
Mimeo, University of Michigan, USA. 
Daugman, J. G., 2004. How iris recognition works. IEEE 
Transaction on Circuits and Systems for Video 
Technology, vol. 14, no. 1, pages 21-30. 
Dunstone, T., and Yager, N., 2009. Biometric system and 
data analysis: Design, evaluation, and data mining. 
Springer, New York. 
Dwork, C., Kumar, R., Naor, M., and Sivakumar, D., 
2001. Rank aggregation methods for the web. In Proc. 
of 10
th
 International World Wide Web Conference, 
pages 613–622, Hong Kong, China. 
Ho, T. K., Hull. J. J., and Srihari, S. N., 1994. Decision 
combination in multiple classifier systems. IEEE 
Trans. on Pattern Analysis and Machine Intelligence, 
vol. 16, no. 1, pages 66-75.  
Kim, J., Cho, S., Kim, D., and Chung, S.-T., 2006. Iris 
recognition using a low level of details. Lecture Notes 
in Computer Science, vol. 4292, pages 196-204, 
Springer. 
Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., and 
Jain, A. K., 2004. In Proc. International Conference 
on Biometric Authentication, pages 1-7, Hong Kong, 
China.  
Monwar, M. M., and Gavrilova, M., 2009. A Multimodal 
Biometric System using Rank Level Fusion Approach. 
IEEE Transactions on Systems, Man, and Cybernetics 
- Part B: Cybernetics (special issue on Cognitive 
Informatics and Cybernetics), vol. 39, no. 4, pages 
867-878.  
Nandakumar, K., Jain, A.K., and Ross A., 2009. Fusion in 
multibiometric identification systems: What about the 
missing data? In M. Tistarelli and M.S. Nixon, 
Editors,  International Conference on Biometrics, vol. 
LNCS 5558, pages 743–752, Springer. 
Phillips, P. J., Moon, H., and Rauss, P., 1998. The FERET 
database and evaluation procedure for face recognition 
algorithms. Image and Vision Computing, vol. 16. no. 
5, pages 295-306. 
Revett, K., 2008. Behavioral biometrics: A remote access 
approach. Wiley, West Sussex, UK. 
Ross, A., Nandakumar, K., and Jain, A. K., 2006. 
Handbook of multibiometrics. Springer, New York. 
Turk, M., and Pentland, A., 1991. Eigenfaces for 
recognition.  Journal of Cognitive Science, pages 71-
86. 
USTB ear database, China. Retrieved on May 11, 2008. 
http://www.ustb.edu.cn/resb/ 
Wildes, R., 1997. Iris recognition: An emerging biometric 
technology. In Proc. IEEE, vol. 85, no. 9, pages 1348-
1363. 
Zhao, W., Chellappa, R., and Nandhakumar, N., 1998. 
Empirical performance analysis of linear discriminant 
classifiers. In Proc. 1998 Conference on Computer 
Vision and Pattern Recognition, pages 164–169, Santa 
Barbara, CA. 
ROBUST MULTIMODAL BIOMETRIC SYSTEM USING MARKOV CHAIN BASED RANK LEVEL FUSION
463