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Abstract: In 2021, a research endeavor aimed to standardize and automate the utilization of machine learning in network 
traffic analysis through the introduction of Nprint. Nprint converts complete packets into binary representation 
(1s, 0s, and -1s), subsequently feeding the processed data into an autoML system. This study demonstrated 
remarkable performance across various network traffic analysis tasks, including malware classification. 
However, it did not investigate the impact of excluding certain packet header fields on the results. 
Consequently, this research seeks to explore how the utilization of Nprint for data processing, while 
selectively considering specific packet header fields, influences the outcome of the malware classification 
task. This research used random forest on Nprint processed network traffics to determine the importances of 
each header field on the task of malware classification, and then tried using only the information of top n most 
important header fields as the data to be fed into AutoGluon to determine how the classification accuracy and 
the training time would be changed. The research had found that using only 3 of the packet header fields could 
still achieve an accuracy that was 99.9% of the accuracy achieved by using all the header fields, and at the 
same time shortened the training time required for the best performing modal on this task given by an 
AutoGluon by more than half. 

1 INTRODUCTION 

Since the advent of the Digital Age, computer users 
have faced an ongoing threat from malware, which are 
malicious software programs designed to inflict harm 
on computer systems, seek unlawful financial gain, 
compromise personal privacy, and more.  From the 
early malwares like the Creeper Worm to the modern 
malwares like NotPetya, malware threats have been 
growing both in magnitude and diversity alongside the 
development of technology (Gibert and Mateu 2020).  
In the current society in which the internet and smart 
devices play increasingly vital roles, there is a growing 
demand for cyber security and malware detection. 
According to statistics, there are 23.14 billion Internet 
of Things devices connected across the world in 2018, 
and this number is projected to grow rapidly (Hussain 
2021). While at the same time, a report has shown that 
there are about 5.4 billion malware cyber attacks in 
2021 (SonicWall 2022). 

In an effort to protect individuals and institutions 
from the harm of malware, researchers have been 
researching on methods to detect and classify malware.  
One of the directions is analysing network traffic flows 

and detecting malicious traffics (Gibert and Mateu 
2020). For the last decades, in the backdrop of the 
flourishment of machine learning, there has been an 
increasing number of researches on employing 
machine learning techniques to detect and classify 
malware (Gibert and Mateu 2020). Machine learning 
has demonstrated its effectiveness in various domains, 
exemplified by the triumph of AlphaGo, a Go-playing 
program that defeated world champions (Silver et al 
2017). Not surprisingly, machine learning techniques 
have also shown to be useful in malware traffic 
detection and classification. For example, research 
employed a Long Short-Term Memory (LSTM) 
classifier which takes HyperText Transfer Protocol 
Secure (HTTPS) traffic as input to determine whether 
the flow is from a malware (Machlica et al 2017). 

There are abundant of benchmarks and challenges 
provided for studies of the applications of machine 
learning in other more popular fields like Computer 
Vision or Natural Language Processing, but 
benchmarks and challenges for study of network traffic 
are lacking (Barut et al 2020). In response to this 
problem, the research collected a dataset of about 500 
thousand network flow samples, which were 
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categorised into 19 malware classes and 1 benign class, 
for researchers to use and to compare their results on 
Holland’s study in 2021. The study also engineered 
these network flows into flow features for the research 
community to work with Barut’s study in 2020. 

A study in 2021 seeks to further simplify the data 
preparation and feature engineering part of the 
machine learning pipeline in network traffic analysis, 
including malware traffic analysis, through the 
introduction of NprintML (Holland et al 2021). 
NprintML is divided into two parts, Nprint and 
AutoML (Holland et al 2021). Nprint transforms raw 
packets into a standard binary representation with -1 
paddings to keep packet header fields aligned 
(Holland et al 2021). AutoML are libraries which 
select and tune differently machine learning modals 
automatically based on the input (Holland et al 2021). 
With NprintML, the study seeks to standardise and 
automate the machine learning process, without the 
need for expert knowledge on what feature or packet 
header field is important (Barut et al 2020). The study 
showed superior results on many network traffic 
analysis tasks. However, the study did not provide 
insights into the potential outcomes when specific 
packet header fields are chosen for processing by 
Nprint in various tasks, such as malware analysis. 

Therefore, this research will study how choosing 
only certain packet header fields to be processed by 
Nprint and later by autoML will affect the accuracy 
of malware classification. The study will first use 
random forest algorithm to analyse the importance of 
each work. Then the study will choose different sets 
of packet header fields to be processed by Nprint and 
autoML and compare their results with using all 
packet header fields. 

