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Abstract: Due to the use of planning and control systems and the integration of sensors in the material flow, a large 
amount of transaction data is generated by logistics systems in daily operations. However, organizations rarely 
use this data for process analysis, problem identification, and process improvement. This article presents a 
knowledge-based, data-driven approach for transforming low-level transaction data obtained from logistics 
systems into valuable insights. The procedure consists of five steps aimed at deploying a decision support 
system designed to identify optimization opportunities within logistics systems. Based on key performance 
indicators and process information, a system of interdependent effects evaluates the logistics system’s 
performance in individual working periods. Afterward, a machine learning model classifies unfavorable 
working periods into predefined problem classes. As a result, specific problems can be quickly analyzed. By 
means of a case study, the functionality of the approach is validated. In this case study, a trained gradient-
boosting classifier identifies predefined classes on previously unseen data.  

1 INTRODUCTION 

Internal logistics processes link individual operations 
in production and logistics systems and have a 
significant impact on the competitiveness of 
companies. In response to the increasing complexity 
of logistics processes and dynamic economic 
conditions, it has become imperative to implement 
digital process control and intelligent monitoring 
(Schuh et al., 2019). Large amounts of data from 
various information systems are generated in daily 
operations (Schuh et al., 2017). During the execution 
of transfer orders, transaction data that documents the 
process flow is created and temporarily stored. 
Nevertheless, this data is rarely used to continuously 
analyze processes and gain further insights. The main 
reason is the low data integrity, and its improvement 
requires a high level of domain knowledge when 
implementing data-driven approaches (Schuh et al., 
2019). Thus, a coherent approach is required to create 
value based on logistics process data.  

The approach presented is described by a 
procedural model to gain insights from transaction 
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data. Its goal is to analyze transaction data to identify 
weaknesses in internal logistics processes. Based on 
the results of this approach, recommendations for 
process improvements can be made. The approach’s 
foundation is an automated calculation of relevant key 
performance indicators (KPIs) as well as the 
determination of process information. By comparing 
actual and target system performance, as well as 
benchmarking the historical top performance of a 
logistics system, the potential for optimization can be 
identified. These low-performing working periods are 
classified into predefined problem classes using a 
machine learning (ML) model. As a result, operators 
of a logistics system are provided with located 
weaknesses, facilitating the identification of the 
underlying root causes. Thus, the following research 
question (RQ) is to be addressed: 

RQ: How can a knowledge-based, data-driven 
decision support procedure be designed to 
automatically identify weaknesses in internal 
logistics systems based on transfer orders and 
transaction data? 
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The article is structured as follows. Section 2.1 
presents the fundamentals of data science (DS) and 
approaches of knowledge extraction from data. 
Section 2.2 describes the relevant state of the art in 
data-driven process optimization. Section 3 outlines 
the five phases of the approach. The approach is 
validated using a case study in Section 4. The article 
ends with a discussion (Section 5), a conclusion, and 
an outlook (Section 6) for further research activities. 

2 RESEARCH ADVANCES 

2.1 Extracting Knowledge from Data 

In the last few years, systematic data analysis using 
DS methods has gained enormous importance 
regarding the planning and controlling of production 
and logistics systems (Tao et al., 2018). DS 
encompasses a range of activities aimed at analyzing 
data to uncover insights and solve problems. It 
combines various mathematics and computer science 
techniques, supplemented by domain-specific 
knowledge (Han et al., 2012; Schuh et al., 2019). 
Examples are, among others, the use of statistical 
parameters, correlation analyses, different 
visualization techniques, and the application of ML 
(Han et al., 2012). ML is a subdomain of DS, which 
includes algorithms and models used to learn 
automatically from data and thus make predictions 
and classifications (Schuh et al., 2019). Several steps 
are required when using data-driven methods to 
transform low-level data into more abstract forms 
(Fayyad et al., 1996). Frequently used approaches are 
"Knowledge Discovery in Databases” (KDD) by 
Fayyad et al. (Fayyad et al., 1996) and the Cross-
industry standard process for Data Mining (CRISP-
DM) by Chapman et al. (Chapman et al., 2022). Both 
approaches describe the relevant steps, starting with 
building up an overall understanding of the process, 
continuing with data preprocessing, and ending with 
the application of DS methods. In both approaches, 
the specific selection of data and extensive data 
preprocessing, which significantly influence the 
results, should be emphasized. However, if applied to 
limited data in a particular domain, these approaches 
are too imprecise and may not provide comprehensive 
insights (Ungermann et al., 2019). In such 
applications, domain knowledge is required to gain 
meaningful insights. 
 
