
ALASCA: Function-Driven Advanced Access Control for Big Cold Data

Karl Wolf a, Frank Pallas b and Sebastian Werner c

TU Berlin, Information Systems Engineering, Germany

Keywords: Big Data, Cold Data, Cloud Services, Access Control, Privacy, Function as a Service.

Abstract: Large datasets collected over a long time and only accessed on an infrequent basis – called Big Cold Data
herein – play an important role in a broad variety of data-driven applications. In managing such data and
the access to it, implementing advanced access control schemes beyond mere role-based yes/no-decisions
becomes decisive, given the often sensitive or personal nature of the data as well as the multitude of regula-
tory requirements and other constraints applying to it. Current, mostly cloud-based technologies for storing
and managing Big Cold Data, however, lack that advanced access control functionalities, such as consent-
based transformations, while existing approaches for implementing such functionalities do not pay sufficient
regard to the particularities of Big Cold Data to offer efficient access on an infrequent basis. We therefore
propose an architecture and framework (ALASCA) following the function-as-a-service (FaaS) paradigm for
implementing versatile access services on cloud-managed Big Cold Data. Towards that end, we offer a first
characterization of Big Cold Data and raise challenges in access control, specifically in performing custom and
infrequent transformations on large heterogeneous datasets. We demonstrate the applicability of ALASCA by
implementing and evaluating it for AWS and Google Cloud. Our preliminary evaluation shows the promise
and practical applicability of FaaS-based access control, especially for advanced access control schemes to be
applied to Big Cold Data.

1 INTRODUCTION

Big Cold Data – large datasets accessed on a rather in-
frequent basis – play an increasingly important role in
usecases such as interactive ad-hoc analysis or audits.
At the same time, respective data are in many cases
of personal or otherwise sensitive nature and must be
effectively protected from illegitimate access. More-
over, such data are collected over many years and thus
often subject to a wide variety of usage rights and ac-
cess policies that require careful attention. In partic-
ular, access must often be restricted or provided de-
pending on the pursued purpose, individual consent
provided by the person(s) the data refers to, or other
factors characterizing the accessing party. Thus, ac-
cess to big cold data must deal with the longevity of
stored data and related polices and the inherent uncer-
tainty of using data legitimately.

Here, existing advanced access control schemes
going beyond simple, established role-based models
– such as (conditional) purpose-based (Agrawal et al.,
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2002; Kabir and Wang, 2009), consent-based (Ul-
bricht and Pallas, 2018) or attribute-based access con-
trol (Hu et al., 2014) – become increasingly rele-
vant for addressing regulatory and business require-
ments. In addition, prevalent usecases building upon
Big Cold Data often call for access control models
encompassing on-access transformations that gener-
ate individualized views on the same data, taking into
account historic polices, original collection purposes,
and stored user consent. Cloud platforms, being the
dominant infrastructure for hosting and providing Big
Cold Data, already come with rudimentary, typically
role-based access control capabilities but do not pro-
vide these functionalities out of the box. Advanced
access control schemes capable of ad-hoc transforma-
tion must therefore be implemented separately on top
of existing cloud datastores such as AWS S3, Google
Cloud storage, etc. This, in turn, raises a hard-to-
resolve conflict:

On the one hand, advanced access control
schemes, especially those providing capabilities for
complex data transformations, require substantial
computational power in order to not introduce inap-
propriate roadblocks. On the other hand, Big Cold
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Data are inherently characterized by rather infrequent
(or “sparse”) access patterns, rendering computation-
ally powerful and always-active access control sys-
tems economically inefficient in phases of non-usage.
Cold standby models with such systems being started
on-demand, in turn, would introduce overly long
response times and thereby contradict the service-
oriented and ad-hoc-focused nature of Big Cold Data.
Established approaches of dedicated, high-throughput
enforcement points, therefore, prove wasteful in the
context of big cold data.

To resolve this tension and to thereby foster the
practical adoption of usecases employing Big Cold
Data in line with non-trivial privacy and security re-
quirements, we propose a function-driven, extensi-
ble model and system architecture for implementing
advanced access control schemes on Big Cold Data
in a scale-to-zero fashion. This approach allows to
rapidly scale computational power in the case of ac-
cess actually happening, while reducing wasted costs
in times without data access. We provide a prototyp-
ical, generic implementation – ALASCA – and two
ready-to-use provider-specific instantiations for both
S3 buckets on AWS and Google Cloud Storage, two
of the most widely used stores for Big Cold Data. In
particular, we herein propose and contribute:

• A foundational characterization of the concept of
Big Cold Data and a set of specific challenges
arising with regard to access control

• Our Adaptive, serverLess Architecture for Scal-
able, Content-level Access-control – ALASCA – a
modular, advanced access control and data trans-
formation reference architecture and implementa-
tion framework particularly tailored to the char-
acteristics of FaaS platforms, thereby combining
the capacity to handle bursty ad-hoc access with
scale-to-zero capabilities

• Prototypical instantiations for two major cloud
platforms, namely AWS and Google Cloud, and
their experimental evaluation to assess the practi-
cal feasibility of FaaS-based advanced access con-
trol for Big Cold Data in a realistic usecase.

