Dual-Frequency VECSEL at Telecom Wavelength for Sensing Applications

Léa Chaccour, Guy Aubin, Kamel Merghem, Jean-Louis Oudar, Aghiad Khadour, Patrice Chatellier, Sophie Bouchoule

2016

Abstract

We aim at realizing an optically-pumped, dual-frequency VECSEL at telecom wavelength (1.5 µm) with a frequency difference in the radio-frequency (RF) range (around 11 GHz), to be used in a sensor unit based on Brillouin scattering in optical fibers. Laser emission of two orthogonally-polarized cavity modes with a controlled frequency difference is obtained by inserting a birefringent crystal in the VECSEL cavity. We have examined the influence of the different intra-cavity elements on the laser emission. It is shown that optimizing the free spectral range and the bandwidth of the intra-cavity Fabry-Perot etalon is of practical importance to achieve a stable single longitudinal laser emission for each of the two orthogonal polarizations. The optimization of the output power has also been investigated and it is concluded that up to 100 mW output power can be expected by adjusting the reflectivity of the output coupling mirror of the VECSEL cavity. The achievement of a highly-stable frequency difference is crucial for sensing applications. For this reason the influence of different parameters on the stability of the dual-frequency emission have been studied. It is concluded that mechanical vibrations are the main cause of the RF signal instability in our free-running VECSEL cavity. The design of a compact or mono-block cavity may allow to meet the stability requirements for our sensors.

References

  1. Brown, A., DeMerchant, M., Bao, X. and Bremner, T., 1999. Spatial resolution Rnhancement of a Brillouin - Distributed sensor using a novel signal processing method. Journal of Lightwave Technology, Volume 17, pp. 179-183.
  2. Camargo, F. A., Barrientos, J., Baili, G. and Luca-leclin, G., 2012. Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line. Photonics Technology Letters, Volume 24, pp. 1218-1220.
  3. Geng, J., Staines, S., Blake, M. and Jiang, S., 2007. Novel distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering. Applied Optics, Volume 46, pp. 5928-5932.
  4. Tourrenc, J.-P., Bouchoule, S., Khadour, A., Oudar, J.-L., 2008. Thermal optimization of 1.55 um OP-VECSEL with hybrid metal-metamorphic mirror for singlemode high power operation. Opt. Quant. Electron, Volume 40, pp.155-168.
  5. Shimizu, K., Horiguchi, T., Koyamada, Y., Kurashima, T., 1992. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber, Optics Letters, volume12, pp. 185- 187.
  6. Morvan, L., Baili, G., Alouini, M. and Ganache, A., 2009. Experimental demonstration of a tunable dualfrequency semiconductor laser free of relaxation oscillations. Optics Letters, Volume 34, pp. 3421- 3423.
  7. Alouini, M., Brunel, M., Bretenaker, F. and Vallet, M., 1998. Dual Tunable Wavelength Er : Yb : Glass Laser for Terahertz Beat Frequency Generation. IEEE Photonics Technology Letters, Volume 10, pp. 1554- 1556.
  8. Brunel, M., Alouini, M. and Lefloch, A., 1997. Tunable optical microwave source using spatially resolved laser eigenstates. Optics Letters, Volume 22, pp. 384- 386.
  9. Gabet, R., Taillade, F., Delepine-Lesoille, S., Lanticq, V., Optical Fiber New Developments, Christophe Lethien, Ed., 2009.
  10. De, S., Baili, G., Alouini, M. and Bretnaker, F., 2014. Class-A dual-frequency VECSEL at telecom wavelength. Optics Letters, Volume 39, pp. 5586- 5589.
  11. Pal, V., Troffimof, P., Miranda, B-X. and Bretenaker, F., 2010. Measurement of the coupling constant in a twofrequency VECSEL. Optics Express, Volume 18, pp. 5008-5014.
  12. Zou, W., Long, X. and Chen, J., Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications. Dr.M.Yasin ed. 1998.
  13. Zhao, Z., Bouchoule, S., Ferlazzo, L., Decobert, J., Oudar, J.-L., 2012. Cost-Effective Thermally-Managed 1.55 µm VECSEL With Hybrid Mirror on Copper Substrate, IEEE J. Quant. Electron., Volume 48, pp. 643-650.
Download


Paper Citation


in Harvard Style

Chaccour L., Aubin G., Merghem K., Oudar J., Khadour A., Chatellier P. and Bouchoule S. (2016). Dual-Frequency VECSEL at Telecom Wavelength for Sensing Applications . In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 3: OPTICS, (ICETE 2016) ISBN 978-989-758-196-0, pages 53-58. DOI: 10.5220/0005965200530058


in Bibtex Style

@conference{optics16,
author={Léa Chaccour and Guy Aubin and Kamel Merghem and Jean-Louis Oudar and Aghiad Khadour and Patrice Chatellier and Sophie Bouchoule},
title={Dual-Frequency VECSEL at Telecom Wavelength for Sensing Applications},
booktitle={Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 3: OPTICS, (ICETE 2016)},
year={2016},
pages={53-58},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005965200530058},
isbn={978-989-758-196-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 3: OPTICS, (ICETE 2016)
TI - Dual-Frequency VECSEL at Telecom Wavelength for Sensing Applications
SN - 978-989-758-196-0
AU - Chaccour L.
AU - Aubin G.
AU - Merghem K.
AU - Oudar J.
AU - Khadour A.
AU - Chatellier P.
AU - Bouchoule S.
PY - 2016
SP - 53
EP - 58
DO - 10.5220/0005965200530058