2 METHOD  

2.1 Dataset Preparation  

The dataset used in this research is a subset of the 
dataset used by the malware detection section of the 
Nprint study (Holland et al 2021). The original data 
contains approximately 500, 000 traffics of packets, 
each being labelled by the classification it is in 
Holland’s study in 2021. The largest traffics contain 
100 packets and the smallest traffics contain only 1 
packet (Holland et al 2021). Out of the approximately 
500, 000 traffics in the dataset, there are just over 170, 
000 traffics that contain at least 10 packets (Holland 
et al 2021). This research uses 170, 000 traffics that 
contain at least 10 packets from the original dataset. 

The 170, 000 traffics first had their packets being 
turned into rows of 1s 0s and -1s through Nprint 
(Holland et al 2021).  Each row of 1s 0s and -1s 
represents one packet and each column of of 1s 0s and 
-1s represents one sub-feature (Holland et al 2021). 
Each packet had 960 sub-features, and the sub-
features group together to represent 36 features, 
which are the 36 header fields of the protocols ipv4, 
tcp, udp for each packet (Holland et al 2021). The 
header fields are shown in Table 1. 

Table 1: Feature importance for each header field. 

Header field Mean decrease in Impurity 
tcp_wsize      0.233956 
ipv4_tl        0.151328 
ipv4_cksum     0.098145 
ipv4_ttl       0.074087 
tcp_dprt       0.054195 
tcp_sprt       0.050146 
tcp_psh        0.048142 
ipv4_dfbit     0.046672 
tcp_opt        0.039076 
tcp_fin        0.037534 
ipv4_id        0.024555 
tcp_ackn       0.022336 
tcp_seq        0.022046 
tcp_cksum      0.021803 
tcp_doff       0.018283 
udp_cksum      0.013158 
udp_len        0.009789 
udp_dport      0.008867 
tcp_rst        0.007856 
udp_sport      0.006926 
tcp_res        0.002776 
ipv4_tos       0.002774 
tcp_ackf       0.001793 
tcp_ns         0.001049 
tcp_syn        0.000931 
tcp_cwr        0.000816 
tcp_urg        0.000502 
tcp_urp        0.000442 
tcp_ece        0.000013 
ipv4_hl        0.000000 
ipv4_opt       0.000000 
ipv4_proto     0.000000 
ipv4_foff      0.000000 
ipv4_mfbit     0.000000 
ipv4_rbit      0.000000 
ipv4_ver       0.000000 
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The packets of each traffic were sorted by the time 
they were received or sent. Then, since some study 
showed that only inspecting the first few packets of 
each traffic flow is sufficient for the purpose of 
malware detection, and to keep the input size of each 
traffic sample for machine learning consistent, only 
the first 10 packets of each traffic was kept (Hwang 
et al 2019). Next, for each traffic, its 10 packets were 
placed side by side so that each row of 9600 sub-
features represents one sample. This is the standard 
representation for each sample in this research. In the 
experiments, the samples will be changed by 
including and excluding groups of sub-features based 
on the set of features chosen to be tested on. 

The 170, 000 samples of processed labeled traffic 
were split into 120, 000 training samples and 50000 
testing samples. There are 19 categories for the 170, 
000 sample. However, some categories didn’t have 
many samples in them. Therefore, only the 10 
categories that contained the most samples was 
considered. The 10 categories are benign, 
magichound, htbot, trickster, ursnif, artemis, trickbot, 
dridex, emotet, minertorjan. After only considering 
these 10 categories, there were 117842 samples for 
training and 49124 samples for testing. 

Before using the samples for training and testing, 
the importance of each of the 36 features in malware 
classification was determined through random forest 
using sklearn (Pedregosa et al 2018). The set of 
samples used to determine feature importance was all 
of the samples in the training set. The 117842 samples 
were adjusted to be suited for random forest. The 
9600 sub-features were grouped to form 360 features, 
which are the 36 header fields for each of the 10 
packets in each sample. Then, the binary values for 
features ipv4_hl, ipv4_tl, ipv4_foff, ipv4_ttl, 
ipv4_cksum, tcp_seq, tcp_ackn, tcp_doff, tcp_wsize, 
tcp_cksum, tcp_urp, udp_len, udp_cksum were 
turned into base 10 integers, since these features 
represent certain kinds of magnitude. The rest of the 
features had their binary values turn into strings. 
Then, since sklearn random forest only takes in 
numerical inputs, the features with string values were 
expanded to multiple features using one-hot 
encoding. After the expansion, the samples had 1, 933 
features. 

2.2 Random Forest  

2.2.1 Decision Tree 

Decision tree is a binary tree for classification tasks 
that contains two types of nodes: decision node and 
leaf node. The tree starts from a decision node, which 

represents a feature that contains a split of its 
variables that gives the most information (Computed 
using the training samples) gained compared to other 
features. Then, the decision node is connected to two 
child nodes by two edges each representing one set of 
the variables formed by the split. The two-child node 
can either be a leaf node, which represents one of the 
categories in the classification, if all samples 
satisfying all the conditions set by the ancestors of 
this node are in this category, or another decision 
node chosen by the same way its ancestors were 
decided given the conditions set by its ancestors. The 
tree is expanded with the above process until it cannot 
be expanded.  