 
 

2.2 State of the Art 

Different data-driven approaches for optimizing 
processes in the production and logistics environment 
can already be found in the literature. Ungermann et 
al. (Ungermann et al., 2019) describe an approach for 
executing data analytics projects in manufacturing 
systems to identify process optimizations within 
machines. As part of this process, the steps of 
knowledge discovery are enhanced, and a KPI system 
is introduced that identifies machine weaknesses by 
adding data from additional sensors. Gröger et al. 
(Gröger et al., 2012) describe different DS methods 
to identify patterns in manufacturing data and use 
them for process improvements. The use case shows 
how a binary classification has been applied to a 
production process and how the results of a decision 
tree algorithm can be visualized. Similar results of 
applying a decision tree in a more detailed 
implementation are shown by Buschmann et al. 
(Buschmann et al., 2021). The authors deal in depth 
with decision support and product quality 
optimization in a production process. Wuennenberg 
et al. (Wuennenberg et al., 2023) outline the problem 
of insufficient data within logistics systems as well as 
the possibility of extracting non-calculable KPIs from 
further process data and other KPIs with the help of 
ML. Furthermore, ML models are tested in numerous 
specific tasks within production planning and control 
(Cioffi et al., 2020; Muehlbauer et al., 2022a; Usuga 
Cadavid et al., 2020). 

In summary, data-driven approaches for process 
optimization have been partially investigated but 
have yet to be widely used in logistics. Analyzing 
transaction data from production and logistics 
systems requires a high level of domain knowledge to 
generate relevant insights. Standardized data-driven 
approaches (e.g., KDD, CRISP-DM, etc.) do not 
specify concrete methods or tools (Ungermann et al., 
2019). Furthermore, it can be stated that the use of 
digital process data for process improvements in 
logistics systems is rarely discussed in the literature. 

3 APPROACH 

The approach consists of five phases that need to be 
conducted sequentially (Figure 1). In this context, the 
process from business understanding to selecting and 
calculating KPIs to provide recommendations for 
action is explained. Thus, this presentation of the 
approach focuses on step-by-step implementation. 
Nevertheless, it has to be mentioned that the 
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performance strongly depends on the amount and 
quality of available data (Han et al., 2012). 

In order to effectively apply DS to logistics 
transaction data and transfer orders, establishing clear 
and achievable goals is essential. This approach aims 
to pursue two key goals in process improvement 
through the analysis of logistics transaction data. On 
the one hand, achieving high system performance 
with existing boundary conditions is essential. This is 
especially relevant in situations of sudden workload 
spikes. On the other hand, a cost-effective operation 
shall be ensured, given a specific workload.  

 
Figure 1: Five phase approach to automate process analysis 
and control using transaction data derived from internal 
logistics systems. 

Phase 0 should be carried out during the first 
implementation of the system as well as after process 
modifications or changes. At this point, the process is 
analyzed, and subsystems (e.g., picking system, 
conveyor system, etc.) and their components (e.g., 
picking stations, lanes with stacker cranes, etc.) are 
identified. Additionally, data points that collect 
information in the process are localized. A data 
maturity assessment can provide an overview of the 
existing data to ensure a practice-oriented 
implementation of data-driven approaches. A data 
maturity model and a method for on-site process 
mapping with all necessary information for the 
application of data-driven approaches are described 
in Muehlbauer et al. (Muehlbauer et al., 2022b). In 
the subsequent sections, the four other phases are 
outlined. 

3.1 Phase 1: Extracting Process 
Information and KPIs  

The objective of Phase 1 is to consolidate all 
necessary data. Thereby, a data foundation with 
various process information and KPIs can be 
generated. In logistics systems, each material 
movement is controlled by a transfer order and stored 

in information systems. These transfer orders give 
essential information on the logistics processes 
(Knoll et al., 2019; VDI-3601, 2015). An example 
with typical attributes is displayed in Table 1. 
Depending on the data quality, additional information 
may also be available in transfer order (Knoll et al., 
2019).  

Table 1: Key information of transfer orders for material 
movements in logistics systems based on (Knoll et al., 
2019; VDI-3601, 2015) with examples. 

Attributes of transfer 
orders Example 

Order number (Nr.) 568 
Order position (Pos.) 3 
Article (Material) Nr. 21342 
Activity name From-bin transfer
Source Storage 
Sink (Destination) Assembly 
Timestamp 2016-11-22 / 02:01:51 p.m.
Quantity 100 pieces 
… …. 

This approach relies primarily on transfer orders, 
which often provide limited information (Knoll et al., 
2019); a high level of domain knowledge is necessary 
to decide which KPIs are useful (and also if those 
KPIs can be automatically determined). Splitting the 
logistics system into individual subsystems and 
further to elements helps to extract factors that 
influence the behavior of the system. When 
considering the material and information flow within 
a logistics system, it becomes evident that a sequence 
of activities (material flow movements) and states 
(data identification points) occur continuously. 
Activities encompass all physical material flow 
movements, which can be further categorized into 
three types: transfer, handle, and store. Transfer refers 
to any material movement where the handling units 
remain unchanged. Handle encompasses all logistics 
functions that involve changing the items or the 
number of items of a handling unit. This means a 
transfer order is linked to a consecutive task (e.g., a 
picking task). Store describes the storage of handling 
units or items in the material flow. 

