
Requirements Engineering for Continuous Queries on IoRT Data:
A Case Study in Agricultural Autonomous Robots Monitoring

Leandro Antonelli1 a, Hassan Badir2 b, Houssam Bazza2 c, Sandro Bimonte3 d

and Stefano Rizzi4 e

1Lifia, Fac. de Informática, UNLP, Buenos Aires, Argentina
2Abdelmalek Essaadi University, Tangier, Morocco

3TSCF - INRAE, University Clermont, Aubiere, France
4DISI, University of Bologna, Bologna, Italy

fi

Keywords: Requirements Engineering, Continuous Queries, IoRT, Prototyping, Agriculture.

Abstract: The Internet of Robotic Things (IoRT) is an extension of the Internet of Things, where intelligent mobile
devices acquire sensor data and physically act in the environment. IoRT devices produce huge data streams,
typically analyzed using continuous queries. We propose an approach to engineer requirements about contin-
uous queries over IoRT data. Our proposal is specifically devised for end-users not skilled in IT and relies,
for requirements elicitation, on spreadsheet-like templates called stream tables. Requirements analysis uses
a novel UML profile, while requirements specification and validation rely on a fast prototyping tool so as
to allow end-users to define continuous queries by themselves and validate them via web-based prototyping.
Non-functional requirements are taken into account as well, in the form of available technological resources
and data sources, and used for requirements validation. The results of some preliminary tests made with some
real users suggest that stream tables are a valuable instrument for the engineering of continuous queries, and
that fast prototyping is an effective support to the specification and validation steps.

1 INTRODUCTION

Recently, the advent of sophisticated sensors and
robots, together with the development of communi-
cation technologies, enabled intelligent robots to con-
nect to the Internet, so that they can efficiently ex-
change data among themselves and with the cloud.
The Internet of Robotic Things (IoRT) is an exten-
sion of the Internet of Things, where robots monitor
events and merge sensor data to determine a better
course of action, then take real actions in the phys-
ical world (Simoens et al., 2018). Robots usually
embed sensors to collect data from the environment,
but they also produce data that describe their mecha-
tronic behaviour (position, odometry, etc.). Differ-
ently from IoT devices, which typically have limited

a https://orcid.org/0000-0003-1388-0337
b https://orcid.org/0000-0002-6754-7807
c https://orcid.org/0009-0009-4853-1699
d https://orcid.org/0000-0003-1727-6954
e https://orcid.org/0000-0002-4617-217X

computation resources, robots can produce very large
data streams since they embed computers powered by
the robot battery. Moreover, the embedding of signif-
icant computation and storage resources enables the
use of more complex technologies and software to
manage the produced data stream. Therefore, from
a non-functional point of view, IoRT can have more
demanding requirements than IoT, which strongly im-
pacts the hardware and software architecture adopted
for stream data processing.

IoRT applications usually come with real-time
analysis tools based on complex data streaming com-
putations. In particular, they often rely on continuous
queries that constantly process streaming data to pro-
duce a stream of results. A continuous query is char-
acterized by a frequency and a temporal window, the
latter defining the set of streaming data over which
the query is computed. An example is: “every 2 sec-
onds (frequency) compute the average speed over the
last 2 seconds (temporal window)”. Different kinds of
continuous queries have been defined in the literature,

Antonelli, L., Badir, H., Bazza, H., Bimonte, S. and Rizzi, S.
Requirements Engineering for Continuous Queries on IoRT Data: A Case Study in Agricultural Autonomous Robots Monitoring.
DOI: 10.5220/0012439600003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 2, pages 113-120
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

113



mainly depending on the type of window used (Golab
and Özsu, 2003): fixed (where the size of the window
is the same of the frequency), sliding (where the fre-
quency is different from the window size), and land-
mark (where the window is periodically reset). Con-
tinuous queries are processed by streaming engines,
such as Apache Flink, Esper, etc.; their formulation
is based on ad-hoc query languages and requires ad-
vanced IT skills, also in consideration of the different
possible window types.