Our prototypes implement computationally heavy
conditional consent-based access control and com-
plex data transformations leveraging one of many
possible policy languages – YaPPL (Ulbricht and Pal-
las, 2018). Our instantiations are thoroughly tailored
to respective platform-specific particularities and de-
sign options following platform-standards for imple-
menting big data access, i.e. using platform-provided
identity management services. A preliminary evalua-
tion for our prototype confirms the practical viability
and cost-efficiency of our approach.

Section 2 briefly lays out and discusses related
work. Section 3 characterizes the concept of Big
Cold Data and identifies a set of specific challenges
to be solved in this context with regard to implement-
ing advanced access control schemes. Section 4, in
turn, presents ALASCA, our FaaS-tailored reference
architecture and implementation framework, which
is transferred into the prototypical instantiations and
their evaluation in section 5. Section 6 concludes.

2 RELATED WORK

Relevant related work particularly exists in the ar-
eas of access control for cloud-hosted object stores,
of advanced access control schemes, and of FaaS-
based data transformations. Regarding access con-
trol for cloud object stores, providers typically of-
fer their own IAM, Access Control, and sometimes
content-based querying solutions1. These are by def-
inition well-integrated and fast, but severely limited
in the complexity and functional scope (e.g., regard-
ing content-based access control) of their policies and
result in lock-ins with respective cloud vendors. Pre-
existing alternative approaches (Sampe et al., 2016;
Saiz-Laudo and Sánchez-Artigas, 2022) allow the use
of user-defined functions for more potent policy en-
forcement – including on the content level – but rely
on users setting them up and scaling them manu-
ally rather than seamlessly supporting existing data
in cloud storage.

In matters of advanced access control schemes,
which are particularly necessary for Big Cold
Data (see section 3.3), relevant paradigms include
attribute-based / ABAC (Hu et al., 2014), purpose-
based / PBAC (Byun et al., 2005; Agrawal et al.,
2002), and consent-based access control / CBAC (Ul-
bricht and Pallas, 2018) as well as their conditional
(Kabir and Wang, 2009) and content-based (Saiz-
Laudo and Sánchez-Artigas, 2022) variants. Some of
these have successfully been integrated into different
system classes, from databases (Agrawal et al., 2002;
Colombo and Ferrari, 2017) over publish-subscribe-
systems (Wolf et al., 2021) to application-layer ORMs
(Pallas et al., 2020). A dedicated focus on or a
conscious, systematic, and coherent integration with
cloud-hosted object stores – let alone an adaptation to
the specifics of Big Cold Data – is, however, lacking.

Lastly, FaaS-based data transformations are in-
creasingly proposed and used for conducting ad-hoc
data analysis (Werner et al., 2018) and exploration
(Müller et al., 2020), especially on rarely accessed

1e.g. AWS IAM, Google Cloud IAM, S3 Select
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data. To the best of our knowledge (and some-
what surprisingly), however, approaches for adopting
the same concepts for implementing advanced access
control schemes for Big Cold Data – particularly in-
cluding data transformations – have not been made
yet. The recently proposed EGEON (Saiz-Laudo and
Sánchez-Artigas, 2022) employs user-defined policy
functions, but does not leverage FaaS solutions. In-
stead, it is designed for self-hosted OpenStack Swift
rather than utilizing public cloud services. Media-
focussed transformations on the edge have been dis-
cussed as privacy measures, but target streamed data
rather than object storage (Sedlak et al., 2023a).

3 BIG COLD DATA

This section defines the concept, characteristics, and
challenges involved in managing access to Big Cold
Data. To achieve this, we first present a usecase that
exemplifies the characteristics of Big Cold Data be-
fore discussing the related access control challenges.

3.1 Motivational Usecase

Some of the most striving challenges for banks today
relate to money laundering and fraud. In addition to
mere know-your-customer rules, banks are obligated
to identify and prevent respective activities. To meet
these obligations, automatic detection systems pro-
cess the vast amounts of transaction data generated
every second (Carcillo et al., 2018), e.g., comparing
new transactions to historical data to detect anoma-
lies. However, due to the inherent limitations of auto-
mated systems, human operators must often manually
re-analyze or investigate suspicious transactions.