In contrast to these activities, states refer to 
identification points (I-points) that record data at a 
specific timestamp. These identification points can be 
categorized as I-points, prospected I-points, or 
deduced states (Table 2). Prospected I-points are 
currently captured in the material flow by various 
sensors, but their data has not yet been made 
available. Deduced states imply that these I-points are 
not recorded, yet.  

Process analysis, subsystem identification, and 
data maturity assessment0

Extraction of process information and KPIs from 
transfer orders and transaction data1

Identification of weaknesses based on system of 
interdependent effects2

Machine learning-based identification of 
weaknesses and problems3

Description of recommendations for action based 
on identified root causes4
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Table 2: Representation of the different symbols of 
activities and states. 

 

By mapping the logistics process with activities 
and states, it is possible to build up a structure 
diagram of the logistics system, which helps to 
comprehensively understand the process and data 
(Figure 2). Depending on the available I-points within 
the material flow system, a structure diagram can be 
created with varying levels of detail. This results in a 
representation of a real logistics system, which serves 
as a starting point for further analysis. Based on the I-
points, KPIs can be assigned to specific activities. 
Thus, fundamental KPIs, including “mean 
throughput”, “mean lead time”, and “mean work in 
progress”, can be determined based on Little’s Law 
(Little and Graves, 2008). It is noteworthy that having 
two of these KPIs allows the calculation of the third. 
These KPIs are important performance indicators of 
logistics processes and can be calculated based on 
transfer orders. The throughput (number of completed 
material movements per completed period) can be 
calculated for each logistics system based on transfer 
orders and describes the achieved system 
performance. Furthermore, availabilities may also be 
determined if data is available. Consequently, 
depending on the aggregation levels, these KPIs can 
be identified for elements, subsystems, and the 
overall system. 

Based on the two key goals, the throughput is used 
as the target KPI for this approach. It is crucial to 
identify the influencing factors that impact the 
throughput. This can be achieved by utilizing the 
structure diagram and specifying cause-effect 
relationships, particularly regarding the fundamental 
KPIs. The next task is to quantify these influencing 
factors by measurable KPIs. Various types of data and 
information from different information systems and 
domain knowledge can be used. As shown in Figure 
2, based on the information gained from the structure 
diagram, it is possible to extract data for KPI 
calculation of the whole system (e.g., warehouse 
system “AB”), subsystem (e.g., picking system “B”), 
and element (e.g., picking stations “B1” and “B2”). 
Also, forming new KPIs by conducting mathematical 
operations (e.g., mean, standard deviation, etc.) with 
available data or already calculated KPIs is possible 
(Wuddi and Fottner, 2020). Within the literature, a 

comprehensive overview of KPIs is available to offer 
guidance (Dörnhöfer et al., 2016; VDI-4490, 2007). 
The specific selection of KPIs depends on the 
considered process and available data. 

 
Figure 2: Structure diagram of an exemplary order picking 
material flow process from storage to picking stations with 
different activities and states, as well as a subdivision into 
subsystems and elements. 

Logistics planning and control aim to optimize 
throughput by adjusting processes, parameters, and 
their interactions. Therefore, continuous adjustments 
to various parameters become crucial. These 
variables are also essential for the evaluation of 
system performance and need to be identified. These 
include, for instance, working hours with shifts and 
break times. Operating organization strategies (e.g., 
movement or allocation strategies, etc.) can be 
approximated from data and enhanced by domain 
knowledge. The actual system performance measured 
by throughput also depends on the workload. This 
means that if the workload is low, the system 
performance will also be low. Furthermore, the 
workload can be used to identify the backlog, 
indicating whether and how many orders still need to 
be processed. The workload and backlog can be 
defined by comparing the target and actual delivery 
times and thereby deducing the outstanding orders 
(Lödding and Rossi, 2013). As illustrated above, 
information regarding malfunctions is relevant as 
well. As a result, the availabilities of subsystems and 
the overall availability of the logistics system can be 
determined (VDI-3581, 2004). Consequently, 
external (e.g., declining customer demand) and non-
process-flow-specific factors (e.g., conveyor 
breakdowns, etc.) can be considered when evaluating 
the system performance. 

In order to convert the low-level raw data into 
KPIs, data must be cleaned (e.g., Not a Number 
(NaN) values removed, etc.) and preprocessed (e.g., 
storage locations converted into distances, etc.). 
Afterward, first visualizations (e.g., scatter plots, etc.) 
and statistical methods (e.g., correlation analyses, 
etc.) can be performed for a better understanding of 
data or to identify patterns. 

StateActivity

I-PointHandling

Prospected I-PointStore

Deduced StateTransfer

i

i BA
B1

i

i i

i

B2
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For the further phases, creating a homogeneous 
data set to compare individual system performances 
is crucial. Thus, it is necessary to delete those entries 
that generate incorrect or inaccurate KPIs. This can 
be done by removing data, e.g., outside the regular 
working time or during breaks and shift changes. In 
future work, detailed steps will be explored. 