Requirements have a critical role in the develop-
ment of software of all types. This is also true for
projects involving IoRT-based applications, where ef-
fective and error-proof engineering of functional and
non-functional requirements is a key to success. Un-
fortunately, “conventional elicitation techniques are
often time-consuming and not sufficiently scalable for
processing such fast-growing data” (Lim et al., 2021),
so new techniques must be investigated for the IoRT
field. Due to the complexity of continuous queries,
managing the related requirements can be particularly
difficult. Additionally, IoRT application domains typ-
ically involve stakeholders with little or no Informa-
tion Technology (IT) skills (Bimonte et al., 2021b),
which further hinders the effectiveness of requirement
engineering. End-users not skilled in IT may ignore
the existence of specific sensors and robots; thus, they
have no idea of the data made available and of the
analyses that IoRT can offer, and it is difficult for
them to suggest using some sensed data when they
describe their analysis needs. Finally, advanced sen-
sors and robots come with technological constraints
(e.g., the type of communication network, the net-
work latency, and the computation overload) that may
undermine the feasibility of IoRT applications, and
end-users are often unaware of them.

Although IoRT systems have reached a good level
of maturity, only a few efforts have been made to-
wards methods to engineer the related requirements
(see (Aguilar-Calderón et al., 2022) for a survey);
while some of these methods offer good coverage of
the different steps of requirements engineering, none
of them offers specific techniques to cope with contin-
uous queries —especially in presence of end-users not
skilled in IT. To overcome this limitation, in this paper
we propose an end-to-end approach in which (non-
IT) end-users and IT users cooperate to engineer re-
quirements about continuous queries over IoRT data.
Our approach can be framed within any methodology
featuring the classical four steps of requirements en-
gineering, namely, elicitation, analysis, specification,
and validation (e.g., the one proposed by Kaleem et al.
(2020)). Our main contributions for the four steps are
as follows:

• We propose the use of spreadsheet-like templates
to support requirements elicitation of continuous
queries by non-IT end-users.

• We introduce an UML profile to support require-
ments analysis of continuous queries by IT users
via class diagrams.

• We describe a prototyping tool to support require-
ments specification and validation of continuous
queries.

• We consider non-functional requirements as well,
in the form of available technological resources
and data sources, and use them for requirements
validation (Pohl and Rupp, 2015).

The rest of the paper is organized as follows.
Section 2 discusses the related works, while Section
3 describes a case study concerning the monitoring
of agricultural autonomous robots. In Section 4 we
overview the methodological framework and explain
our approach in detail, while in Section 5 we present
an experiment made to assess its validity. Section 6
draws the conclusions and outlines our future work.

2 RELATED WORK

The seminal paper by Golab and Özsu (2003) sur-
veys the different types of continuous queries in terms
of data models, semantics, and query languages. In
particular, the basic operators on streams (group by,
aggregate, etc.), the supported windows (fixed, land-
mark, and sliding), and their execution frequency
(streaming or periodic) are discussed. Later on, other
works investigated continuous queries from different
points of view (e.g., (Sumalatha and Ananthi, 2019;
Gomes et al., 2019). Visual languages allow users to
define complex queries on data without any knowl-
edge of the query language syntax, and therefore they
could be considered as queries elicitation tools. Al-
though some visual languages were proposed in this
direction (e.g., (Silva et al., 2023)), to the best of our
knowledge no work proposes an approach to gener-
ate a continuous query from a simple representation
created by a user with poor IT skills.

Several proposals deal with requirements engi-
neering in the IoT or IoRT domains. An experience
of Use Case modeling in the healthcare domain is
described by Laplante et al. (2016), who emphasize
the stakeholder identification phase using actors of
Use Case diagrams. A similar approach using UML
and SysUML modeling is proposed by Meacham and
Phalp (2016). Mezghani et al. (2017) propose a
model-driven development approach based on UML

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

114



and patterns; although they do not describe new ac-
tivities or tools, they introduce the use of patterns and
ontologies. Costa et al. (2017) propose a model-based
approach relying on a modeling language named IoT-
RML. An agent-based approach consisting of three
steps: (i) analysis, (ii) design, and (iii) implementa-
tion is proposed by Fortino et al. (2018). Although the
authors consider the complexity of the cyber-physical
elements, they only focus on one phase of require-
ments engineering, namely, analysis.