This analysis requires access to historical transac-
tion data, which may be stored in various outdated
formats, due to the longevity of Big Cold Data. More-
over, investigations also include personal and sen-
sitive payment data from customers, which is sub-
ject to complex policies dictating how and for what
purpose it can be analyzed. Additional data, such
as surveillance videos from ATMs, may be neces-
sary in rare cases. The data to be processed is thus
heterogenous and often provided through legacy in-
terfaces alone (and possibly requiring legacy policy
evaluation), calling for easily adaptable data (access)
pipelines. At the same time, the inherent bigness of
the data to be processed raises requirements in matters
of performance and scalability for the access control
mechanism to be used. This is particularly the case
when transforming the data is a requisite of accessing
it while at the same time, interactive analysis by an

operator requires a reasonable response time. Finally,
using specialized tools should ideally work regardless
of whether an object storage is accessed directly or
through an additional access control layer, i.e. any ad-
ditional access control solution should work with ex-
isting clients by preserving the original storage’s API.

For data stored in cloud object storage, access
policies can basically be specified and enforced
through the cloud providers’ individual IAM offer-
ings. These are, however, severely limited with re-
gard to legacy or complex policies and cannot per-
form transformations on the data. More powerful and
versatile solutions, on the other hand, are subject to
the above-mentioned conflict between economic effi-
ciency and viable responsiveness. We thus need an
access control layer that is both flexible and power-
ful and at the same time integrates seamlessly into
existing heterogeneous cloud applications in a cost-
efficient, yet responsive fashion.

3.2 Characteristics of Big Cold Data

Departing from the use case, we can grasp a set of
characteristics of Big Cold Data particularly shaping
the arena for respective access control mechanisms.
First and foremost, Big Cold Data can be considered a
subset of Big Data, which has traditionally been char-
acterized by the five Vs (Kaisler et al., 2013). Beyond
these, however, we identify the following additional
characteristics of Big Cold Data that any proposed ac-
cess control mechanism must take into account.

Heterogeneity. Big Cold Data comes from diverse
and vast sources with varying data structures and
formats, making data integration and analysis
challenging. As a result, the data may not be in a
suitable format for modern tooling or may require
legacy systems to filter and process them. Capa-
bilities for flexibly adapting to said legacy systems
are thus of crucial importance.

Longevity. Big Cold Data is typically collected and
stored for a long period, often for decades, with
the intention of being used for historical analysis.
However, due to this longevity, access and storage
policies may vary based on the time of collection.
This necessitates capabilities for data transforma-
tion and filtering due to the very heterogeneous
data access policies that have grown over time.

Complexity. Big Cold Data may originate from a va-
riety of sources, countries, time periods, modes of
collection, and formats. Associated metadata may
also be incomplete, inconsistent or outdated. To-
gether, this introduces significant complexities to
the actual use of such data.
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Uncertainty. The type and purpose of later use of
and access to Big Cold Data are often unpre-
dictable in advance. This makes it intrinsically
difficult to formulate conditions of use at the time
of data collection.

In summary, Big Cold Data exhibits a unique set
of characteristics and challenges arising thereof. Un-
derstanding these helps developers establish strategies
for effectively analyzing and utilizing Big Cold Data
in practice. This also applies to ensuring compliance
with legal and regulatory standards and, hence, to the
design and implementation of proper access control
mechanisms:

3.3 Access Control Challenges of Big
Cold Data

The challenges of access control in Big Cold Data
are related to those present in Big Data, such as
fine granularity, context management, and efficiency
(Colombo and Ferrari, 2019). However, due to the
longevity, heterogeneity, complexity, and uncertainty
characteristics, additional challenges arise for access
control, especially when considering the management
of access to personal or otherwise sensitive data. In
the following, we therefore elaborate on the unique
set of traits that emerges for access control in Big
Cold Data. Each of these is given a separate identi-
fier (C:XX) for later reference.

Policy Variety (C:PV). Resulting from Big Cold
Data’s heterogeneity and complexity characteristics,
the policies to be applied to these data are typically
highly variant. Especially with unstructured data,
they might also depend on the content of the data. In
the example of fraud analysis, a log of payments may,
for instance, contain data referring to many different
parties with individual protection requirements, e.g.,
private citizens, international companies and federal
institutions. In addition, combining data from differ-
ent users (which, as data subjects, could express indi-
vidual preferences under regulations such as the Eu-
ropean General Data Protection Regulation / GDPR),
different countries of origin (with their own legisla-
tions), and different times of collection (likewise re-
sulting in different access policies) increases policy
variety further. This, in turn, implies that the access
policies to be applied are not only heterogeneous but
also complex and dynamic, requiring developers to
retrieve, attach and enact a broad variety of policies
properly.

