
8 CONCLUSIONS AND FUTURE 
WORK 
In this paper, we have provided a comparative 
analysis of the SDWM approach (Del Aguila et al., 
2011; Cuzzocrea & Fidalgo, 2012a; Cuzzocrea & 
Fidalgo, 2012b) against the state-of-the-art SDW 
meta-model proposals (Fidalgo et al., 2004; 
Malinowski & Zimányi, 2007; Glorio & Trujillo, 
2008). Results of our analysis clearly state that the 
SDWM proposal exposes a higher expressive power 
and allows us to obtain more concise and compact 
SDW schemas. 
Future work is oriented towards enriching 
SDWM with novel aspects such as security and 
privacy of SDW, in line with recent results in the 
context of security and privacy of DW and OLAP 
(e.g., (Cuzzocrea & Bertino, 2011; Cuzzocrea et al., 
2012; Cuzzocrea & Saccà, 2012)). 
REFERENCES 
Bédard, Y., Merrett, T., & Han, J. 2001. Fundamentals of 
spatial data warehousing for geographic knowledge 
discovery.  Geographic data mining and knowledge 
discovery, vol. 2, pp. 53-73. 
Del Aguila, P. S. R., Fidalgo, R. N. & Mota, A., 2011. 
Towards a more straightforward and more expressive 
metamodel for SDW modeling. In Proceedings of the 
ACM 14th international workshop on Data 
Warehousing and OLAP. New York, NY, USA: ACM, 
pp. 31-36. 
Cuzzocrea, A., & Bertino, E., 2011. Privacy Preserving 
OLAP over Distributed XML Data: A Theoretically-
Sound Secure-Multiparty-Computation Approach. 
Journal of Computer and System Sciences 77(6), pp. 
965-987. 
Cuzzocrea, A., Bertino, E., & Saccà D., 2012. Towards a 
theory for privacy preserving distributed OLAP. In: 
EDBT/ICDT Workshops 2012, pp. 221-226. 
Cuzzocrea, A. & Fidalgo, R. N., 2012a. Enhancing 
Coverage and Expressive Power of Spatial Data 
Warehousing Modeling: The SDWM Approach. In A. 
Cuzzocrea & U. Dayal, eds. Data Warehousing and 
Knowledge Discovery. Springer Berlin / Heidelberg, 
pp. 15-29. 
Cuzzocrea, A. & Fidalgo, R. N., 2012b. SDWM: An 
Enhanced Spatial Data Warehouse Metamodel. In M. 
Kirikova & J. Stirna, eds. CAiSE Forum. CEUR-
WS.org, pp. 32-39. 
Cuzzocrea, A., & Saccà, D., 2012. A Theoretically-Sound 
Accuracy/Privacy-Constrained Framework for 
Computing Privacy Preserving Data Cubes in OLAP 
Environments. In: OTM Conferences 2012, pp. 527-
548. 
Fidalgo, R. N. et al., 2004. GeoDWFrame: A Framework 
for Guiding the Design of Geographical Dimensional 
Schemas. In Y. Kambayashi, M. Mohania, & W. Wöß, 
eds.  Data Warehousing and Knowledge Discovery. 
Springer Berlin / Heidelberg, pp. 26-37. 
Glorio, O. & Trujillo, J., 2008. An MDA Approach for the 
Development of Spatial Data Warehouses. In I.-Y. 
Song, J. Eder, & T. Nguyen, eds. Data Warehousing 
and Knowledge Discovery. Springer Berlin / 
Heidelberg, pp. 23-32. 
Glorio, O. & Trujillo, J., 2009. Designing Data 
Warehouses for Geographic OLAP Querying by Using 
MDA. In O. Gervasi et al., eds. Computational 
Science and Its Applications – ICCSA 2009. Springer 
Berlin / Heidelberg, pp. 505-519.  
Gray, J. Chaudhuri, S., Bosworth, A., Layman, A., 
Reichart, D., Venkatrao, M., Pellow, F. & Pirahesh H., 
1997. Data Cube: A Relational Aggregation Operator 
Generalizing Group-by, Cross-Tab, and Sub Totals. 
Data Mining and Knowledge Discovery 1(1), pp. 29-
53. 
Malinowski, E. & Zimányi, E., 2009. Advanced Data 
Warehouse Design: From Conventional to Spatial and 
Temporal Applications (Data-Centric Systems and 
Applications), Springer. 
Malinowski, E. & Zimányi, E., 2007. Logical 
Representation of a Conceptual Model for Spatial Data 
Warehouses. 
GeoInformatica, 11(4), pp.431-457.  
da Silva, J. et al., 2010. Modelling and querying 
geographical data warehouses. Information Systems, 
35(5), pp.592-614.  
Times, Valéria Cesário et al., 2009. A Metamodel for the 
Specification of Geographical Data Warehouses. In S. 
Kozielski et al., eds. New Trends in Data Warehousing 
and Data Analysis. Springer US, pp. 1-22.  
Zghal, H. B., Faïz, S. & Ghézala, H. B., 2003. CASME : A 
CASE Tool for Spatial Data Marts Design and 
Generation. In Proceedings of Design and 
Management of Data Warehouses. Berlin, Germany, 
pp. 1-11. 
 
ComparativeAnalysisofState-of-the-ArtSpatialDataWarehouseMeta-models-CatchingtheExpressivePowerofSDW
Schemas
309