Rafique et al. (2020) introduce a service-based
framework to develop IoT applications. They do not
include stakeholder identification in their proposal,
neither they consider the importance of continuous
queries in IoT scenarios. Silva et al. (2019) present
an approach that deals with many of the stages of the
requirements engineering process; however, they deal
with stakeholders only in a shallow way and do not
mention continuous queries. A five-step approach is
described by Kaleem et al. (2020). They do not pro-
pose specific artifacts to deal with continuous queries,
and do not single out specific stakeholder roles. Silva
et al. (2021) propose a comprehensive approach to
build requirements specification documents. Their
proposal addresses the classic stages in the require-
ments engineering process, but continuous queries are
not considered. Zambonelli (2016) propose a gen-
eral approach for software engineering to implement
IoT applications. The activities of their approach are:
(i) actors analysis and identification, (ii) functional-
ity and requirements, and (iii) infrastructural analy-
sis. Their phases agree in general terms with our pro-
posal; however, our proposal is specifically focused
on requirements engineering for continuous queries.

Overall, the main differences between our ap-
proach with the previous ones are as follows. Firstly,
it introduces continuous queries as first-class citi-
zens in requirements engineering. Secondly, it dis-
tinguishes two profiles of stakeholders, namely, end-
users and IT users, who bring very different contri-
butions to the engineering process; this is very rele-
vant since IoRT applications have an important tech-
nological component and IT users should contribute
with their knowledge and experience in the require-
ments engineering process. Finally, it covers most of
the phases in requirements engineering identified by
Aguilar-Calderón et al. (2022).

3 CASE STUDY: MONITORING
OF AGRICULTURAL
AUTONOMOUS ROBOTS

An agricultural robot is an unmanned ground vehicle
equipped with sensors and actuators and able to safely
and autonomously perform one or several tasks on a
farm field. Such a robot is composed of a locomotion
part connected to a navigation system, plus an agri-
cultural part with either mounted, semi-mounted, or
towed tools.

In the context of agro-ecology, which aims at
developing new cultural practices leading to an
environment-friendly farming production, farmers
and agriculture stakeholders need a supervising sys-
tem allowing them to monitor the advancement of
robots in fields, as well as the data sent from sen-
sors (André et al., 2023). Thanks to this system, the
physical presence of people in the field will no longer
be necessary, so they will save time for other tasks.
This supervising system must enable easy monitoring
of all the data usually involved in robotized agricul-
tural tasks: sensors data (e.g., air temperature, wind
speed, etc.); odometry data (i.e., data from motion
sensors to estimate the changes in the robot’s posi-
tion over time); alert data (related for instance to me-
chanical faults of robots or to delays in the planned
task); spatial and alphanumeric data representing con-
textual information (such as the geometries of the
plots, the name of the farmer, etc.) Among these, sen-
sors, odometry, and alert data come in streams: they
are produced in a continuous way, and they are also
queried via continuous queries. For example, it is im-
portant to monitor the movement of the robot in the
field (speed, GPS, etc.) and the meteorological con-
ditions (temperature, humidity, etc.) to interrupt the
robot task when either its delay becomes too long, or
the meteorological conditions are not suited for that
task.

4 REQUIREMENTS
ENGINEERING FOR
CONTINUOUS QUERIES

Figure 1 portrays our approach and how it can be
framed within a standard requirements engineering
methodology. On the left-hand side (in grey), the four
steps typically encompassed by requirements engi-
neering; for each step, the specific techniques we pro-
pose to cope with continuous queries and the stake-
holders involved in each of them. Two different kinds
of stakeholders have been identified:

Requirements Engineering for Continuous Queries on IoRT Data: A Case Study in Agricultural Autonomous Robots Monitoring

115



Requirement 
Elicitation

Requirement 
Analysis

Requirement 
Specification

Requirement 
Validation

stream tables

interviews

UML class 
diagrams

verification

end-user

IT user

nat. language

fast protototyp.