Diversity of Access Factors and Contexts (C:Ctx).
Different parties accessing the same data with differ-
ent purposes and in different contexts is one of the
core implications of the above-mentioned longevity
and uncertainty characteristics. In many scenarios,
the mere role of the accessing party will here not be
sufficient for proper access decisions. Instead, fac-
tors such as the subject, purpose, object (i.e., the
file being accessed), action (e.g., reading, writing),
and environment (e.g., time of access or type of de-
vice being used) must be considered in the access
decision-making process. Moreover, access needs to
be grantable or deniable in a granular fashion – e.g.,
only allowing access to specific columns or fields
within the data – and transformations (see below) may
be mandatory for certain combinations of subjects,
purposes, and data content. For example, analyzing
payment data may only be legitimate for very specific
purposes and under specific protection settings, such
as teams operating only from a dedicated office.

Computationally Heavy Policy Resolution
(C:Res). Big Cold Data stores typically han-
dle large amounts of data. Combined with the
complexity characteristic as well as the policy variety
and diversity of access factors, computing ultimate
access decisions can be very resource-intensive. This
becomes particularly evident given that Big Cold
Data often requires content-based access control
strategies where the content of the data needs to be
scanned to determine an access decision. In conse-
quence, being able to provide sufficient resources for
resolving (complex and content-based) policies in an
ad-hoc fashion and on-access becomes critical.

Specifying and Applying Complex Transformation
Policies (C:Tr). In order to comply with require-
ments and constraints of complex data sets, non-trivial
data transformations may be necessary on top of mere
policy resolution. This could mean omitting some
records (e.g., rows or columns of a CSV file), but
more complex (and request-specific) transformations
– such as redacting, anonymizing, or aggregating the
data – can also be employed to make data usable that
could otherwise not be utilized in a compliant way
(Pallas et al., 2022). Depending on the transforma-
tions at hand, this requires the system to not only
have the necessary execution performance, but also
the foundational possibility to specify and program
such policies including complex transformations. As
for our usecase, anonymization may, for instance, al-
low data to be analyzed that would otherwise be un-
usable for fraud detection.
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Evolving Policies (C:Ev). While our usecase is
primarily aimed at cold data, requests may very well
include “fresher” data as well, e.g., in the scenario
of a bank operator comparing very old with cur-
rent financial transactions. Additionally, even if the
data itself stays unchanged, uncertainty regarding
changes in regulations, environment factors, and ac-
cess policies themselves may necessitate a continu-
ous re-evaluation of the data in order to make correct
access decisions. The system must thus evaluate ac-
cess policies and data content dynamically and per-
form transformations or enforcement actions ad-hoc
and on-access.

In addition to these general challenges, the ba-
sically unavoidable performance overheads resulting
from any advanced access control system must stay
within reasonable boundaries and the system to be
proposed should integrate with existing cloud object
stores as seamlessly as possible. Only then will many
basically desirable usecases for Big Cold Data actu-
ally be practical to implement.

4 ALASCA

Based on the identified characteristics of Big Cold
Data and the specific challenges in matters of imple-
menting access control for such data, we see the need
for an approach that is 1) adaptable to many access
control needs (C:PV, C:Ev, C:Ctx), 2) highly scal-
able to react to different needs, particularly including
bursty access patterns (C:Tr, C:Res); and 3) works
well with off-the-shelf cloud resources. We thus pro-
pose an Adaptive serverLess Architecture for Scal-
able Content-level Access control (ALASCA), which
is a set of policy-language agnostic, FaaS-optimized
components explicitly designed for flexible integra-
tion into existing cloud architectures.

Basically, ALASCA consists of three main com-
ponents, which are reflecting respective components
from the XACML architecture (OASIS Standard,
2013): The policy enforcement point, a policy re-
trieval component, and a number of transformation
components. The architecture does not specify how
(or if) these components translate into and/or dis-
tribute across multiple functions, offering a high de-
gree of implementational flexibility. Splitting func-
tionality across different functions enables higher par-
allelization, but comes at the overhead of additional
data transfers and cold starts. In section 5, we
show a minimal example deployment that uses core
ALASCA functionality in a single function, while
keeping additional transformations (such as a dedi-
cated anonymyiation tool) and policy needs (such as

connecting to existing policy infrastructures) in sep-
arate functions. Below and in fig. 1, the individual
components and their interplay are illustrated in the
context of a typical access request flow.

