
ACKNOWLEDGEMENTS 
This work has been highly supported by the LABEX 
program of XLIM Institute in the axis “Biophysics 
and health”, the Limousin Region and Limoges 
University for the transversal thematic “Bio-Electro-
Photonic”. We also thank Fibrecore Inc. for providing 
30 meters of the single mode fibre for free. 
REFERENCES 
Ali, M. A., Moghaddasi, J., Ahmed, S. A., 1990. 
Temperature effects in rhodamine b dyes and 
improvement in cw dye laser performance, Laser 
Chem., 11, pp. 31-38. 
Baffou, G., Rigneault, H., Marguet, D., Jullien, L., 2014. A 
critique of methods for temperature imaging in single 
cells, Nature Methods, 11, 9, pp. 899-901. 
Chapman, C. F., Liu, Y., Sonek, G. J., Tromberg, B. J., 
1995.  The use of exogenous fluorescent probes for 
temperature measurements in single living cell, 
Photochemistry and photobiology, 62, 3, pp 416-425. 
Chen, Y.Y., Wood, A.W., 2009. Application of a 
temperature-dependent fluorescent dye (Rhodamine B) 
to the measurement of radiofrequency radiation-
induced temperature changes in biological samples, 
Bioelectromagnetics,  30, 7, pp. 583–590. 
Donner, J.S., Thompson, S.A., Kreuzer, M.P., Baffou, G., 
Quidant, R., 2012. Mapping Intracellular Temperature 
Using Green Fluorescent Protein, Nano Letters, 12, 4, 
pp. 2107-2111. 
Ferguson, J. and Mau, AWH, 1973. Spontaneous and 
stimulated emission from dyes. Spectroscopy of the 
neutral molecules of acridine orange, proflavine, and 
rhodamine B, Australian Journal of Chemistry 26, 8, 
pp. 1617 – 1624. 
Gui, L., Ren, C.L., 2008. Temperature measurement in 
microfluidic chips using photobleaching of a 
fluorescent thin film, Applied Physics Letters, 92, 2. 
Hoover, E.E., Squier, J.A., 2013. Advances in multiphoton 
microscopy technology, Nature Photonics Review, 7, 
pp. 93-101. 
Kohler, S., O’Connor, R.P., Thi Dan Thao Vu, Leveque, P., 
Arnaud-Cormos, D., 2013. Experimental 
microdosimetry techniques for biological cells exposed 
to nanosecond pulsed electric fields using 
microfluorimetry, IEEE Transactions on Microwave 
Theory and Techniques, 61, 5. 
Kubin, R. F., and Fletcher, A. N., December 1982–February 
1983. Fluorescence quantum yields of some rhodamine 
dyes, Journal of Luminescence, 27, 4, pp. 455–462.  
Li, B.-H., Xie, S.-S., Huang, Z., Wilson, B.C., 2009. 
Advances in photodynamic therapy dosimetry. Progress 
in Biochemistry and Biophysics, 36, 6, pp. 676-683.  
Liljemaln, R., Nyberg, T., von Holst, H., 2013. Heating 
during neural stimulation, Lasers in Surgery and 
Medicine, 45, pp. 469-481. 
Löw, P., Kim, B., Takama
, 
N., Bergaud,C., 2008. High-
Spatial-Resolution Surface-Temperature Mapping 
Using Fluorescent Thermometry, Small, 4, 7, pp. 908-
914. 
Martinez Maestro, L., Rodriguez, E.M., Sanz Rodriguez, 
F., Iglzsias-de la Cruz, M.C., Juarranz, A., Naccache, 
R., Vetrone, F., Jaque, D., Capobianco, J.A., Garcia 
Sole, J., 2010. CdSe Quantum Dots for Two-Photon 
Fluorescence Thermal Imaging, Nano Letters, 10, 12, 
pp. 5109-5115. 
Okabe, K., Inada, I., Gota, C., Harada, Y., Funatsu, T., 
Uchiyama, S., 2012. Intracellular temperature 
mapping with a fluorescent polymeric thermometer and 
fluorescence lifetime imaging microscopy, Nature 
Communication, 3, 705, pp. 1-9.  
Reungpatthanaphong, P., Dechsupa, S., Meesungnoen, J., 
Loetchutinat, C., Mankhetkorn,S., 2003. Rhodamine B 
as a mitochondrial probe for measurement and 
monitoring of mitochondrial membrane potential in 
drug-sensitive and -resistant cells,  Journal of 
Biochemical and Biophysical Methods, 57, 1, pp. 1-16. 
Richter, C.-P., and Tan, 2014. Photons and neurons, 
Heating research, 311, pp. 72-88. 
Ross, D., Gaitan, M. and Locascio, L.E., 2001. 
Temperature measurement inmicrofluidic systems 
using a temperature-dependent fluorescent dye, 
Analytical Chemistry, 73, pp. 4117–4123. 
Sakakibara, J., and Adrian, R.J., 1999. Whole field 
measurement of temperature in water using two-color 
laser induced fluorescence, Exper.Fluids, 26, pp. 7–15. 
Shah, J. J., Gaitan, M., Geist, J., 2009. Generalized 
temperature measurement equations for rhodamine b 
dye solution and its application to microfluidics, 
Analytical Chemistry, 81, 19, pp 8260–8263.  
Shah, J. J., Sundaresan, S. G., Geist, J., Reyes, D. R., Booth, 
J. C. Mulpuri, Rao, V., Gaitan,M., 2007. Microwave 
dielectric heating of fluids in an integrated microfluidic 
device, Journal of Micromechanics and 
Microengineering, 17, 11. 
Shang, L., Stockmar, F., Azadfar, N., Nienhaus, G.U., 
2013. Intracellular Thermometry by Using Fluorescent 
Gold Nanoclusters, Angewandte Chemie International 
Edition, 52, 42, pp. 11154–11157. 
Vetrone, F., Naccache, R., Zamarron, A., Juarranz de la 
Fuente, A., Sanz-Rodriguez, F., Marinez, L., 
Rodriguez, E.M., Jaques, D., Garcia Sole, J., 
Capobianco, J.A., 2010. Temperature sensing using 
fluorescence nanothermometers, ACS Nano, 4, 6, pp. 
3254-3258.   
Welch, A.J., 1984. The thermal response of laser irradiated 
tissues, IEEE Journal of Quantum Electronics, 20, 12 
pp. 1471-1481. 
Yang, L., Peng, H.-S., Ding, H., You, F.-T., Hou, L.-L., 
Teng, F., 2013. Luminescent Ru(bpy)3 2+-doped silica 
nanoparticles for imaging of intracellular temperature, 
Microchimica Acta, 181, 7-8, pp. 743-749. 
Zohar, O., Ikeda, M., Shinagawa, H., Inoue, H., Nakamura, 
H., Elbaum, D., Alkon, D.L., Yoshioka, T., 1998. 
Thermal imaging of receptor-activated heat production 
in single cells, Biophysical Journal, 74, 1, pp. 82-89. 
PHOTOPTICS2015-InternationalConferenceonPhotonics,OpticsandLaserTechnology
52