This research used gini index to measure the 
information gain caused by a split of variables for any 
particular feature. Gini index of a node is calculated 
by the function: 

                         𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 = 1 − ∑𝑝௜ଶ        (1) 

  In which 𝑝𝑖  represents the probability for the 

samples to be in category 𝑖  given that the samples 
satisfy all the conditions set by the ancestors of the 
node. 

Information Gain is calculated by the function: 

  𝐼𝐺 = 𝑤௣𝐺(𝑝𝑎𝑟𝑒𝑛𝑡) −∑𝑤௜𝐺(𝑐ℎ𝑖𝑙𝑑௜)       (2) 

In which 𝐺 is the gini index, 𝑤𝑝 is the proportion 
of samples satisfying all the conditions set by the 
ancestors of the parent, and 𝑤𝑖 is the proportion of 
samples satisfying all the conditions set by the 
ancestors of child 𝑖. 
2.2.2 Random Forest 

Random forest is a collection of n trees each trained 
using a set of samples that had the same size as the 
entire training set and had its samples chosen 
randomly from the training set with replacement. The 
features considered by each tree were selected 
without replacement from all the features. The 
number of features considered by each tree was the 
square root of the total number of features. After 
training the n trees, classification task was done by 
giving the input to all n trees and then chose the 
category that most trees gave as the result. In this 
research, 100 trees were trained in the random forest. 

2.2.3 Feature Importance 

The feature importance of each feature in each tree 
was calculated by taking the sum of the information 
gain caused by all instances of decision nodes that 
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corresponds to that feature and then divided by the 
sum of information gain caused by all nodes. The 
normalised value of feature importance of each 
feature in each tree was calculated by dividing the 
feature importance of the feature by the sum of the 
feature importance of all features. The feature 
importance of each feature in the random forest was 
the meaning of the normalised feature importance of 
the feature in each tree. This value is also called the 
mean decrease in impurity of the feature. This 
research wanted to find out the importance of the 
header fields, which were expanded to 1933 features 
for the random forest. Therefore, the importance, or 
the mean decrease in impurity, of each header field 
was calculated by summing up the feature importance 
of all the features related to that header field. 

2.3 AutoML 

AutoML were libraries that seeks to automate the 
process of applying machine learning to solve 
problems. Machine learning had been shown to be 
useful in many areas and an increasing number of 
research field or real life applications made use of it. 
However, traditionally the application of machine 
learning required expert knowledge, including 
knowledge about data processing, model selection, 
model hyperparameters tuning etc., to successfully 
achieve the goals. These knowledge tends to take time 
and practice to acquire. AutoMLs, by automating the 
process of machine learning application, aimed to 
simplify the usage of machine learning for non-
machine learning experts. AutoMLs allowed 
researchers to be able to focus more on their own 
research interests rather than spending time working 
on model design or hyperparameter tuning that might 
not be related to the aim of their research. This 
research used Autogluon which was an autoML that 
trains and tests multiple models and automates the 
hyperparameter tuning process in model training 
(Erickson et al 2020). 

3 RESULTS 

The importance of each header field calculated 
through sklearn random forest feature importance 
was showed in Figure 1 and Table 1. The 5 most 
important header fields are tcp_wsize, ipv4_tl, 
ipv4_cksum, ipv4_ttl, and tcp_dprt, with the most 
important header field tcp_wsize having 0.233956 
mean decrease in impurity. 

This research first used AutoGluon to train 12 
different models with all header field included. The 

performance of the top 5 best performing models was 
shown in Table 2. The best performing model was 
NeuralNetFastAI, which had an accuracy of 0.978666 
with a fitting time of 334.879 seconds. Out of the 5 
best performing models, LightGBM had the shortest 
fitting time, which is 48.920 seconds. 

Table 2: Top 5 model performance (All header fields 
included). 

Model Accuracy Fitting time 
(seconds) 

NeuralNetFastAI 0.978666 334.879 

LightGBMXT 0.976264 79.691 

LightGBM 0.975470 48.92 

XGBoost 0.975307 133.913 

CatBoost 0.975124 774.513 

 

 
Figure 1: Header field importance using MDI 
(Photo/Picture credit: Original). 