3.2 Phase 2: Identification of 
Weaknesses  

Phase 2 aims to automatically detect low-performing 
working periods by employing a system of 
interdependent effects (Figure 3).  

 
Figure 3: Representation of the system of interdependent 
effects with key components, system variables, and 
controlled variables. 

The actual system performance indicates the 
throughput achieved in a working period. In 
comparison, the target system performance contains 
the orders processed in this working period. The 
theoretical system performance is approximated by 
past top performance of the overall system with 
similar boundary conditions (e.g., number of 
conveyors, number of employees, etc.) after an outlier 
elimination. The outlier elimination should be 
performed as follows: Values that exceed the 
threshold of 𝑞ଷ  +  1.5 ∙ 𝑑 , where 𝑞ଷ  is the third 
quartile value and 𝑑  is the interquartile range, are 
removed (Krzywinski and Altman, 2014). 

When determining the system variables, the order 
structure must be considered. In some instances, there 
is a one-to-one order structure relationship between 
different subsystems, where one movement in 
subsystem "A" corresponds to exactly one movement 
in subsystem "B". In this case, the theoretical system 
performance should be calculated for each subsystem 
to get specific values. After that, the overall 
theoretical system performance is determined by the 
lowest maximum performance among all subsystems. 
If the order structure differs, e.g., one stacker crane 

run can lead to multiple picking tasks, all system 
variables must be calculated separately for both 
subsystems “A” and “B”.  

After calculating the system variables, the 
controlled variables can be evaluated. This allows to 
identify unfavorable working periods. In this case, the 
level of target achievement is the quotient between 
actual and target system performance. It shows 
whether all orders to be processed have been 
processed or whether there is a backlog. The actual 
level of utilization describes how close the current 
system was to its past peak performance by similar 
boundary conditions (e.g., capacity size), and it is 
calculated by dividing actual through theoretical 
systems performance. The planned level of utilization 
shows the quotient of the target divided by the 
theoretical system performance. It provides 
information on whether the system was over- or 
undersized concerning the workload. This allows an 
assessment by thresholds of the three control 
variables in two categories (favorable or unfavorable) 
for each working period. If the control variables are 
calculated for each subsystem due to the different 
order structure relationships (see above). In this case, 
it must be determined whether the control variables 
for subsystems "A" and "B" should be unfavorable or 
favorable to evaluate the working period. Due to 
different logistics systems applications and 
industries, the threshold values must be adapted 
individually for each system. Statistical methods, 
such as quantiles, can provide orientation to define 
these thresholds.  

The results of the control variables evaluation of 
a working period are stored with all KPIs and relevant 
process information (from phase 1) in a so-called 
result log. They are evaluated regularly (e.g., every 
week, etc.). Thus, only those working periods can be 
considered where at least one or more control 
variables are unfavorable. In the next step, these 
working periods are automatically classified into 
different problem areas using an ML model. 

3.3 Phase 3: Machine Learning-Based 
Identification  

The objective of Phase 3 is the automated 
classification of problems for further analysis. These 
results can be used to evaluate and adjust correcting 
actions and reduce failures to meet the key goals 
mentioned. Therefore, classes must be defined before 
the ML training phase starts. The classes may vary 
depending on the extracted KPIs and process 
information and are intended to describe specific 
high-level terms of problem areas. These classes are 

Approximation by
historical data

Key components Direction of impactSystem 
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Reference 
variable Difference

Order 
management Target System 
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Theoretical System 
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Actual System 
performance
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Work load
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used in the first step to manually evaluate the working 
periods in the result log for further application of ML. 
Based on the preprocessed KPIs and process 
information (further called features), a process expert 
can now determine reasons for unfavorable rated 
working periods and assign each entry to an 
appropriate class (further called labels). In this way, 
meaningful relationships among KPIs can be 
integrated with domain knowledge. The individual 
labels can contain one or more KPIs as features and 
represent unique root causes or combine several. It is 
important that the classes are as heterogeneous as 
possible, but the entries within a class should be 
homogeneous. If entries in the results log cannot be 
assigned to a unique label due to the inadequacy of 
multiple KPIs, adding an additional class for these 
entries should be considered. The labeled data set can 
then be further processed with ML. For this purpose, 
information such as date, shift name, or weekday 
names must be encoded in numerical values. Since 
this is a multiclass classification problem based on 
labeled data, the algorithm is limited to supervised 
learning classifiers. 

Afterward, the ML model is trained with the 
existing process information and KPIs (=features) 
and the defined classes (=labels). In doing so, it is 
crucial to select appropriate features (Joshi, 2020). 
Due to the high complexity, the process expert can 
only use some features for labeling. It is possible, 
however, that using additional features will improve 
the ML results. This implies that additional 
relationships can be explored within the data. The 
trained model should then be validated using a test 
set. Frequently used metrics for validation are 
Precision, Recall, F1-score, and Accuracy (Joshi, 
2020). As this is a multiclass classification problem, 
the ML metrics for each label can be different. If 
individual labels are not predicted well, the classes 
can be rechecked. For this purpose, the predicted 
labels can be compared with those defined by the 
process expert. Extracting the feature importance of 
the trained ML model can support a better feature 
selection. If no improvement is achieved, over- and 
undersampling can be applied (Han et al., 2012). 
Feature engineering, such as scaling, can address 
varying feature scales and enhance results. 

Before the actual operational mode starts, the 
trained ML model must be applied to unknown data. 
If the results are insufficient, the model should be 
improved to provide reliable results. This can be done 
by extending the data set or improving the label 
assignment. Other algorithms and further data 
preprocessing steps could also be applied to improve 
the classification. In the operational mode, the trained 

ML model automatically assigns KPIs of a working 
period to a problem class. Subsequently, an overview 
can be created of which and how often classes 
occurred in the available data. The results show, 
which problems frequently occur in the respective 
analysis period. This forms the basis for further 
detailed analysis in the next step. 

3.4 Phase 4: Description of 
Recommendations for Action 

Based on the classified problem areas, a detailed 
analysis of the problems is carried out in Phase 4. The 
relationship between KPIs, process knowledge, and 
the assignment of problem classes to specific causes 
is further analyzed in this section. By the completion 
of the previous phases, the raw transaction data and 
transfer orders have been processed and filtered step 
by step. As a result, unfavorable working periods 
were identified and assigned to specific problem 
classes. The procedure for root cause identification is 
as follows. A label identifies one or more KPIs of a 
specific problem class. Once these KPIs have been 
identified, two strategies, further referred to as 
strategies X and Y can be used to specify the cause. 
For strategy X, it is necessary to check whether the 
KPIs can be assigned to individual subsystems (e.g., 
the average distance of the entire warehouse to the 
average distance of a lane). By doing so, it can be 
checked if a problem affects the whole system (e.g., 
each lane of the automated storage system) or only a 
part (e.g., one lane). Strategy Y corresponds to 
whether the affected KPI consists of further 
parameters (e.g., ratio of stock placement to stock 
removal). Here, it can be identified which parameter 
deviates particularly strongly. By doing so, the search 
for specific causes can be narrowed down. For the 
development of specific problem solutions, the 
following steps can be provided. Table 3 shows the 
relevant main categories of correcting actions and 
disruptions, which can be divided into subcategories. 
Examples are given as a guideline for the various 
subcategories. Different DS methods can be applied 
during the detailed analysis of specific problem areas. 
Besides correlation or cluster analysis, time series 
analysis can also be used to find patterns in data. This 
can be used to check whether specific problems only 
occur on certain working days or shifts. The steps are 
characterized by a continuous exchange and a strong 
input of domain knowledge from process experts. 
Specified and standardized analyses can provide 
support. Subsequently, measures can be taken to 
increase the performance of the system or reduce 
costs. The ongoing application of the approach 
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presented in this article initiates a continuous 
improvement process. 

Table 3: Presentation of possible action recommendations 
for identified problems with examples. 

4 CASE STUDY  

4.1 Description of the Case Study 

The utilized dataset comprises transfer orders 
processed by a “goods-to-person” picking system 
over a span of 57 working days. Primary working 
days are from Monday to Friday, with an early and a 
late shift. In some cases, work is also carried out on 
Saturdays. The logistics system being analyzed 
comprises an automated storage and retrieval system 
consisting of three lanes equipped with two racks and 
one stacker crane for each lane. Additionally, there 

are four picking stations in the system. There are 
about 15,000 storage locations in total. The articles 
are stored in standardized small load carriers that 
contain up to eight sectors. Figure 4 shows the main 
components of the system: (C) the different stacker 
cranes and racks, (A) the different picking stations, 
and (B) the material flow loop, which connects the 
automated storage and retrieval system with the 
picking stations. The arrows indicate the material 
flow directions. A transfer order contains the 
following information: Activity type (to-bin/from-
bin), storage location number, article number, article 
description, loading aid number, order quantity, 
order number, timestamp (time and date), and worker 
identification number processed. The orders are 
transferred from a warehouse management system to 
the material flow computer. After a picker has called 
up an order, the items to be retrieved are transported 
to the respective picking station. Based on this 
information, a structure diagram was built (Figure 4 
right). The transfer orders allow the separation of the 
overall system into subsystems (A) and (C). 
Subsystem (C) describes the storage and conveyor 
system, and subsystem (A) the order picking. After 
the process analysis, KPIs (see Table 4) were 
extracted from the data.  

The preprocessing and computation of data were 
conducted within a Python environment, utilizing 
libraries including pandas, NumPy, and scikit-learn, 
among others. Moreover, the ML models employed 
were also sourced from scikit-learn. 