Client Request and Policy Enforcement Compo-
nent. A client requests a file from an object stor-
age (1), either through plain HTTP or through a ded-
icated client library, such as for S3. It can option-
ally be authenticated using the cloud providers exist-
ing IAM and forced to use the ALASCA access point
instead of directly accessing the storage. The access
point is the API endpoint the client interacts with. It
may be implemented either through indirection (e.g.,
using AWS’s capabilities for having multiple access
points to the same storage) or through a custom API
implementation.

Object stores have their own API which can be
used either via direct REST calls, through a provider-
given client library, or using a plugin for another ap-
plication or framework. Here, an important design de-
cision regards how additional context as required for
implementing advanced access control functionality ,
e.g., the access purpose, context-specific attributes –
see C:Ctx, is to be provided. For clarity and easier
setup, passing such information (as well as additional
configuration options) directly per request would be
beneficial. This would, however, render the API in-
compatible with the original ones, thus significantly
hindering adoptions of clients that so far used the ex-
isting object storage APIs. Alternatively, respective
information can be provided indirectly, e.g. through
encoding it via different access points or file names.
This would keep the API intact and make the system
work as a transparent proxy, albeit at the expense of
clarity and ease of maintenance.

The access point passes the request to the pol-
icy enforcement service, acting as the foremost point
of orchestration and as policy enforcement point. It
serves as both the input and output: it is called with
the respective parameters (requested file, requesting
entity, and its context) and at the end of the process
serves either the requested file, a transformed version
thereof, or an “access denied” response. If access is
(at least partially) granted, the system pulls the re-
quested object from the specified object storage (3).
Here, it is a specificity of advanced access control
paradigms that it may be necessary to request the file
before making an access decision – e.g. when it must
be determined which data subjects are affected and,
consequently, which policies are to be applied (see
C:Res).

In order to implement such content-aware access
control efficiently, the data may be split (4), typically
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Figure 1: General architecture and request flow of ALASCA.

per data-subject as specified in the context. Assume,
as a running example, that data subjects in a CSV file
comprising financial transactions are denoted by an
ID in a given column. For further content-aware treat-
ment, data can then be split by this ID.2 Each part
of the data is now called a data slice. Depending on
the chosen implementation and the configuration, all
slices may then be handled within the core function
or by additional functions called in parallel for each
data slice.

Policy Retriever. For each slice, one or more
policies are then fetched and evaluated (5). The
system can have a multitude of policy retrievers
that fetch policies on-the-fly (C:Ev) from different
sources (C:PV). Policy retrievers may simply access
a database or file, or perform more complex requests
to external systems, potentially requiring some sort of
authentication themselves. Each policy may contain
one or more authorizing conditions based on which
access is allowed. Depending on the access control
paradigm to be implemented, these can refer to pur-
poses, utilizers, context attributes, etc.

Transformation Service(s). In addition to mere
yes/no-decisions, advanced access control schemes
often also comprise the possibility to specify trans-
formations to be applied on the data before releas-
ing it (C:Tr). If present in an access policy, re-
spective specifications and the data to be transformed
are handed over to the transformation function (6).

2Other examples may include separating the data by re-
gions or splitting a media file.

Whether a single function performs all transforma-
tions or transformations are distributed over multiple,
e.g., per-slice functions is again subject to the overall
ALASCA implementation.

The transformations themselves can serve various
goals, ranging from confidentiality or privacy require-
ments to the provision of optimized views on existing
data for the requesting party. In the most simple case,
transformations might be mere selection or projection
processes, i.e. only returning certain rows or columns.
Further cases might require the redaction of individ-
ual fields (e.g., depending on individual consents pro-
vided by different data subjects covered in a dataset),
more complex computations (such as for introducing
differential privacy or other statistical operations) or
to aggregate and generalize selected fields (for in-
stance, to achieve guarantees such as k-anonymity).
Other, non-privacy transformations might change data
formats or offer additional data for a requested file, or
filter the data according to a request in order to re-
duce the communication overhead. Finally, for non-
text or even media objects, specific transformations of
arbitrary computational complexity may be necessary,
such as detecting and blurring all or specific faces in a
photo or video. All transformations are usually called
within the framework, but for highly specific oper-
ations (e.g. video-related changes or complex algo-
rithms to achieve a given k-anonymity) or for perfor-
mance reasons, individual transformations may also
be located in a separate function (6b), potentially sup-
plied by a 3rd party.

Completion. When all transformations are finished,
the data slices are re-merged (7), preserving the initial
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structure as much as possible. Finally, the data is then
sent to the client (8), again mimicking the behavior
of the original object storage as much as possible. In
case of a completely denied request, the client is given
an error response.

5 PROTOTYPICAL
IMPLEMENTATION &
EVALUATION

In order to demonstrate and evaluate the viability of
the proposed architecture and its practical applicabil-
ity in different cloud settings, we provide a twofold
prototypical implementation: First, we implemented
a Python-based general ALASCA framework that
evaluates YaPPL policies (Ulbricht and Pallas, 2018)
(other, even multiple, policy languages could easily
be integrated, too) to provide Consent-Based Access
Control and applies data transformations specified
therein, using the pandas data analysis library. Sec-
ond, we developed two vendor-specific instantiations
consciously tailored to the specifics of different cloud
platforms – Amazon AWS and Google Cloud Plat-
form – that allow ALASCA to be used with minimal
integration effort. The general ALASCA framework
is implemented in line with the component / function
structure laid out in section 4 and the code is pub-
licly available for further refinement, extension and
adoption.3 The most important details of the vendor-
specific instantiations are delineated below, followed
by a preliminary experimental assessment substanti-
ating the practical viability of our approach.

5.1 Amazon Web Services (AWS)

AWS offers cloud object storage (S3) and a FaaS plat-
form (lambda), but also allows to create access points
that run the requested data through one or more spec-
ified functions: Object Lambda Access Points.4 This
enables a fully transparent access model towards an
S3 bucket where instead of the bucket, the function
is called with the requested file as a parameter (as
shown in fig. 2). In this model, the API stays iden-
tical to that of S3. Notably, all existing IAM settings
of AWS are available for these access points as well,
allowing to leave established authorization measures
in place. The downside of such a fully transparent
API is that additional context information relevant for

3ALASCA Code: https://github.com/PolarFramework/
alasca

4https://docs.aws.amazon.com/AmazonS3/latest/
userguide/olap-create.html

request with context

Additional
Transformations
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Fetching Function

Policies in
DynamoDB

request raw data

Supporting Access
Point

requests without 
context (pure S3)

Anomaly
Detection

Tax Statistics Manual
Fraud Analysis

S3 Bucket
ALASCA Main

Function

(optionally)
 parallelize data slices

Context-defining
Object Lambda
Access Points

Figure 2: AWS Deployment: Function accessed through
AWS’ built-in Object Lambda Access Points.

access control – such as the access purpose or uti-
lizer – cannot be passed per request but must be re-
flected as combination-specific access points. For in-
stance, an external vendor accessing the same data
for multiple purposes, which in turn allow them ac-
cess to different subsets or transformed variants of
that data, requires an access point for each purpose.
While creating an access point has no cost, when deal-
ing with a high number of access-relevant parameters
and combinations thereof, a high number of access
points is required, giving rise to significant setup over-
head. This requires the automation of access point
creation, which can happen through an infrastructure
as code approach such as AWS’ own CloudForma-
tion or SAM, allowing the creation of access points
through a configuration file. We employ the latter in
our prototype: The given template supports the de-
ployment of both the relevant functions and access
points for each access scenario. The access context is
– together with other configuration options to be pro-
vided to ALASCA’s core components (such as trans-
formation and parallelization strategy) – given as ac-
cess point payload.

5.2 Google Cloud Platform (GCP)

Google Cloud Platform provides object storage and
functions, but currently has no feature comparable to
Object Lambda access points. Therefore, we did in
this case integrate ALASCA as a regular function that
needs to be called directly with parameters being pro-
vided in the query string. As opposed to the Object
Lambda approach used for AWS, this implies a loss of
API compatibility and prevents a transparent drop-in
use of ALASCA with pre-existing solutions expecting
a Cloud Storage endpoint (see fig. 3), but can provide
additional flexibility for, e.g., an analyst performing
tasks in different contexts. For usecases requiring
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Figure 3: GCP Deployment: Function can be called directly
or through a proxy endpoint.

seamless integration – e.g. for an automated service
relying on the exact Google Cloud Storage API –
we also implemented a separate REST endpoint with
a compatible API. This endpoint is then again de-
ployed once per parameter combination using Exten-
sible Service Proxy (ESP)5 and redirects all traffic to
the above-mentioned cloud function together with the
necessary parameters. The wrapper, however, does
currently not support GCP’s advanced authentication
and authorization functions, making AWS the more
potent deployment for cases that require both cloud
IAM features and a transparent API.

