means with support vector regression and a genetic 
algorithm. Information Sciences, 233, 25-35. 
Batista, G. E., & Monard, M. C. (2003). An analysis of 
four missing data treatment methods for supervised 
learning. Applied artificial intelligence, 17(5-6), 519-
533. 
Bertsimas, D., Pawlowski, C., & Zhuo, Y. D. (2017). 
From predictive methods to missing data imputation: 
An optimization approach. The Journal of Machine 
Learning Research, 18(1), 7133-7171. 
Brown, M. L., & Kros, J. F. (2003). Data mining and the 
impact of missing data. Industrial Management & 
Data Systems, 103(8), 611-621. 
Chen, J., & Shao, J. (2000). Nearest neighbor imputation 
for survey data. Journal of Official statistics, 16(2), 
113. 
Christobel, Y. A., & Sivaprakasam, P. (2013). A New 
Classwise k Nearest Neighbor (CKNN) method for the 
classification of diabetes dataset. International Journal 
of Engineering and Advanced Technology, 2(3), 396-
400. 
García-Laencina, P. J., Sancho-Gómez, J. L., Figueiras-
Vidal, A. R., & Verleysen, M. (2009). K nearest 
neighbours with mutual information for simultaneous 
classification and missing data imputation. 
Neurocomputing, 72(7-9), 1483-1493. 
Gold, M. S., & Bentler, P. M. (2000). Treatments of 
missing data: A Monte Carlo comparison of RBHDI, 
iterative stochastic regression imputation, and 
expectation-maximization.  Structural Equation 
Modeling, 7(3), 319-355. 
Grzymala-Busse, J. W., & Hu, M. (2000, October). A 
comparison of several approaches to missing attribute 
values in data mining. In International Conference on 
Rough Sets and Current Trends in Computing. 378-
385 
Huang, X., & Zhu, Q. (2002). A pseudo-nearest-neighbor 
approach for missing data recovery on Gaussian 
random data sets. Pattern Recognition Letters, 23(13), 
1613-1622. 
Jeong, I., Kim, D. G., Choi, J. Y., & Ko, J. (2019). 
Geometric one-class classifiers using hyper-rectangles 
for knowledge extraction. Expert Systems with 
Applications, 117, 112-124. 
Jonsson, P., & Wohlin, C. (2004, September). An 
evaluation of k-nearest neighbour imputation using 
likert data. In Software Metrics, 2004. Proceedings. 
10th International Symposium on. 108-118 
Kim, K. Y., Kim, B. J., & Yi, G. S. (2004). Reuse of 
imputed data in microarray analysis increases 
imputation efficiency. BMC bioinformatics, 5(1), 160. 
Little, R. J., & Rubin, D. B. (2014). Statistical analysis 
with missing data. John Wiley & Sons. 
McKnight, P. E., McKnight, K. M., Sidani, S., & 
Figueredo, A. J. (2007). Missing data: A gentle 
introduction. Guilford Press. 
Shi, F., Zhang, D., Chen, J., & Karimi, H. R. (2013). 
Missing value estimation for microarray data by 
Bayesian principal component analysis and iterative 
local least squares. Mathematical Problems in 
Engineering 2013, 1-5. 
Tang, N. S., & Zhao, P. Y. (2013). Empirical likelihood-
based inference in nonlinear regression models with 
missing responses at random. Statistics, 47(6), 1141-
1159. 
Templ, M., Kowarik, A., & Filzmoser, P. (2011). Iterative 
stepwise regression imputation using standard and 
robust methods. Computational Statistics & Data 
Analysis, 55(10), 2793-2806. 
Trivellore E Raghunathan, James M Lepkowski, John Van 
Hoewyk, and Peter Solenberger. A multivariate 
technique for multiply imputing missing values using 
a sequence of regression models. Survey Methodology, 
27(1):85-96, 2001 
Tutz, G., & Ramzan, S. (2015). Improved methods for the 
imputation of missing data by nearest neighbor 
methods.  Computational Statistics & Data Analysis, 
90, 84-99. 
Zhang, S. (2012). Nearest neighbor selection for 
iteratively kNN imputation. Journal of Systems and 
Software, 85(11), 2541-2552. 
Zhang, X., Song, X., Wang, H., & Zhang, H. (2008). 
Sequential local least squares imputation estimating 
missing value of microarray data. Computers in 
biology and medicine, 38(10), 1112-1120. 
ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems