Two Approaches for Dense DSM Generation from Aerial Digital Oblique Camera System

Massimiliano Pepe, Giuseppina Prezioso

2016

Abstract

In recent years, in photogrammetric field, have been developed technologies, which consist of multi digital oblique camera, able not only to observe the same target from different angles, but also to determine, thanks to appropriate dedicated software, the geometry. Of particular interest is the new oblique camera system Leica RCD30 that combines vertical (nadir) and oblique cameras according to the “Maltese cross” characteristic scheme. The purpose of this work is to verify the potential of the oblique imagery to provide dense point clouds to realize Digital Surface Model (DSM) to high resolution, where for high-resolution model is meant a representation of the observed scene with a ground sample distance (GSD) of less than 10cm. The dense Digital Surface Models are obtained through two different approaches, one that derived from photogrammetric reconstruction based on graphic processing units (GPU) technique and multi-core CPUs, the other from so-called Structure from Motion (SfM). To analyse the quality both of acquisition systems that the model surface obtained from images, a case study on the Nöllen (Switzerland) area is presented.

References

  1. Agisoft LLC, 2014. Agisoft PhotoScan User Manual: Professional Edition, Version 1.1. http://www. agisoft.ru/products/photoscan. Accessed 20/01/2015
  2. Cavegn, S., Haala, N., Nebiker, S., Rothermel, M., Tutzauer, P., 2014. Benchmarking high density image matching for oblique airborne imagery, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 5 - 7 September 2014, Zurich, Switzerland.
  3. Cramer, M., 2010. Direct georeferencing using GPS/INERTIAL exterior orientations for photogrammetric applications. International Archives of Photogrammetry and Remote Sensing, Amsterdam, Holland, 33, pp. 198 -205.
  4. Fritsch, D., Kremer, J., Grimm, A., 2012. Towards All-inone Photogrammetry. GIM International, Vol. 26(4), pp. 18-23.
  5. Fritsch, D., and Rothermel, M., 2013. Oblique image data processing: potential, experiences and recommendations. Proc. 54th Photogrammetric Week, pp. 73 - 88.
  6. Gerke, M., 2009. Dense matching in high resolution oblique airborne images. In: CMRT09: Object extraction for 3D city models, road databases and traffic monitoring: concepts, algorithms and evaluation, Paris, 3-4 September 2009, pp. 77 - 82.
  7. Höhle, J., 2008. Photogrammetric measurements in oblique aerial images. Photogrammetrie Fernerkundung Geoinformation 1, pp. 7 - 14.
  8. Rotenberg, K., Simard, L., Simard, P., 2013. Dense DSM Generation Using the GPU, Photogrammetric Week 2013, pp. 285 - 295.
  9. Le Besnerais, G., Sanfourche, M., Champagnat, F., 2008. Dense height map estimation from oblique aerial image sequences. Computer vision and image understanding, 109(2), pp. 204-225.
  10. Leica Geosystems, 2015. http://www.leica-geo systems.com. Accessed 01/03/2015
  11. Madani, M., 2012. Accuracy potential and applications of Midas aerial oblique camera system, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B1, Melbourne, Australia.
  12. Mostafa, M. R., Hutton, J., Lithopoulos, E., 2001. Airborne direct georeferencing of frame imagery: an error budget, The 3rd International symposium on mobile mapping technology, Cairo, Egypt.
  13. Neumann, K. J., Trends for digital aerial mapping cameras, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008.- Vol.XXXVII.- Part B1, pp. 551 - 554.
  14. Nocerino, E., Menna, F., Remondino, F., Saleri, R., 2013. Accuracy and block deformation analysis in automatic UAV and terrestrial photogrammetry - Lesson learnt. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II (5/W1), pp. 203 - 208.
  15. Pavlis, N., K., Holmes, S., A., Kenyon, S., C., Factor, J., K., 2008. An Earth Gravitational Model to Degree 2160. EGM2008, General Assembly of the EGU, Vienna, April 13 - 18/2008.
  16. Pepe, M., Prezioso, G., Santamaria, R., 2012. Calcolo della rendita presunta degli immobili fantasma: contributo delle immagini aerofotogrammetriche da multicamere digitali oblique. Atti 16a Conferenza Nazionale ASITA, 6 - 9 novembre 2012, Fiera di Vicenza, pp. 1091 - 1095.
  17. Pepe, M., Prezioso, G., Santamaria, R., 2015a. Impact of vertical deflection on direct georeferencing of airborne images. Survey Review, Vol. 47, Issue 340, pp. 71 - 76.
  18. Pepe, M., Prezioso, G., 2015b. A Matlab geodetic software for processing airborne LIDAR bathymetry data, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W5, 2015, pp. 167 - 170.
  19. Petrie, G., 2009. Systematic oblique aerial photography using multiple digital frame cameras. Photogrammetric Engineering & Remote Sensing, Vol. 75, No. 2, pp. 102 - 107.
  20. Rupnik, E., Nex, F., Remondino, F., 2014. Oblique multicamera systems - Orientation and dense matching issues, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W1, pp. 107 - 114.
  21. Sahin, H., S., Kulur, 2012. Orthorectification by using GPU method. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 39, 165 - 170.
  22. Semyonov, D., 2011. Algorithms used in PhotoScan. Agisoft Community Forum. www.agisoft.com/forum/ index.php?topic=89.0. Accessed 6/08/2015
  23. Simactive, 2015. http://www.simactive.com/en/softwaredescription Accessed 8/8/2015
  24. Singh, S. P., Jain, K., Mandla, V.R., 2014. A new approach towards image based virtual 3D city modeling by using close range photogrammetry, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-5, pp. 329-337.
  25. Van Damme, T., 2015, Computer vision photogrammetry for underwater archaeological site recording in a lowvisibility environment, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-5/W5, pp. 231 - 238.
  26. Wagner R., 2011. The Leica RCD30 Medium Format Camera: Imaging Revolution, Photogrammetric week. Stuttgart, Germany, pp. 89 - 95.
  27. Wang, Y., Steve, S., Frank, G., 2008, Pictometry's proprietary airborne digital imaging system and its application in 3D city modelling. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 37, pp. 1065 - 1069.
  28. Zhang, Z., Wu, J., Zhang, Y., Zhang, Y., Zhang, J., 2004. Multi-View 3D City Model Generation with Image Sequences. International Archives of Photogrammetry and Remote Sensing, Istanbul, Turkey, Vol. 34, Part 5, pp. 351-356.
Download


Paper Citation


in Harvard Style

Pepe M. and Prezioso G. (2016). Two Approaches for Dense DSM Generation from Aerial Digital Oblique Camera System . In Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM, ISBN 978-989-758-188-5, pages 63-70. DOI: 10.5220/0005774900630070


in Bibtex Style

@conference{gistam16,
author={Massimiliano Pepe and Giuseppina Prezioso},
title={Two Approaches for Dense DSM Generation from Aerial Digital Oblique Camera System},
booktitle={Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,},
year={2016},
pages={63-70},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005774900630070},
isbn={978-989-758-188-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,
TI - Two Approaches for Dense DSM Generation from Aerial Digital Oblique Camera System
SN - 978-989-758-188-5
AU - Pepe M.
AU - Prezioso G.
PY - 2016
SP - 63
EP - 70
DO - 10.5220/0005774900630070