As detailed in Section 3.1, the focus is on 
identifying a comprehensive range of factors 
influencing the throughput. The data was 
preprocessed as follows. Individual entries with NaN- 
 

 
Figure 4: Illustration of the considered logistics system (goods-to-person), including storage locations, stacker cranes, input 
(il) and output location (ol), picking stations, the material flow directions, as well as I-points. The illustration a) on the left 
shows the real system, whereas b) on the right the structure diagram is shown. 
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values were removed. For each storage location 
number, a distance from the storage location to the 
input and output location was calculated. The x- and 
y-coordinates were considered with the storage height 
and width data, and the distance to the input and 
output location was calculated. All entries before the 
start of the early shift (before 06:00 a.m.) and after the 
end of the late shift (after 11:00 p.m.) were removed. 
Entries were deleted during shift changeovers 
between 02:00 p.m. and 03:00 p.m. because certain 
KPIs and process information (e.g., number of 
employees) cannot be calculated or assigned during 
this time. After this, KPIs and process information 
shown in Table 4 were considered, which can be used 
as features. 

Table 4: Case study feature set separated into categories. 

Category                        Features 

Ti
m

e-
re

la
te

d Datetime in hours 
Date 
Weekday 
Shift (early and late shift) 

Pe
rf

or
m

an
ce

-
re

la
te

d 

Number of warehouse movements per hour (h) 
Number of to-bin movements per h 
Number of from-bin movements per h 
To-bin from-bin ratio 

(B
in

) o
cc

up
an

cy
-

re
la

te
d 

Average distance per lane 
Average distance of all lanes 
Ratio of front to rear storage spaces per lane 
Ratio of front to rear storage spaces of all lanes 
Variation coefficient of lane utilization 

Ca
pa

ci
ty

-r
el

at
ed

 Number of employees per h 
Number of employees to-bin movements per h 
Number of employees from-bin movements per h
Mean working time per employee (to-bin) 
Mean working time per employee (from-bin) 
Mean time availability of all employees  

O
rd

er
-r

el
at

ed
 

Mean lead time for a from-bin movement  
Mean lead time for a picking task  
Mean lead time for an all-movements task  
Average inbound storage quantity  
Average picking quantity 
Ratio of different loading aid numbers 

Subsequently, the system variables of the system 
of interdependent effects described in section 3.2 
were determined. Since no information regarding the 
required workload was available, the level of target 

achievement was always fulfilled. The actual and 
planned level of utilization was used to evaluate the 
system's performance. The theoretical system 
performance was calculated after an outlier 
elimination (see section 3.2). Since the theoretical 
picking station system performance is smaller than 
the theoretical conveyor system performance, this 
was used as the overall theoretical system 
performance. The thresholds were set to < 0.8 for an 
unfavorable actual and planned level of utilization for 
simplification purposes. This allowed 783 out of 810 
results log entries to be identified as unfavorable 
working periods. In these working periods, both the 
actual and planned levels of utilization were 
unfavorable. Based on the process knowledge and 
KPIs, five labels have been defined to classify the 
data: “capacity", "storage location allocation", "order 
load", "order structure", and "unknown". 

4.2 Result of the Application 

A Random Forest Classifier (RFC), Gradient Boost 
Classifier (GBC), and Multilayer Perceptron (MLP) 
were tested. A randomized grid search further 
selected specific hyperparameters for all models: for 
RFC and GBC, maximum feature count, maximum 
depth, minimum samples leaf, and minimum samples 
split were used. Grid search parameters of the MLP 
model were hidden layer size, alpha values, set of 
activation, and set of solvers. For the MLP, the 
application of a minimum-maximum scaler showed 
improvements, whereas, for the decision tree 
algorithms (RFC and GBC), no improvements were 
made and, therefore, not applied. Due to the 
imbalanced classes, over- and undersampling were 
used to improve the ML training. The 783 entries in 
the data set were split into a training (80%) and test 
set (20%) and evaluated by cross-validation. The ML 
results on the test data are shown in Table 5. 

Table 5: Results of the different ML models on the test set. 

ML 
model

Resampling 
techniques Precision Recall F1-

score Accuracy

RFC
normal 0.69 0.70 0.69 0.70 

oversampled 0.68 0.69 0.68 0.69 
undersampled 0.62 0.60 0.60 0.60 

MLP
normal 0.67 0.69 0.68 0.69 

oversampled 0.68 0.66 0.66 0.66 
undersampled 0.65 0.62 0.62 0.62 

GBC
normal 0.69 0.70 0.69 0.70 

oversampled 0.71 0.73 0.70 0.73 
undersampled 0.64 0.62 0.62 0.62 
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All nine models trained were applied to unseen 
data. It was found that all models could classify the 
classes relatively equally. However, the best model 
was an oversampled GBC. This model achieved an 
average accuracy of 60%, as shown in Table 6. 

Table 6: Results of the best ML model applied to the case 
study (GBC including oversampling on unseen data). 

GBC Precision Recall F1-score Support
Order load 1.00 0.82 0.90 11 

Order structure 0.54 0.58 0.56 12 
Capacity 0.52 0.82 0.64 28 

Storage location 
allocation 1.00 0.33 0.50 3 

Unknown 0.62 0.31 0.41 26 
Accuracy   0.60 80 

The following confusion matrix (Figure 5) shows 
which classes are predicted well and which still have 
the potential for improvement.  

