
The Investigation of Packet Header Field Importance on Malware
Classification following Nprint Processing

Fangzhou Xing
Department of Math Major, Swarthmore College, Swarthmore, U.S.A.

Keywords: Malware Classification, Nprint, Machine Learning.

Abstract: In 2021, a research endeavor aimed to standardize and automate the utilization of machine learning in network
traffic analysis through the introduction of Nprint. Nprint converts complete packets into binary representation
(1s, 0s, and -1s), subsequently feeding the processed data into an autoML system. This study demonstrated
remarkable performance across various network traffic analysis tasks, including malware classification.
However, it did not investigate the impact of excluding certain packet header fields on the results.
Consequently, this research seeks to explore how the utilization of Nprint for data processing, while
selectively considering specific packet header fields, influences the outcome of the malware classification
task. This research used random forest on Nprint processed network traffics to determine the importances of
each header field on the task of malware classification, and then tried using only the information of top n most
important header fields as the data to be fed into AutoGluon to determine how the classification accuracy and
the training time would be changed. The research had found that using only 3 of the packet header fields could
still achieve an accuracy that was 99.9% of the accuracy achieved by using all the header fields, and at the
same time shortened the training time required for the best performing modal on this task given by an
AutoGluon by more than half.

1 INTRODUCTION

Since the advent of the Digital Age, computer users
have faced an ongoing threat from malware, which are
malicious software programs designed to inflict harm
on computer systems, seek unlawful financial gain,
compromise personal privacy, and more. From the
early malwares like the Creeper Worm to the modern
malwares like NotPetya, malware threats have been
growing both in magnitude and diversity alongside the
development of technology (Gibert and Mateu 2020).
In the current society in which the internet and smart
devices play increasingly vital roles, there is a growing
demand for cyber security and malware detection.
According to statistics, there are 23.14 billion Internet
of Things devices connected across the world in 2018,
and this number is projected to grow rapidly (Hussain
2021). While at the same time, a report has shown that
there are about 5.4 billion malware cyber attacks in
2021 (SonicWall 2022).

In an effort to protect individuals and institutions
from the harm of malware, researchers have been
researching on methods to detect and classify malware.
One of the directions is analysing network traffic flows

and detecting malicious traffics (Gibert and Mateu
2020). For the last decades, in the backdrop of the
flourishment of machine learning, there has been an
increasing number of researches on employing
machine learning techniques to detect and classify
malware (Gibert and Mateu 2020). Machine learning
has demonstrated its effectiveness in various domains,
exemplified by the triumph of AlphaGo, a Go-playing
program that defeated world champions (Silver et al
2017). Not surprisingly, machine learning techniques
have also shown to be useful in malware traffic
detection and classification. For example, research
employed a Long Short-Term Memory (LSTM)
classifier which takes HyperText Transfer Protocol
Secure (HTTPS) traffic as input to determine whether
the flow is from a malware (Machlica et al 2017).

There are abundant of benchmarks and challenges
provided for studies of the applications of machine
learning in other more popular fields like Computer
Vision or Natural Language Processing, but
benchmarks and challenges for study of network traffic
are lacking (Barut et al 2020). In response to this
problem, the research collected a dataset of about 500
thousand network flow samples, which were

Xing, F.
The Investigation of Packet Header Field Importance on Malware Classification Following Nprint Processing.
DOI: 10.5220/0012808500003885
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Data Analysis and Machine Learning (DAML 2023), pages 343-348
ISBN: 978-989-758-705-4
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

343

categorised into 19 malware classes and 1 benign class,
for researchers to use and to compare their results on
Holland’s study in 2021. The study also engineered
these network flows into flow features for the research
community to work with Barut’s study in 2020.