Functional requirements Non-functional requirements

Figure 1: The techniques involved, at each step, to manage
functional (in shades of blue) and non-functional (in shades
of green) requirements for continuous queries on IoRT data.

• End-users (middle column of Figure 1), who are
experts in the applications domain. They are nor-
mally not skilled in IT, and their digital literacy is
limited to the basic usage of spreadsheet tools. We
assume they can manipulate columns and rows
and define basic formulas in a spreadsheet.

• IT users (leftmost column), who are experts in IoT
and robots and in charge of the system implemen-
tation.

Notably, in Figure 1 we distinguish between
techniques related to functional (in blue) and non-
functional (in green) requirements. Below some
additional explanations (see the work by Aguilar-
Calderón et al. (2022) for a further description of the
four steps):

1. Requirements Elicitation: aims at identifying
the goals the system has to achieve.

• Functional requirements: to specifically elicit
the requirements related to continuous queries,
we introduce stream tables, i.e., spreadsheet-
like templates that end-users will fill to state
what data they need and how they should be
computed.

• Non-functional requirements: End-users are in-
terviewed by IT users and asked to describe the
technological constraints entailed by the appli-
cation domain (e.g., low communication band-
width) and to survey the data sources avail-
able (e.g., robot GPS data sent every 10 sec-
onds). Should end-users be unable to provide
the needed information, IT users can actively
help them.

2. Requirements Analysis: refers to creating mod-
els from the raw information obtained from end-
user and make them consistent with each other
(Laplante and Kassab, 2022).

• Functional requirements: To cope with contin-
uous queries, IT users start from the stream ta-
bles created at the previous step to draw a UML
class diagram relying on an ad-hoc profile.

3. Requirements Specification: produces a de-
scription of the system behavior.

• Functional requirements: IT users create a pro-
totype that implements continuous queries, thus
providing their formal specification via a query
language.

• Non-functional requirements: a list of available
resources is specified by IT users in natural lan-
guage.

4. Requirements Validation: establishes whether
or not the software requirements correctly capture
the stakeholders’ requirements.

• Functional requirements: end-users check the
prototype to verify that the queries specified
meet their analytical needs.

• Non-functional requirements: IT users verify
that these queries are consistent with the tech-
nological resources and data sources available,
i.e., that they actually can be implemented.

Should one or both of these checks fail, an itera-
tion to the previous steps is necessary to refine the
requirements.
The techniques involved in the four steps are de-

scribed in detail in the following subsections.

4.1 Requirements Elicitation

At this step we propose to perform two distinct ac-
tivities, namely stream table design and identification
of technological and data resources, related to func-
tional and non-functional requirements, respectively.

Stream table design allows end-users to tentatively
express the continuous queries they need on their
own, i.e., without relying on the support of IT users.
The main idea, inspired by Bimonte et al. (2021a),
is to let them use tools they are familiar with, such
as spreadsheets. The template we have defined to this
end, called stream table, can be used by end-users non
skilled in IT to state (i) what data they need and (ii)
how this data is computed. A stream table has two
components: a declaration area, and a data area.

• The declaration area specifies (i) the temporal
frequency for data collection (Acquisition fre-
quency), (ii) the IoRT identifier, i.e., the sensor or

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

116



robot that sends the data, (iii) the data to be col-
lected (Source data), and (iv) a formula applied
to filter the source data (Filtered data). Moreover,
the declaration area specifies how the data must
be aggregated (Group by, e.g., by robot), and the
computation to be made with its frequency and
time window (Continuous query).

• In the data area, the end-user creates a small case
of computation starting from an example provided
in the template.

The stream table is filled by end-users in two stages:

1. First, they specify the Acquisition frequency, the
IoRT identifier, the Source data, and the formula
for the Filtered data.

2. Then, they specify the Group by and the Continu-
ous query formula.

The identification of technological and data re-
sources available in the application domain involves
both end-users and IT users, and its outcome is nec-
essary at the requirements validation step to confirm
that the continuous queries specified are feasible. We
propose to execute this activity via interviews focused
on sensing devices, computing resources, and commu-
nication network. These interviews are conducted by
IT users, and answered by end-users. When end-users
cannot provide technical details about technology re-
sources and data sources, IT users are in charge of
retrieve them.

Example 1. A farmer needs to monitor the behavior
of an ADAP2E robot in the field to ensure that it re-
spects the planned time scheduling and to check the
air temperature. Specifically, she wants to issue two
continuous queries:

Que.1 Acquire the robot speed every second, filter
erroneous data (marked with the ’-1’ value)
and compute its maximum every 2 seconds on
a window of 2 seconds (fixed-window query),
grouped by farm name. The stream table cre-
ated by the farmer is shown in Figure 2; black
cells are used to mark the times when the
query is not computed.

Que.2 Sense the temperature every second to com-
pute its average over a window with maximum
size 4 seconds (landmark-window query).

As to the identification of technological and data re-
sources, examples of questions asked to end-users
are: “What is the duration of the robots’ batteries?”,
“What kind of devices do you want to use for visu-
alizing data?”, and “What is the speed of the data
connection covering the fields?”. □

4.2 Requirements Analysis

This step, performed by the IT user, aims to build a
model of the continuous queries defined by end-users
at the previous step; it has a crucial importance since
in at this stage the information gathered during elicita-
tion is organized and its consistency is checked. Then,
the following specification will be produced accord-
ing to this model.

To support this step we have defined an ad-hoc
UML profile by extending the profile for IoT data pro-
posed by Bimonte et al. (2023). The representation
of continuous queries given in that work is simplified
and does not enable the query details (e.g., the tempo-
ral window type and the group by attributes) to be ex-
pressed. Therefore, we extend that profile by provid-
ing a detailed conceptual representation of continu-
ous queries based on either fixed, sliding, or landmark
temporal windows. IT users can use our extended pro-
file to translate smart tables into UML class diagrams.
Importantly, these diagrams also show how queries
are related to the data elements used by the applica-
tion, thus providing a global picture of the project.
This enables IT users to check that the continuous
queries are consistent with the other data used by the
application.

The UML profile we propose extends the one by
Bimonte et al. (2023) with the following stereotyped
attributes:

• ≪OutputAttribute≫ represents the values re-
turned by the query and has two tagged values:
Source (which class the value comes from) and
Aggregation (the aggregation operator applied).

• ≪GroupingAttribute≫ represents the attribute(s)
used to group the data. The grouping attribute(s)
can be imported from other classes via the Source
tagged value, then they can be used to establish
the compatibility of the continuous query with the
other data used by the application.

• ≪TemporalWindowAttribute≫ represents the
timestamp used in the temporal window. It can
be either explicit (the data source timestamp) or
implicit (the timestamp of data reception).

A continuous query is also characterized by two op-
erations:

• ≪Generation≫, which models the query compu-
tation frequency with the two tagged values Pe-
riod and TemporalUnit.

• ≪Filter≫, which can model a selection condition
over the input data.

We propose three stereotypes for the different kinds
of temporal windows:

Requirements Engineering for Continuous Queries on IoRT Data: A Case Study in Agricultural Autonomous Robots Monitoring

117



Figure 2: Stream table based on a fixed window.

• ≪ContinousQueryFixed≫ for fixed windows. In
this case, the size of the window is the one of the
Generation operation.

• ≪ContinousQuerySliding≫ for sliding windows.
Here, the tagged values WindowSize and Tempo-
ralUnit define the window size, while the query
frequency is the one of the Generation operation.

• ≪ContinousQueryLandmark≫ for landmark
windows. The tagged values WindowMax and
TemporalUnit model the maximum window size
that can be reached before the window is reset.

4.3 Requirements Specification

To provide a formal specification for continuous
queries, we have implemented a prototyping tool that
simulates the real implementation. Apache Kafka
(https://kafka.apache.org/) is used as a message bro-
ker; in fact, all IoRT applications commonly use mes-
sage brokers to manage the exchange of data between
the devices and the fog/cloud server, and Kafka is to-
day one of the most used systems in all kind of ap-
plications. Kafka relies on two main components: the
data producer, which is responsible of data genera-
tion and sending, and the data consumer, which pro-
cesses the data. In our tool, the input comes from a
JSON file that includes historical data owned by end-
users. The data producer is implemented in Java; it
reads the JSON file and sends the data according to
the frequency defined with the stream table. The con-
sumer is implemented via the Apache Flink streaming
engine (https://flink.apache.org/), a widely adopted
system that implements the continuous queries over
data received by Kafka. The results of these queries
are then sent in input to Kafka. As previously de-
scribed, continuous queries may also use additional,
non-streaming data, therefore a DBMS (PostgreSQL
in our implementation) is also present for their storage
and retrieval. Finally, query results are visualized by
means of Grafana (https://grafana.com/), which can

read and visualize data from Kafka in a simple and
intuitive way so that the end-user can check, during
the following step of requirements validation, that the
query formulated actually matches her/his require-
ment. Note that, although some simulation solutions
for sensors and robots (such as Matlab SimuLink) ex-
ist, they do not rely on the streaming engines and
message broker systems normally used to handle big
data streams. Therefore, an additional advantage of
our prototyping architecture is that of proving that the
continuous queries specified are actually feasible us-
ing commonly-adopted real stream technologies.

On the non-functional side, the available resources
that emerged during the interviews made to IT users
are specified using natural language. In our example,
they are specified as follows:
Res.1 An ADAP2E robot can autonomously move in

the field, while sensing and sending data of dif-
ferent types. The robot speed is sensed and
transmitted every second.

Res.2 The sensors deployed in the field are battery-
based and are able to acquire data and trans-
mit them via Wi-Fi connection. Batteries are
expected to be replaced approximately every
month; however, their duration heavily de-
pends on the frequency of data transmissions.

4.4 Requirements Validation

The first activity performed at each step is related to
non-functional requirements and aims at letting end-
users validate the continuous queries specified. In-
deed, stream data is continuous, and the static visual-
ization provided by stream tables does not really show
end-users what query results will look like. In other
words, stream tables alone cannot be considered as
an effective tool for requirements validation. On the
other hand, the visualization provided by Grafana as
part of the prototyping process described in Section
4.3 is well-suited to this end, since it gives a dynamic

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

118



view based on historical data. As an example, the
Grafana visualization of the results of query Que.1 is
shown in Figure 3.

The second activity to be carried out aims at
checking the feasibility of the continuous queries
against the non-functional requirements specified. In
our example, query Que.1 applied to the robot data
turns out to be feasible, since the amount of data re-
quired can be easily processed either by a simple PC
deployed at the farm or in the Cloud. The same is not
true for Que.2. In fact, Que.2 is not feasible since tem-
perature data is collected by battery sensors, and the
acquisition and sending frequencies required are too
high, which would imply that batteries are changed
too often —while IT users suggested that batteries
should be changed every month. Therefore, Que.2
must be redefined taking advantage of the sensor ca-
pability of computing simple functions such as the av-
erage. Thus, farmers create a new stream table where
the acquired data is the 6-hours average temperature
computed by the sensor. The new query, Que.2bis,
can be stated as “every 6 hours, compute the maxi-
mum of the 6-hours average temperature with a max-
imum window size of 24 hours”. Sending data each 6
hours drastically reduces the number of sending oper-
ations of the sensor, thus significantly increasing the
battery duration.

5 EXPERIMENT

In this section, we present an experiment we have
conducted to evaluate the effectiveness of stream ta-
bles in the requirements engineering process. Ten
robotics engineers with no previous knowledge of
continuous queries have been enrolled. After a 10-
minutes training about how to use stream tables, we
have asked them to design the following sliding-
window query: “Acquire temperature data every hour
to compute, every 2 hours, the minimum temperature
over the last 4 hours, grouped by plot”.

Most users made a single error: they did not use
black cells to show that the computing frequency was
half the acquisition frequency. However, after a brief
explanation of the error, they all were able to correctly
draw the stream table. Thus, all users completed the
task in 2 iterations; the maximum time they employed
was 5 minutes.

We have also asked our users to answer two ques-
tions:
QST.1 Do you think that a stream table is an effective

tool to represent your analytical needs?
QST.2 How difficult is it for you to edit the stream

table template to suit your analytical needs?

As to question QST.1, all users answered yes, giving
a very positive feedback. As to question QST.2, all
users judged the editing of stream tables very easy.

Finally, we have asked our users to evaluate the
benefits of the Grafana implementation via the fol-
lowing questions:

QG.1 Do you think the visualization with Grafana
helps you better understand what the results of
the continuous query will look like?

QG.2 Do you think the visualization can help you
realize that the implemented continuous query
does not actually match your analytical needs?

All users answered positively to both QG.1 and QG.2.
Among the feedback they provided, most users stated
that having the results of their continuous queries on
historical data quickly visualized significantly helps
to keep them actively engaged in the project.

6 CONCLUSION

In this paper we have proposed an approach for
requirements engineering of continuous queries in
IoRT. To this end we have introduced (i) stream ta-
bles as a way to let non-IT end-users communi-
cate their requirements about continuous queries, (ii)
UML stereotypes to precisely model these require-
ments, and (iii) a prototyping tool to let users visu-
alize the results of queries on historical data. Im-
portantly, non-functional requirements in the form of
available resources and data are taken into account at
each step, and used to verify the technical feasibility
of continuous queries.

The results of the preliminary tests made with
some real users suggest that stream tables are a
valuable instrument for the elicitation of continuous
queries, and that the fast prototyping tool based on
Flink and Grafana helps is an effective support to the
specification and validation steps. Our future work on
this topic will be mainly focused on investigating the
use of goal modeling languages, such as i∗, to let non-
functional requirements be analyzed more precisely
and in close connection with functional requirements
(Salcedo et al., 2021).

ACKNOWLEDGEMENT

This work was supported by the French National
Research Agency project IDEX-ISITE initiative 16-
IDEX-0001 (CAP 20-25) and by the European Union
Next - GenerationEU (PIANO NAZIONALE DI
RIPRESA E RESILIENZA (PNRR) - MISSIONE

Requirements Engineering for Continuous Queries on IoRT Data: A Case Study in Agricultural Autonomous Robots Monitoring

119



Figure 3: Visualizing the results of Que.1 with Grafana.

4 COMPONENTE 2, INVESTIMENTO 1.4 - D.D.
1032 17/06/2022, CN00000022). This manuscript re-
flects only the authors’ views and opinions, neither
the European Union nor the European Commission
can be considered responsible for them.

REFERENCES

Aguilar-Calderón, J.-A., Tripp-Barba, C., Zaldı́var-Colado,
A., and Aguilar-Calderón, P.-A. (2022). Requirements
engineering for internet of things (IoT) software sys-
tems development: A systematic mapping study. Ap-
plied Sciences, 12(15):7582.

André, G. et al. (2023). LambdAgrIoT: a new architecture
for agricultural autonomous robots’ scheduling: from
design to experiments. Cluster Computing, 26:2993–
3015.

Bimonte, S., Antonelli, L., and Rizzi, S. (2021a).
Requirements-driven data warehouse design based on
enhanced pivot tables. Requir. Eng., 26(1):43–65.

Bimonte, S. et al. (2021b). On designing and implementing
agro-ecology IoT applications: Issues from applied
research projects. In Proc. EDOC, pages 204–209,
Gold Coast, Australia.

Bimonte, S. et al. (2023). Data-centric UML profile for
agroecology applications: Agricultural autonomous
robots monitoring case study. Comput. Sci. Inf. Syst.,
20(1):459–489.

Costa, B., Pires, P. F., and Delicato, F. C. (2017). Spec-
ifying functional requirements and QoS parameters
for IoT systems. In Proc. DASC/PiCom/DataCom/
CyberSciTech, pages 407–414, Orlando, USA.

Fortino, G. et al. (2018). Agent-oriented cooperative smart
objects: From IoT system design to implementation.
IEEE Trans. on Systems, Man, and Cybernetics: Sys-
tems, 48(11):1939–1956.

Golab, L. and Özsu, M. T. (2003). Issues in data stream
management. ACM Sigmod Record, 32(2):5–14.

Gomes, H. M., Read, J., Bifet, A., Barddal, J. P., and
Gama, J. (2019). Machine learning for streaming data:
state of the art, challenges, and opportunities. ACM
SIGKDD Explorations Newsletter, 21(2):6–22.

Kaleem, S., Ahmed, S., Ullah, F., Babar, M., Sheeraz, N.,
and Hadi, F. (2020). An improved RE framework for
IoT-oriented smart applications using integrated ap-
proach. In Proc. AECT, pages 1–6.

Laplante, N. L., Laplante, P. A., and Voas, J. M. (2016).
Stakeholder identification and use case representation

for internet-of-things applications in healthcare. IEEE
Systems Journal, 12(2):1589–1597.

Laplante, P. and Kassab, M. (2022). Requirements Engi-
neering for Software and Systems. Auerbach Publica-
tions, New York, 2nd edition.

Lim, S., Henriksson, A., and Zdravkovic, J. (2021). Data-
driven requirements elicitation: A systematic litera-
ture review. SN Computer Science, 2:1–35.

Meacham, S. and Phalp, K. (2016). Requirements engineer-
ing methods for an internet of things application: fall-
detection for ambient assisted living. In Proc. BCS
SQM/Inspire Conference, pages –.

Mezghani, E., Exposito, E., and Drira, K. (2017). A model-
driven methodology for the design of autonomic and
cognitive IoT-based systems: Application to health-
care. IEEE Trans. on Emerging Topics in Computa-
tional Intelligence, 1(3):224–234.

Pohl, K. and Rupp, C. (2015). Requirements Engineering
Fundamentals. Rocky Nook, 2nd edition.

Rafique, W., Zhao, X., Yu, S., Yaqoob, I., Imran, M.,
and Dou, W. (2020). An application development
framework for internet-of-things service orchestra-
tion. IEEE Internet of Things Jour., 7(5):4543–4556.

Salcedo, J. A. et al. (2021). Modeling non-functional re-
quirements of a reactive system. In Proc. iStar Work-
shop, pages 15–20, St. John’s, Canada.

Silva, D., Gonçalves, T. G., and da Rocha, A. R. C. (2019).
A requirements engineering process for IoT systems.
In Proc. Brazilian Symp. on Software Quality, pages
204–209, Fortaleza, Brazil.

Silva, D., Gonçalves, T. G., and Travassos, G. H. (2021).
A technology to support the building of requirements
documents for IoT software systems. In Proc. Brazil-
ian Symp. on Software Quality, page 4, São Luı́s,
Brazil.

Silva, E., Fidalgo, R., Ferro, M., and Franco, N. (2023).
Visual query languages to design complex queries: a
systematic literature review. Software and Systems
Modeling, 22:1217–1249.

Simoens, P., Dragone, M., and Saffiotti, A. (2018). The in-
ternet of robotic things: A review of concept, added
value and applications. International Journal of Ad-
vanced Robotic Systems, 15(1).

Sumalatha, M. and Ananthi, M. (2019). Efficient data re-
trieval using adaptive clustered indexing for continu-
ous queries over streaming data. Cluster Computing,
22(Suppl 5):10503–10517.

Zambonelli, F. (2016). Towards a general software en-
gineering methodology for the internet of things.
arXiv:1601.05569.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

120