Since, the model NeuralNetFastAI gave the best 
accuracy out of the 12 models, this research decided 
to train NeuralNetFastAI to show how samples that 
included different header fields affect accuracy and 
fitting time. The results were shown in Figure 2. The 
figure showed three plots, accuracy, normalised 
accuracy, and normalised fitting time with respect to 
including top n most important header fields. 
Accuracy was defined as the total number of correct 
classifications over the total number of classifications 
made. Normalised accuracy was the accuracy of the 
sample over the accuracy of the sample that included 
all header fields. Normalised fitting time was the 
fitting time of the sample over the fitting time of the 
sample that included all header fields. Figure 2 and 
Table 3 showed that the accuracies of 
NeuralNetFastAI using samples that included 3 or 
more most important header fields had no significant 
difference. While at the same time, there were 
significant decrease in fitting time for samples that 
included 15 or less most important header fields. With 
only using the top 3 header fields, the accuracy was 

DAML 2023 - International Conference on Data Analysis and Machine Learning

346



0.977465, 99.9 percent of the accuracy of using all 
header fields, but the fitting time was only 149.110 
seconds, 44.5 percent of the fitting time used when 
including all header fields. 

Table 3: Accuracy and fitting time for different # of header 
fields included. 

# of 
header 
field 

included 

Accuracy Normalised 
Accuracy 

Normalised 
fitting time 

Fitting 
time 

1 0.830248 0.848347 0.371663 124.462 

3 0.977465 0.998773 0.445265 149.110 

5 0.978239 0.999564 0.504675 169.005 

10 0.978503 0.999833 0.593277 198.676 

15 0.977933 0.999251 0.844884 282.934 

20 0.978707 1.000042 0.994389 333.000 

ALL 0.978666 1.0 1.0 334.879 

 

 
Figure 2: Comparison between normalised accuracy and 
normalised fitting time using nodal NeuralNetFastAI 
(Photo/Picture credit: Original). 

Therefore, this research found that the task of 
malware detection, with the given samples processed 
using Nprint, only needs information about 3 header 
fields to achieve accuracy comparable to the accuracy 
achieved by using all 36 header fields. And by only 
using 3 header fields, the fitting time for 
NeuralNetFastAI is reduced by more than half. 

4 DISCUSSION 

The results showed that tcp_wsize, ipv4_tl, 
ipv4_cksum, ipv4_ttl, tcp_dprt, and tcp_sprt are the 

six most important header fields to be considered in 
the malware classification task on the sample this 
research used. tcp_dprt was the fifth most important 
and tcp_sprt was the sixth most important.  tcp_dprt 
and tcp_sprt have similar importance confirmed with 
intuition since the sample traffics contain packets 
going in both directions, which meant that a port was 
both used as a destination port and as a source port in 
a traffic. Port number’s importance in malware 
detection and classification might be due to the fact 
that there were certain ports that were easy to be used 
by certain attacks based on the ports’ specific security 
weaknesses. Some attackers might make the total 
length value in the header field vary short and 
mismatch the actual length of the packet to trick 
firewalls, which could be a possible reason for the 
importance of ipv4_tl in malware classification. A 
possible reason for ipv4_ttl to be one of the important 
header fields was that ipv4_ttl could show 
information about the number of hops the packet went 
through before reaching destination, which might 
give information on where the packet was from. 
ipv4_cksum was a value that could help verify 
whether the content of the packet had no error and had 
not been changed. So if ipv4_cksum value showed 
problems, then the packet could possibly be from a 
traffic that was not normal. tcp_wsize didn’t seem to 
have an intuitive reason why it was related to malware 
traffic, but future studies might look more into it by 
looking at the distributions of tcp_wsize for each 
malware category. By looking at the machine 
learning results for including selected header fields, it 
seemed that it was not necessary to include all header 
fields for the task of malware classification, but only 
including the few most important ones would achieve 
similar accuracy and at the same time saving a 
considerable amount of modal training time. 

5 CONCLUSION 

In this study, the importance of individual header 
fields in the context of malware classification was 
assessed using a random forest model. Subsequently, 
AutoGluon was employed to investigate how the 
selection of different sets of header fields impacts 
both accuracy and training duration. The research 
identified the top five header fields critical for 
malware detection as tcp_wsize, ipv4_tl, 
ipv4_cksum, ipv4_ttl, and tcp_dprt. Interestingly, 
utilizing only these selected header fields in samples 
yielded comparable accuracy in malware 
classification compared to using the entire set of 
header fields, while significantly reducing training 
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time by over 50%. However, the importance of each 
header field calculated in this research may not gave 
a precise or exhaustive reflection of how important 
each header field was, and more information about 
each header field can be analysed. For example, some 
header field might be very useful for the detection of 
a particular malware category but not others. This 
possibility was not reflected in the importance scores. 
Also, in the circumstances in which a header field is 
important for only the detection of a particular 
malware category, the number of samples in that 
category would affected the calculated importance 
value for that header field. Therefore, more 
investigations could be done to analyse how header 
fields were related to each malware category in the 
future. 
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