A study in 2021 seeks to further simplify the data
preparation and feature engineering part of the
machine learning pipeline in network traffic analysis,
including malware traffic analysis, through the
introduction of NprintML (Holland et al 2021).
NprintML is divided into two parts, Nprint and
AutoML (Holland et al 2021). Nprint transforms raw
packets into a standard binary representation with -1
paddings to keep packet header fields aligned
(Holland et al 2021). AutoML are libraries which
select and tune differently machine learning modals
automatically based on the input (Holland et al 2021).
With NprintML, the study seeks to standardise and
automate the machine learning process, without the
need for expert knowledge on what feature or packet
header field is important (Barut et al 2020). The study
showed superior results on many network traffic
analysis tasks. However, the study did not provide
insights into the potential outcomes when specific
packet header fields are chosen for processing by
Nprint in various tasks, such as malware analysis.

Therefore, this research will study how choosing
only certain packet header fields to be processed by
Nprint and later by autoML will affect the accuracy
of malware classification. The study will first use
random forest algorithm to analyse the importance of
each work. Then the study will choose different sets
of packet header fields to be processed by Nprint and
autoML and compare their results with using all
packet header fields.

2 METHOD

2.1 Dataset Preparation

The dataset used in this research is a subset of the
dataset used by the malware detection section of the
Nprint study (Holland et al 2021). The original data
contains approximately 500, 000 traffics of packets,
each being labelled by the classification it is in
Holland’s study in 2021. The largest traffics contain
100 packets and the smallest traffics contain only 1
packet (Holland et al 2021). Out of the approximately
500, 000 traffics in the dataset, there are just over 170,
000 traffics that contain at least 10 packets (Holland
et al 2021). This research uses 170, 000 traffics that
contain at least 10 packets from the original dataset.

The 170, 000 traffics first had their packets being
turned into rows of 1s 0s and -1s through Nprint
(Holland et al 2021). Each row of 1s 0s and -1s
represents one packet and each column of of 1s 0s and
-1s represents one sub-feature (Holland et al 2021).
Each packet had 960 sub-features, and the sub-
features group together to represent 36 features,
which are the 36 header fields of the protocols ipv4,
tcp, udp for each packet (Holland et al 2021). The
header fields are shown in Table 1.

Table 1: Feature importance for each header field.

Header field Mean decrease in Impurity
tcp_wsize 0.233956
ipv4_tl 0.151328
ipv4_cksum 0.098145
ipv4_ttl 0.074087
tcp_dprt 0.054195
tcp_sprt 0.050146
tcp_psh 0.048142
ipv4_dfbit 0.046672
tcp_opt 0.039076
tcp_fin 0.037534
ipv4_id 0.024555
tcp_ackn 0.022336
tcp_seq 0.022046
tcp_cksum 0.021803
tcp_doff 0.018283
udp_cksum 0.013158
udp_len 0.009789
udp_dport 0.008867
tcp_rst 0.007856
udp_sport 0.006926
tcp_res 0.002776
ipv4_tos 0.002774
tcp_ackf 0.001793
tcp_ns 0.001049
tcp_syn 0.000931
tcp_cwr 0.000816
tcp_urg 0.000502
tcp_urp 0.000442
tcp_ece 0.000013
ipv4_hl 0.000000
ipv4_opt 0.000000
ipv4_proto 0.000000
ipv4_foff 0.000000
ipv4_mfbit 0.000000
ipv4_rbit 0.000000
ipv4_ver 0.000000

DAML 2023 - International Conference on Data Analysis and Machine Learning

344

The packets of each traffic were sorted by the time
they were received or sent. Then, since some study
showed that only inspecting the first few packets of
each traffic flow is sufficient for the purpose of
malware detection, and to keep the input size of each
traffic sample for machine learning consistent, only
the first 10 packets of each traffic was kept (Hwang
et al 2019). Next, for each traffic, its 10 packets were
placed side by side so that each row of 9600 sub-
features represents one sample. This is the standard
representation for each sample in this research. In the
experiments, the samples will be changed by
including and excluding groups of sub-features based
on the set of features chosen to be tested on.

The 170, 000 samples of processed labeled traffic
were split into 120, 000 training samples and 50000
testing samples. There are 19 categories for the 170,
000 sample. However, some categories didn’t have
many samples in them. Therefore, only the 10
categories that contained the most samples was
considered. The 10 categories are benign,
magichound, htbot, trickster, ursnif, artemis, trickbot,
dridex, emotet, minertorjan. After only considering
these 10 categories, there were 117842 samples for
training and 49124 samples for testing.

Before using the samples for training and testing,
the importance of each of the 36 features in malware
classification was determined through random forest
using sklearn (Pedregosa et al 2018). The set of
samples used to determine feature importance was all
of the samples in the training set. The 117842 samples
were adjusted to be suited for random forest. The
9600 sub-features were grouped to form 360 features,
which are the 36 header fields for each of the 10
packets in each sample. Then, the binary values for
features ipv4_hl, ipv4_tl, ipv4_foff, ipv4_ttl,
ipv4_cksum, tcp_seq, tcp_ackn, tcp_doff, tcp_wsize,
tcp_cksum, tcp_urp, udp_len, udp_cksum were
turned into base 10 integers, since these features
represent certain kinds of magnitude. The rest of the
features had their binary values turn into strings.
Then, since sklearn random forest only takes in
numerical inputs, the features with string values were
expanded to multiple features using one-hot
encoding. After the expansion, the samples had 1, 933
features.

2.2 Random Forest

2.2.1 Decision Tree

Decision tree is a binary tree for classification tasks
that contains two types of nodes: decision node and
leaf node. The tree starts from a decision node, which

represents a feature that contains a split of its
variables that gives the most information (Computed
using the training samples) gained compared to other
features. Then, the decision node is connected to two
child nodes by two edges each representing one set of
the variables formed by the split. The two-child node
can either be a leaf node, which represents one of the
categories in the classification, if all samples
satisfying all the conditions set by the ancestors of
this node are in this category, or another decision
node chosen by the same way its ancestors were
decided given the conditions set by its ancestors. The
tree is expanded with the above process until it cannot
be expanded.

This research used gini index to measure the
information gain caused by a split of variables for any
particular feature. Gini index of a node is calculated
by the function:

 𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 = 1 − ∑𝑝௜ଶ (1)

 In which 𝑝𝑖 represents the probability for the

samples to be in category 𝑖 given that the samples
satisfy all the conditions set by the ancestors of the
node.

Information Gain is calculated by the function:

 𝐼𝐺 = 𝑤௣𝐺(𝑝𝑎𝑟𝑒𝑛𝑡) −∑𝑤௜𝐺(𝑐ℎ𝑖𝑙𝑑௜) (2)

In which 𝐺 is the gini index, 𝑤𝑝 is the proportion
of samples satisfying all the conditions set by the
ancestors of the parent, and 𝑤𝑖 is the proportion of
samples satisfying all the conditions set by the
ancestors of child 𝑖.
2.2.2 Random Forest

Random forest is a collection of n trees each trained
using a set of samples that had the same size as the
entire training set and had its samples chosen
randomly from the training set with replacement. The
features considered by each tree were selected
without replacement from all the features. The
number of features considered by each tree was the
square root of the total number of features. After
training the n trees, classification task was done by
giving the input to all n trees and then chose the
category that most trees gave as the result. In this
research, 100 trees were trained in the random forest.

2.2.3 Feature Importance

The feature importance of each feature in each tree
was calculated by taking the sum of the information
gain caused by all instances of decision nodes that

The Investigation of Packet Header Field Importance on Malware Classification Following Nprint Processing

345

corresponds to that feature and then divided by the
sum of information gain caused by all nodes. The
normalised value of feature importance of each
feature in each tree was calculated by dividing the
feature importance of the feature by the sum of the
feature importance of all features. The feature
importance of each feature in the random forest was
the meaning of the normalised feature importance of
the feature in each tree. This value is also called the
mean decrease in impurity of the feature. This
research wanted to find out the importance of the
header fields, which were expanded to 1933 features
for the random forest. Therefore, the importance, or
the mean decrease in impurity, of each header field
was calculated by summing up the feature importance
of all the features related to that header field.

2.3 AutoML

AutoML were libraries that seeks to automate the
process of applying machine learning to solve
problems. Machine learning had been shown to be
useful in many areas and an increasing number of
research field or real life applications made use of it.
However, traditionally the application of machine
learning required expert knowledge, including
knowledge about data processing, model selection,
model hyperparameters tuning etc., to successfully
achieve the goals. These knowledge tends to take time
and practice to acquire. AutoMLs, by automating the
process of machine learning application, aimed to
simplify the usage of machine learning for non-
machine learning experts. AutoMLs allowed
researchers to be able to focus more on their own
research interests rather than spending time working
on model design or hyperparameter tuning that might
not be related to the aim of their research. This
research used Autogluon which was an autoML that
trains and tests multiple models and automates the
hyperparameter tuning process in model training
(Erickson et al 2020).

3 RESULTS

The importance of each header field calculated
through sklearn random forest feature importance
was showed in Figure 1 and Table 1. The 5 most
important header fields are tcp_wsize, ipv4_tl,
ipv4_cksum, ipv4_ttl, and tcp_dprt, with the most
important header field tcp_wsize having 0.233956
mean decrease in impurity.

This research first used AutoGluon to train 12
different models with all header field included. The

performance of the top 5 best performing models was
shown in Table 2. The best performing model was
NeuralNetFastAI, which had an accuracy of 0.978666
with a fitting time of 334.879 seconds. Out of the 5
best performing models, LightGBM had the shortest
fitting time, which is 48.920 seconds.

Table 2: Top 5 model performance (All header fields
included).

Model Accuracy Fitting time
(seconds)

NeuralNetFastAI 0.978666 334.879

LightGBMXT 0.976264 79.691

LightGBM 0.975470 48.92

XGBoost 0.975307 133.913

CatBoost 0.975124 774.513

Figure 1: Header field importance using MDI
(Photo/Picture credit: Original).

Since, the model NeuralNetFastAI gave the best
accuracy out of the 12 models, this research decided
to train NeuralNetFastAI to show how samples that
included different header fields affect accuracy and
fitting time. The results were shown in Figure 2. The
figure showed three plots, accuracy, normalised
accuracy, and normalised fitting time with respect to
including top n most important header fields.
Accuracy was defined as the total number of correct
classifications over the total number of classifications
made. Normalised accuracy was the accuracy of the
sample over the accuracy of the sample that included
all header fields. Normalised fitting time was the
fitting time of the sample over the fitting time of the
sample that included all header fields. Figure 2 and
Table 3 showed that the accuracies of
NeuralNetFastAI using samples that included 3 or
more most important header fields had no significant
difference. While at the same time, there were
significant decrease in fitting time for samples that
included 15 or less most important header fields. With
only using the top 3 header fields, the accuracy was

DAML 2023 - International Conference on Data Analysis and Machine Learning

346

0.977465, 99.9 percent of the accuracy of using all
header fields, but the fitting time was only 149.110
seconds, 44.5 percent of the fitting time used when
including all header fields.

Table 3: Accuracy and fitting time for different # of header
fields included.

of
header
field

included

Accuracy Normalised
Accuracy

Normalised
fitting time

Fitting
time

1 0.830248 0.848347 0.371663 124.462

3 0.977465 0.998773 0.445265 149.110

5 0.978239 0.999564 0.504675 169.005

10 0.978503 0.999833 0.593277 198.676

15 0.977933 0.999251 0.844884 282.934

20 0.978707 1.000042 0.994389 333.000

ALL 0.978666 1.0 1.0 334.879

Figure 2: Comparison between normalised accuracy and
normalised fitting time using nodal NeuralNetFastAI
(Photo/Picture credit: Original).

Therefore, this research found that the task of
malware detection, with the given samples processed
using Nprint, only needs information about 3 header
fields to achieve accuracy comparable to the accuracy
achieved by using all 36 header fields. And by only
using 3 header fields, the fitting time for
NeuralNetFastAI is reduced by more than half.

4 DISCUSSION

The results showed that tcp_wsize, ipv4_tl,
ipv4_cksum, ipv4_ttl, tcp_dprt, and tcp_sprt are the

six most important header fields to be considered in
the malware classification task on the sample this
research used. tcp_dprt was the fifth most important
and tcp_sprt was the sixth most important. tcp_dprt
and tcp_sprt have similar importance confirmed with
intuition since the sample traffics contain packets
going in both directions, which meant that a port was
both used as a destination port and as a source port in
a traffic. Port number’s importance in malware
detection and classification might be due to the fact
that there were certain ports that were easy to be used
by certain attacks based on the ports’ specific security
weaknesses. Some attackers might make the total
length value in the header field vary short and
mismatch the actual length of the packet to trick
firewalls, which could be a possible reason for the
importance of ipv4_tl in malware classification. A
possible reason for ipv4_ttl to be one of the important
header fields was that ipv4_ttl could show
information about the number of hops the packet went
through before reaching destination, which might
give information on where the packet was from.
ipv4_cksum was a value that could help verify
whether the content of the packet had no error and had
not been changed. So if ipv4_cksum value showed
problems, then the packet could possibly be from a
traffic that was not normal. tcp_wsize didn’t seem to
have an intuitive reason why it was related to malware
traffic, but future studies might look more into it by
looking at the distributions of tcp_wsize for each
malware category. By looking at the machine
learning results for including selected header fields, it
seemed that it was not necessary to include all header
fields for the task of malware classification, but only
including the few most important ones would achieve
similar accuracy and at the same time saving a
considerable amount of modal training time.

5 CONCLUSION

In this study, the importance of individual header
fields in the context of malware classification was
assessed using a random forest model. Subsequently,
AutoGluon was employed to investigate how the
selection of different sets of header fields impacts
both accuracy and training duration. The research
identified the top five header fields critical for
malware detection as tcp_wsize, ipv4_tl,
ipv4_cksum, ipv4_ttl, and tcp_dprt. Interestingly,
utilizing only these selected header fields in samples
yielded comparable accuracy in malware
classification compared to using the entire set of
header fields, while significantly reducing training

The Investigation of Packet Header Field Importance on Malware Classification Following Nprint Processing

347

time by over 50%. However, the importance of each
header field calculated in this research may not gave
a precise or exhaustive reflection of how important
each header field was, and more information about
each header field can be analysed. For example, some
header field might be very useful for the detection of
a particular malware category but not others. This
possibility was not reflected in the importance scores.
Also, in the circumstances in which a header field is
important for only the detection of a particular
malware category, the number of samples in that
category would affected the calculated importance
value for that header field. Therefore, more
investigations could be done to analyse how header
fields were related to each malware category in the
future.

REFERENCES

D. Gibert, C. Mateu, J. Planes, Journal of Network and
Computer Applications, vol. 153, 2020.

F. Hussain, S. Abbas, G. Shah, I. Pires, U. Fayyaz, F.
Shahzad, N. Garcia, E. Zdravevski, Sensors, vol. 21,
pp. 3025, 2021.

D SonicWall Cyber Threat Report, SonicWall, Inc, 2022.
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A.

Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A.
Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifra, G.
Driessche, T. Graepel, D. Hassabis, Nature, vol. 550,
pp. 354, 2017.

L. Machlica, T. Pevny, J. Havelka, T. Scheffer, IEEE. SPW,
pp. 205, 2017.

O. Barut, Y. Luo, T. Zhang, W. Li, P. Li, arXiv. cs. CR,
2020.

J. Holland, P.Schmitt, N. Feamster, P. Mittal, CCS ‘21, pp.
3366, 2021

R. Hwang, M. Peng, V. Nguyen, Y. Chang, Applied
Sciences, vol. 9, pp. 3414, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, A. Muller, J.
Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, arXiv. cs. LG,
2018.

N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy,
M. Li, A. Smola, arXic. stat. ML, 2020

DAML 2023 - International Conference on Data Analysis and Machine Learning

348

