Exploring Neural Principles with Si elegans, a Neuromimetic Representation of the Nematode Caenorhabditis elegans

Axel Blau, Frank Callaly, Seamus Cawley, Aedan Coffey, Alessandro de Mauro, Gorka Epelde, Lorenzo Ferrara, Finn Krewer, Carlo Liberale, Pedro Machado, Gregory Maclair, Thomas Martin McGinnity, Fearghal Morgan, Andoni Mujika, Alexey Petrushin, Gautier Robin, John Wade

2014

Abstract

Biological neural systems are powerful, robust and highly adaptive computational entities that outperform conventional computers in almost all aspects of sensory-motor integration. Despite dramatic progress in information technology, there is a big performance discrepancy between artificial computational systems and brains in seemingly simple orientation and navigation tasks. In fact, no system exists that can faithfully reproduce the rich behavioural repertoire of the tiny worm Caenorhabditis elegans which features one of the simplest nervous systems in nature made of 302 neurons and about 8000 connections. The Si elegans project aims at providing this missing link. This article is sketching out the main platform components.

References

  1. Boyle, J. H. (2009). C. elegans locomotion: an integrated approach. (PhD Thesis), University of Leeds, Unitied Kingdom. Retrieved from http://etheses.whiterose. ac.uk/1377/
  2. Bryden, J., and Cohen, N. (2008). Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback. Biological Cybernetics, 98(4), 339-351. doi: 10.1007/s00422-008-0212-6
  3. Haspel, G., and O'Donovan, M. J. (2011). A perimotor framework reveals functional segmentation in the motoneuronal network controlling locomotion in Caenorhabditis elegans. Journal of Neuroscience, 31(41), 14611-14623. doi: 10.1523/JNEUROSCI. 2186-11.2011
  4. Haspel, G., O'Donovan, M. J., and Hart, A. C. (2010). Motoneurons Dedicated to Either Forward or Backward Locomotion in the Nematode Caenorhabditis elegans. The Journal of Neuroscience, 30(33), 11151-11156. doi: 10.1523/jneurosci.2244-10.2010
  5. Hobert, O. (2003). Behavioral plasticity in C. elegans: Paradigms, circuits, genes. Journal of Neurobiology, 54(1), 203-223. doi: 10.1002/neu.10168
  6. Lin, C. H., and Rankin, C. H. (2010). Nematode Learning and Memory: Neuroethology. In M. D. Breed and J. Moore (Eds.), Encyclopedia of Animal Behavior (pp. 520-526). Oxford: Academic Press.
  7. Mailler, R., Avery, J., Graves, J., and Willy, N. (2010). A Biologically Accurate 3D Model of the Locomotion of Caenorhabditis Elegans. Paper presented at the 2010 International Conference on Biosciences (BIOSCIENCESWORLD).
  8. Niebur, E., and Erdos, P. (1993). Theory of the locomotion of nematodes: control of the somatic motor neurons by interneurons. Mathematical Biosciences, 118(1), 51-82.
  9. Stephens, G. J., Johnson-Kerner, B., Bialek, W., and Ryu, W. S. (2010). From Modes to Movement in the Behavior of Caenorhabditis elegans. PloS One, 5(11), e13914. doi: 10.1371/journal.pone.0013914
  10. Wakabayashi, M. (2006). Computational Plausibility of Stretch Receptors as the Basis for Motor Control in C. elegans. (BA Thesis), Univ. of Queensland, Australia. Retrieved from http://archive.itee.uq.edu.au/markw/ celegans/thesis.pdf?origin=publication_detail
Download


Paper Citation


in Harvard Style

Blau A., Callaly F., Cawley S., Coffey A., de Mauro A., Epelde G., Ferrara L., Krewer F., Liberale C., Machado P., Maclair G., Martin McGinnity T., Morgan F., Mujika A., Petrushin A., Robin G. and Wade J. (2014). Exploring Neural Principles with Si elegans, a Neuromimetic Representation of the Nematode Caenorhabditis elegans . In Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2014) ISBN 978-989-758-056-7, pages 189-194. DOI: 10.5220/0005190701890194


in Bibtex Style

@conference{nebica14,
author={Axel Blau and Frank Callaly and Seamus Cawley and Aedan Coffey and Alessandro de Mauro and Gorka Epelde and Lorenzo Ferrara and Finn Krewer and Carlo Liberale and Pedro Machado and Gregory Maclair and Thomas Martin McGinnity and Fearghal Morgan and Andoni Mujika and Alexey Petrushin and Gautier Robin and John Wade},
title={Exploring Neural Principles with Si elegans, a Neuromimetic Representation of the Nematode Caenorhabditis elegans},
booktitle={Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2014)},
year={2014},
pages={189-194},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005190701890194},
isbn={978-989-758-056-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2014)
TI - Exploring Neural Principles with Si elegans, a Neuromimetic Representation of the Nematode Caenorhabditis elegans
SN - 978-989-758-056-7
AU - Blau A.
AU - Callaly F.
AU - Cawley S.
AU - Coffey A.
AU - de Mauro A.
AU - Epelde G.
AU - Ferrara L.
AU - Krewer F.
AU - Liberale C.
AU - Machado P.
AU - Maclair G.
AU - Martin McGinnity T.
AU - Morgan F.
AU - Mujika A.
AU - Petrushin A.
AU - Robin G.
AU - Wade J.
PY - 2014
SP - 189
EP - 194
DO - 10.5220/0005190701890194