Decaestecker, C. (1997). Finding prototypes for nearest
neighbour classification by means of gradient descent
and deterministic annealing. Pattern Recognition,
30(2):281 – 288.
Fern
´
andez, F. and Isasi, P. (2004). Evolutionary design of
nearest prototype classifiers. Journal of Heuristics,
10(4):431–454.
Garain, U. (2008). Prototype reduction using an artificial
immune model. Pattern Anal. Appl., 11:353–363.
Garc
´
ıa, S., Derrac, J., Cano, J., and Herrera, F. (2012).
Prototype selection for nearest neighbor classifica-
tion: Taxonomy and empirical study. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
34(3):417–435.
Geethanjali, P. (2015). Comparative study of pca in clas-
sification of multichannel emg signals. Australasian
Physical & Engineering Sciences in Medicine,
38(2):331–343.
Geva, S. and Sitte, J. (1991). Adaptive nearest neighbor pat-
tern classifier. IEEE transactions on neural networks
/ a publication of the IEEE Neural Networks Council,
2:318–22.
G
¨
uler, N. F. and Koc¸er, S. (2005). Classification of emg
signals using pca and fft. Journal of Medical Systems,
29(3):241–250.
Hamamoto, Y., Uchimura, S., and Tomita, S. (1997). A
bootstrap technique for nearest neighbor classifier de-
sign. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19(1):73–79.
Khushaba, R. N., Al-Timemy, A., Al-Ani, A., and Al-
Jumaily, A. (2016). Myoelectric feature extraction
using temporal-spatial descriptors for multifunction
prosthetic hand control. In 2016 38th Annual In-
ternational Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 1696–
1699.
Kim, S.-W. and Oommen, B. J. (2003). A brief taxonomy
and ranking of creative prototype reduction schemes.
Pattern Analysis & Applications, 6(3):232–244.
Kohonen, T. (1990). The self-organizing map. Proceedings
of the IEEE, 78(9):1464–1480.
Kusner, M. J., Tyree, S., Weinberger, K., and Agrawal, K.
(2014). Stochastic neighbor compression. In Proceed-
ings of the 31st International Conference on Machine
Learning - Volume 32, ICML’14, pages II–622–II–
630. JMLR.org.
Lam, W., Keung, C.-K., and Liu, D. (2002). Discovering
useful concept prototypes for classification based on
filtering and abstraction. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 24:1075–
1090.
Li, J., Manry, M. T., Yu, C., and Wilson, D. R.
(2005). Prototype classifier design with pruning. In-
ternational Journal on Artificial Intelligence Tools,
14(01n02):261–280.
Li, Q. X., Chan, P. P. K., Zhou, D., Fang, Y., Liu, H., and
Yeung, D. S. (2016). Improving robustness against
electrode shift of semg based hand gesture recogni-
tion using online semi-supervised learning. In 2016
International Conference on Machine Learning and
Cybernetics (ICMLC), volume 1, pages 344–349.
Lozano, M., Sotoca, J. M., S
´
anchez, J. S., Pla, F., Pkalska,
E., and Duin, R. P. W. (2006). Experimental study
on prototype optimisation algorithms for prototype-
based classification in vector spaces. Pattern Recogn.,
39(10):1827–1838.
Nagata, K., Adno, K., Magatani, K., and Yamada, M.
(2005). A classification method of hand movements
using multi channel electrode. In 2005 IEEE Engi-
neering in Medicine and Biology 27th Annual Confer-
ence, pages 2375–2378.
Nanni, L. and Lumini, A. (2009). Particle swarm opti-
mization for prototype reduction. Neurocomputing,
72:1092–1097.
Negi, S., Kumar, Y., and Mishra, V. M. (2016). Feature ex-
traction and classification for emg signals using linear
discriminant analysis. In 2016 2nd International Con-
ference on Advances in Computing, Communication,
Automation (ICACCA) (Fall), pages 1–6.
Odorico, R. (1997). Learning vector quantization with
training count (lvqtc). Neural networks : the official
journal of the International Neural Network Society,
10(6):1083—1088.
Purushothaman, G. (2016). Myoelectric control of pros-
thetic hands: State-of-the-art review. Medical De-
vices: Evidence and Research, Volume 9:247–255.
Qiaobing Xie, Laszlo, C. A., and Ward, R. K. (1993). Vec-
tor quantization technique for nonparametric classifier
design. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(12):1326–1330.
Skalak, D. B. (1994). Prototype and feature selection by
sampling and random mutation hill climbing algo-
rithms. In Cohen, W. W. and Hirsh, H., editors, Ma-
chine Learning Proceedings 1994, pages 293 – 301.
Morgan Kaufmann, San Francisco (CA).
Sziburis, T., Nowak, M., and Brunelli, D. (2020). knn learn-
ing techniques for proportional myocontrol in pros-
thetics. In Torricelli, D., Akay, M., and Pons, J. L.,
editors, 5th International Conference on NeuroReha-
bilitation (ICNR2020) and 5th International Sympo-
sium on Wearable Robotics (WeRob2020), Converg-
ing Clinical and Engineering Research on Neuroreha-
bilitation IV. Springer.
Tello, R. M. G., Bastos-Filho, T., Costa, R. M., Frizera-
Neto, A., Arjunan, S., and Kumar, D. (2013). Towards
semg classification based on bayesian and k-nn to con-
trol a prosthetic hand. In 2013 ISSNIP Biosignals and
Biorobotics Conference: Biosignals and Robotics for
Better and Safer Living (BRC), pages 1–6.
Triguero, I., Derrac, J., Garcia, S., and Herrera, F. (2012). A
taxonomy and experimental study on prototype gener-
ation for nearest neighbor classification. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(1):86–100.
Triguero, I., Gonz
´
alez, S., Moyano, J., Garc
´
ıa, S., Alcala-
Fdez, J., Luengo, J., Fern
´
andez, A., Del Jesus, M. J.,
Sanchez, L., and Herrera, F. (2017). Keel 3.0: An
open source software for multi-stage analysis in data
mining. International Journal of Computational In-
telligence Systems, 10(1):1238–1249.
Prototype Reduction on sEMG Data for Instance-based Gesture Learning towards Real-time Prosthetic Control
305