For both deployment scenarios – with regards to
the use case at hand – the core ALASCA components
(policy enforcement, retrieval and transformation ser-
vices, as in fig. 1) are placed in a single core function
in order to minimize transferring overheads for basic
cases. The function can access additional transfor-
mations and policy retrievers. In the prototype, the
policies are retrieved from native cloud vendor offer-
ings: AWS DynamoDB and GCP FireStore respec-
tively. The function can call itself for parallel pro-
cessing of data slices where appropriate, deliberately
reusing the same function to mitigate cold starts.

5.3 Evaluation

As the imposed performance overhead is a deci-
sive factor for the actual practical applicability of
ALASCA, we conducted initial performance exper-

5In fact, the actual setup is even more complex and
follows a well-established deployment pattern, compris-
ing an API auto-generated from an OpenAPI schema,
the respective API configuration then being retrieved
back and then baked into a docker image, which is
lastly deployed to Google’s image registry. For de-
tails, see https://cloud.google.com/endpoints/docs/openapi/
set-up-cloud-functions-espv2

iments for both instantiations, also evaluating the im-
pact of factors such as concurrency. To properly
assess where observed overheads emanate from and
how different factors impact the respective relations,
we used two baselines in our experiments: first, a di-
rect call to the object store (i.e. AWS S3 and Google
Cloud Storage) and second, a modified version of our
main guarding function that simply passes through
the data without making any additional calls to fetch
policies or perform any transformations. The sec-
ond baseline thereby allows to assess the general in-
tegration overhead of our approach, while compar-
ing actual enforcement functions to this second base-
line provides insights about the impact arising within
the ALASCA framework. Besides, all experiments
were conducted in line with established practices of
security- and privacy-related performance measure-
ments (Pallas et al., 2020), comprising a warm-up
phase before each experiment run, sufficiently sized
client machines, etc.
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Figure 4: Throughput of ALASCA vs. object stores vs.
passthrough.

As the goal was mainly to test the approach it-
self rather than the cost of individual transformations,
we assume a basic scenario from our use case: A
bank officer accesses old payment data for analysis,
but is not allowed to see all details of said data (pre-
cise location and full IP as well as precise amount
of the payment), resulting in some of the data being
transformed before being returned. The data is pro-
vided in different CSV files containing between 5k
and 64k payment data items referring to 10 different
user IDs. As for the transformations, we used a re-
alistic combination of redactions, including the indi-
vidual manipulation of strings as well as the addition
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Figure 5: Effects of different function configurations and
use of concurrent requests.

of noise based on statistical properties of the dataset
that would be unfeasible with a simplistic row-by-row
transformation strategy. Notably, the transformations
do not significantly reduce the amount of data to be
transferred. For further access scenarios, the transfor-
mations themselves could very well be more complex
and thus lead to much higher performance degrada-
tion than in this setup. Still, we are mainly interested
in the general overhead of ALASCA’s approach and
not in that of different transformations, which are in-
herently application-specific. Throughput was mea-
sured using a custom measuring script (provided in
the repository), which concurrently called a given tar-
get for a given period of time, similar to a tool like
Apache Bench (ab).

Initial results are visualized in fig. 4: Directly
accessing the object stores (S3 and GCS, respec-
tively) obviously has the highest throughput, with
the difference to accessing the same data through a
passthrough function being significant (at 32k item-
s/file: 70% throughput loss for GCP, 29% for AWS).
Given the unavoidable computational efforts for de-
and re-serialization, this was expectable. The actual
transformation then adds additional overhead, reduc-
ing throughput by another ∼70% compared to the
passthrough case functions for both, AWS and GCP
(with 1GB RAM). Figure 4 further shows that for
larger objects with more items, the relative overhead
becomes smaller, suggesting that the performance hit
introduced through the functions is at least partially
static.

Not surprisingly, function setups with more RAM
(and in both cloud providers more vCPUs in con-
sequence) performed significantly faster (see fig. 5);

the function deployed with 128mb RAM cannot pro-
cess the 64k items on AWS, while on GCP the small-
est function had an error rate of 50 percent for both
32 and 64k items. Functions provisioned with more
memory did not show any errors within the experi-
ment, although it is to be expected that they in turn
have an inherent object size limit as well. Choos-
ing the right function size is thus a trade-off be-
tween performance and cost, with a minimum re-
quirement to ensure proper functioning and with the
exact values foreseeably depending on the data and
the planned transformations. The effect of parallelity,
in turn, is also illustrated in fig. 5: performing con-
current requests only slightly slows down the achiev-
able throughput per client (sometimes within measur-
ing uncertainty), meaning that fetching multiple ob-
jects in parallel allows for scaling overall data acqui-
sition speed. These observations show that the or-
ganization of data has a high impact on the perfor-
mance of ALASCA and, most importantly, demon-
strate ALASCA’s capability do actually handle bursty
loads in the intended, scalable fashion.