 
Figure 5: Confusion matrix for the best ML model (GBC) 
on the unseen data set. 

These findings suggest that the classification task 
presents challenges, particularly in the case of the 
"unknown" problem class. The oversimplification 
may have arisen from the class definition itself. 
Process experts labeled data points as "unknown" 
when no specific problem could be identified for that 
working period. Furthermore, "capacity" was 
sometimes inaccurately classified. Numerous 
misclassifications occurred due to false-negative 
decisions. This phenomenon may partly be attributed 
to the imbalanced data set, as this class was frequently 
included in the training set. "Capacity" was the most 
frequent class in the training set. 

5 DISCUSSION 

5.1 Interpretation 

The authors suggest a design for a knowledge-based, 
data-driven decision support procedure to 
automatically identify performance weaknesses and 
provide recommendations for improvement in 
internal logistics systems using transaction data and 
transfer orders. The key components of the approach 
involve establishing a thorough comprehension of 
processes and data, identifying relevant KPIs, 
evaluating these KPIs within a system of 
interdependent effects, utilizing ML to assess 
unfavorable working periods, and conducting 
detailed analyses of specific problems to identify root 
causes. The ML classification model could classify 
five different classes on unseen data with an average 
accuracy of 60%. The results show that this approach 
leverages low-level data, offering insights into the 
analyzed process, to a more informative level that 
provides a deeper understanding of problems. The 
results of a case study show that ML classification 
models based on process information and KPIs can 
recognize the labels defined by the process expert. It 
should be noted that the available data had some 
shortcomings in terms of data integrity, data balance, 
and data volume. Nevertheless, the application shows 
that certain classes can be determined well, even with 
this data. This suggests that utilizing the ongoing 
application represents a method for automating 
problem identification. Hence, the high degree of 
automation is a significant advantage of the approach.  

5.2 Limitations 

Despite the confirmation of the feasibility, some 
limitations have to be considered. In particular, the 
approach requires a high integration of domain 
knowledge to derive relevant KPIs from transaction 
data to identify problems. Due to the limited data 
available in the case study, important aspects such as 
the equipment availability and the current workload 
were not considered. This information could enhance 
the robustness, precision, and content of the analysis, 
enabling the identification of even more specific 
problem classes. Furthermore, only problems 
captured by the calculated KPIs and process 
information can be identified. The use case data 
shows uneven distribution. For example, there are 
only three entries for the class storage location 
allocation. Thus, the ML classification was validated 
with a very imbalanced data set, making it difficult to 
perform. However, a highly imbalanced dataset can 
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also be challenging in other real-world applications. 
This must be considered during the ML model 
implementation using measures such as over- and 
undersampling. In addition, more advanced 
algorithms, such as neural networks, could improve 
the results. However, it should be noted that 
introducing such algorithms may increase the 
complexity. Therefore, applying appropriate ML 
models is crucial for a reasonable trade-off between 
accuracy and complexity.  

6 SUMMARY AND OUTLOOK 

The authors propose a knowledge-based, data-driven 
decision support procedure for process analysis in 
logistics systems. The approach comprises five 
phases and outlines steps to extract meaningful 
insights from low-level transaction data. Validation 
of the approach's usability was conducted through an 
industrial case study. The identification of problems 
and their root causes provides actionable 
recommendations for operators of logistics systems. 

Future research directions involve automating the 
approach and addressing its limitations. Exploring 
more detailed recommendations for action is essential 
as well. Additionally, incorporating analytical 
calculations as a plausibility check warrants 
investigation to minimize errors in KPI determination 
and enhance result accuracy. 

ACKNOWLEDGEMENTS 

This research was supported by KIProLog project 
funded by the Bavarian State Ministry of Science and 
Art (FKZ: H.2-F1116.LN33/3).  

REFERENCES 

Buschmann, D., Enslin, C., Elser, H., Lütticke, D., & 
Schmitt, R. H. (2021). Data-driven decision support for 
process quality improvements. Procedia CIRP, 99, 
313–318. https://doi.org/10.1016/j.procir.2021.03.047 

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, 
T. P., Shearer, C., & Wirth, R. (2022). CRISP-DM 1.0: 
Step-by-step data mining guide. 

Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & 
Felice, F. de (2020). Artificial Intelligence and Machine 
Learning Applications in Smart Production: Progress, 
Trends, and Directions. Sustainability, 12(2), 492. 
https://doi.org/10.3390/su12020492 

Dörnhöfer, M., Schröder, F., & Günthner, W. A. (2016). 
Logistics performance measurement system for the 
automotive industry. Logistics Research, 9(1). 
https://doi.org/10.1007/s12159-016-0138-7 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). 
From Data Mining to From Data Minin to Knowledge 
Discovery in Databases. AI Magazine, 17(3). 

