Broadwater, J., Meth, R., and Chellappa, R. (2004). Dimen-
sionality Estimation in Hyper-spectral Imagery Using
Minimum Description Length. In Proceedings of the
Army Science Conference, Orlando, FL.
Chan, T.-H., Chi, C.-Y., Huang, Y.-M., and Ma, W.-K.
(2009). A Convex Analysis-Based Minimum-Volume
Enclosing Simplex Algorithm for Hyperspectral Un-
mixing. IEEE Trans. Signal Processing, 57(11):4418
– 4432.
Chan, T.-H., Ma, W.-K., Ambikapathi, A., and Chi, C.-Y.
(2011). A simplex volume maximization framework
for hyperspectral endmember extraction. IEEE Trans.
Geosci. Remote Sensing, -(-):1 –17. in press.
Chang, C.-I. and Du, Q. (2004). Estimation of Number
of Spectrally Distinct Signal Sources in Hyperspec-
tral Imagery. IEEE Trans. Geosci. Remote Sensing,
42(3):608–619.
Craig, M. D. (1994). Minimum-volume Transforms for Re-
motely Sensed Data. IEEE Trans. Geosci. Remote
Sensing, 32:99–109.
Diani, N. A. M. and Corsini, G. (2010). Hyperspectral Sig-
nal Subspace Identiﬁcation in the Presence of Rare
Signal Components. IEEE Trans. Geosci. Remote
Sensing, 48(4):1940–1954.
Dobigeon, N., Moussaoui, S., Coulon, M., Tourneret, J.-
Y., and Hero, A. O. (2009). Joint Bayesian Endmem-
ber Extraction and Linear Unmixing for Hyperspectral
Imagery. IEEE Trans. Signal Processing, 57(11):4355
– 4368.
Figueiredo, M. A. T. and Jain, A. K. (2002). Unsupervised
Learning of Finite Mixture Models. IEEE Trans. Pat-
tern Anal. Machine Intell., 44(3):381–396.
Heinz, D. and Chein-I-Chang (2001). Fully Constrained
Least Squares Linear Spectral Mixture Analysis
Method for Material Quantiﬁcation in Hyperspectral
Imagery. Geoscience and Remote Sensing, IEEE
Transactions on, 39(3):529–545.
Keshava, N. and Mustard, J. (2002). Spectral Unmixing.
IEEE Signal Processing Mag., 19(1):44–57.
Li, J. and Bioucas-Dias, J. M. (2008). Minimum Volume
Simplex Analysis: A Fast Algorithm to Unmix Hy-
perspectral Data. In Proc. of the IEEE Int. Geosci. and
Remote Sensing Symp., volume 3, pages 250 – 253.
Moussaoui, S., Hauksd´ottir, H., Schmidt, F., Jutten, C.,
Chanussot, J., Brie, D., Dout´e, S., and Benediktsson,
J. A. (2008). On the Decomposition of Mars Hyper-
spectral Data by ICA and Bayesian Positive Source
Separation. Neurocomputing, 71(10-12):2194–2208.
Nascimento, J. M. P. and Bioucas-Dias, J. M. (2005a). Does
Independent Component Analysis Play a Role in Un-
mixing Hyperspectral Data? IEEE Trans. Geosci. Re-
mote Sensing, 43(1):175–187.
Nascimento, J. M. P. and Bioucas-Dias, J. M. (2005b). Ver-
tex Component Analysis: A Fast Algorithm to Un-
mix Hyperspectral Data. IEEE Trans. Geosci. Remote
Sensing, 43(4):898–910.
Nascimento, J. M. P. and Bioucas-Dias, J. M. (2011). Hy-
perspectral unmixing based on mixtures of dirichlet
components. IEEE Transactions on Geoscience and
Remote Sensing, pages –. in press.
Plaza, A., Martinez, P., Perez, R., and Plaza, J. (2002).
Spatial/Spectral Endmember Extraction by Multidi-
mensional Morphological Operations. IEEE Trans.
Geosci. Remote Sensing, 40(9):2025–2041.
Rissanen, J. (1978). Modeling by Shortest Data Descrip-
tion. Automatica, 14:465–471.
Settle, J. J. (1996). On the Relationship Between Spec-
tral Unmixing and Subspace Projection. IEEE Trans.
Geosci. Remote Sensing, 34:1045–1046.
Swayze, G., Clark, R., Sutley, S., and Gallagher, A.
(1992). Ground-Truthing AVIRIS Mineral Mapping
at Cuprite, Nevada. In Summaries of the Third Annual
JPL Airborne Geosciences Workshop, pages 47–49.
Winter, M. E. (1999). N-FINDR: An Algorithm for Fast
Autonomous Spectral End-member Determination in
Hyperspectral Data. In Proc. of the SPIE conference
on Imaging Spectrometry V, volume 3753, pages 266–
275.
Zare, A. and Gader, P. (2007). Sparsity Promoting Iterated
Constrained Endmember Detection in Hyperspectral
Imagery. IEEE Geosci. Remote Sensing Let., 4(3):446
– 450.
Zymnis, A., Kim, S.-J., Skaf, J., Parente, M., and Boyd, S.
(2007). Hyperspectral Image Unmixing via Alternat-
ing Projected Subgradients. In 41st Asilomar Confer-
ece on Signals, Systems, and Computer, pages 4–7.
ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods
444