Evaluating ALASCA’s cost as compared to an
always-on access control and transformation service
naturally requires consideration of the nature and
number of requests. With requests as performed in
the above experiment, a request uses between 1 and
2 GBs on Lambda, making the serverless approach
cheaper than AWS’ cheapest EC2 VM for all cases
with less than 100k requests per month (which would
still amount to 138 requests per minute and, thus,
more than sparse access).

5.4 Discussion

The evaluation demonstrates ALASCA’s general
functionality and confirms that it scales elastically and
provides – given that no particular optimizations were
done so far – reasonable performance. We also find
that ALASCA proves to address the aforementioned
challenges of Big, Cold Data well: The prototype
uses YaPPL, focussing on user consent, purpose and
transformations, allowing for a broad set of policies
(C:PV), which can be tailored to even individual parts
of a dataset (C:Ctx). The fact of different individu-
als being included and leading to different, content-
dependent, and in themselves complex YaPPL poli-
cies being applied also illustrates ALASCA’s viabil-
ity for cases requiring computationally heavy policy
resolution (C:Res). Especially in Big Cold Data
scenarios with long periods of non-usage, the perfor-
mance overheads will in most cases be outweighed
by ALASCA’s scale-to-zero capabilities and flexibil-
ity and, not to forget, the gained possibility to com-
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pliantly use certain data at all. Through the use of
FaaS, an unlimited variety of transformations, po-
tentially including externally provided ones, can eas-
ily be applied to existing cloud data stores (C:Tr).
On the other hand, ALASCA is also subject to some
FaaS-inherent limitations such as overheads cumulat-
ing with a rising number of involved functions. Sim-
ilarly, size or runtime limits may impact the main
coordinator function when using synchronous client
requests. This could partly be mitigated by caching
some of the transformed data, even though this would
impact ALASCA’s capabilities for reacting to chang-
ing policy requirements (C:Ev) through purely ad-
hoc request handling.

Some of these challenges are implementation-
specific and could be mitigated through further opti-
mization, while others are inherent to the chosen gen-
eral approach and must be seen as unavoidable down-
sides of a highly flexible framework addressing the
specific needs of Big Cold Data.

6 CONCLUSION AND FUTURE
WORK

ALASCA proposes a flexible, FaaS-driven architec-
ture that allows fine-grained advanced access con-
trol and transformations on general object storage and
was shown to work with two major cloud providers.
It allows an arbitrary amount of cold data to be ac-
cessed whilst undergoing complex transformations in
accordance with user preferences, legal obligations or
compliance guidelines through fine-grained, content-
aware access policies at no up-front or standby costs.
Insofar, ALASCA provides a highly flexible and prac-
tically viable approach for implementing advanced
access control, especially for Big Cold Data.

Still, ALASCA’s current, prototypical implemen-
tation also exhibits some framework and platform-
driven limitations (Werner and Tai, 2021). Espe-
cially with regard to the performance, we feel further
work is both necessary and promising, such as done
in (Müller et al., 2020; Eismann et al., 2020). Try-
ing to leverage vendor-specific functionalities such as
S3 Select appears as one valuable path here. Sim-
ilarly, exploring alternative implementation patterns
(e.g., also allowing for an asynchronous use) as well
as exploring (domain-specific) access patterns, nec-
essary transformations, and other application require-
ments will also unlock further potentials for optimiza-
tion and functional extension. Furthermore, adapt-
ing ALASCA for non-cloud FaaS environments like
OpenWhisk could also yield further interesting in-
sights. In matters of cost-efficiency, ALASCA’s su-

periority over powerful and always-active access con-
trol systems remains to be further quantified. Like
for any other FaaS-based practice, however, we ex-
pect this superiority to become particularly prevalent
in scenarios and environments shaped by infrequent
access and usage patterns as given the domain of Big
Cold Data.

For the time being, however, we herein demon-
strated that and how a function-driven approach can
be used to flexibly implement advanced access con-
trol paradigms in a way particularly tailored to the
specific characteristics of Big Cold Data. Given
that such advanced access control mechanisms are
increasingly required in real-world usecases (Sed-
lak et al., 2023b) but not yet supported by cloud
providers, our work thereby paves the way for practi-
cally implementing a broad variety of usecases at all.
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