Gröger, C., Niedermann, F., & Mitschang, B. (2012). Data 
Mining-driven Manufacturing Process Optimization. In 
S. I. Ao (Ed.), Lecture notes in engineering and 
computer science: Vol. 3. The 2012 International 
Conference of Manufacturing Engineering and 
Engineering Management, the 2012 International 
Conference of Mechanical Engineering (pp. 1475–
1481). Hong Kong: IAENG. 

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: 
Concepts and Techniques. https://doi.org/10.1016/ 
C2009-0-61819-5 

Joshi, A. V. (2020). Machine learning and artificial 
intelligence. Cham.  

Knoll, D., Reinhart, G., & Prüglmeier, M. (2019). Enabling 
value stream mapping for internal logistics using 
multidimensional process mining. Expert Systems with 
Applications, 124, 130–142. https://doi.org/10.1016/ 
j.eswa.2019.01.026 

Krzywinski, M., & Altman, N. (2014). Visualizing samples 
with box plots. Nature Methods, 11(2), 119–120. 
https://doi.org/10.1038/nmeth.2813 

Little, J. D. C., & Graves, S. C. (2008). Little's Law. In F. 
S. Hillier, D. Chhajed, & T. J. Lowe (Eds.), 
International Series in Operations Research & 
Management Science. Building Intuition (Vol. 115, 
pp. 81–100). Boston, MA: Springer US. 
https://doi.org/10.1007/978-0-387-73699-0_5 

Lödding, H., & Rossi, R. (2013). Handbook of 
manufacturing control: Fundamentals, description, 
configuration. Berlin, Heidelberg.  

Muehlbauer, K., Rissmann, L., & Meissner, S. (2022a). 
Decision Support for Production Control based on 
Machine Learning by Simulation-generated Data. In 
Proceedings of the 14th International Joint Conference 
on Knowledge Discovery, Knowledge Engineering and 
Knowledge Management (pp. 54–62). SCITEPRESS - 
Science and Technology Publications. https://doi.org/ 
10.5220/0011538000003335 

Muehlbauer, K., Wuennenberg, M., Meissner, S., & Fottner, 
J. (2022b). Data driven logistics-oriented value stream 
mapping 4.0: A guideline for practitioners. IFAC-
PapersOnLine, 55(16), 364–369. 
https://doi.org/10.1016/ j.ifacol.2022.09.051 

Schuh, G., Reinhart, G., Prote, J.-P., Sauermann, F., 
Horsthofer, J., Oppolzer, F., & Knoll, D. (2019). Data 
Mining Definitions and Applications for the 
Management of Production Complexity. Procedia 
CIRP, 81, 874–879. https://doi.org/10.1016/j.procir.20 
19.03.217 

Schuh, G., Reuter, C., Prote, J.-P., Brambring, F., & Ays, J. 
(2017). Increasing data integrity for improving decision 
making in production planning and control. CIRP 

Data-Driven Process Analysis of Logistics Systems: Implementation Process of a Knowledge-Based Approach

37



Annals, 66(1), 425–428. https://doi.org/10.1016/ 
j.cirp.2017.04.003 

Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven 
smart manufacturing. Journal of Manufacturing 
Systems, 48, 157–169. https://doi.org/10.1016/ 
j.jmsy.2018.01.006 

Ungermann, F., Kuhnle, A., Stricker, N., & Lanza, G. 
(2019). Data Analytics for Manufacturing Systems – A 
Data-Driven Approach for Process Optimization. 
Procedia CIRP, 81, 369–374. https://doi.org/ 
10.1016/j.procir.2019.03.064 

Usuga Cadavid, J. P., Lamouri, S., Grabot, B., Pellerin, R., 
& Fortin, A. (2020). Machine learning applied in 
production planning and control: a state-of-the-art in 
the era of industry 4.0. Journal of Intelligent 
Manufacturing, 31(6), 1531–1558. https://doi.org/ 
10.1007/s10845-019-01531-7 

Verein Deutscher Ingenieure (September 2015). 
Warehouse-Management-Systeme. (VDI-Richtlinie, 
VDI-3601). Berlin: Beuth Verlag GmbH. 

Verein Deutscher Ingenieure e.V. (2004). Availability of 
transport and storage systems including subsystems 
and elements. (Richtlinie, VDI-3581). Berlin: Beuth 
Verlag GmbH. 

Verein Deutscher Ingenieure e.V. (2007). Operational 
logistics key figures from goods receiving to dispatch. 
(Richtlinie, VDI-4490). Berlin: Beuth Verlag GmbH. 

Wuddi, P. M., & Fottner, J. (2020). Key Figure Systems. In 
Proceedings of the 2020 International Conference on 
Big Data in Management (pp. 125–129). New York, 
NY, USA: ACM. https://doi.org/10.1145/343707 
5.3437090 

Wuennenberg, M., Muehlbauer, K., Fottner, J., & Meissner, 
S. (2023). Towards predictive analytics in internal 
logistics – An approach for the data-driven 
determination of key performance indicators. CIRP 
Journal of Manufacturing Science and Technology, 44, 
116–125. https://doi.org/10.1016/j.cirpj.2023.05.005 

 

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

38


