A Performance Analysis for Efficient Schema Design in Cloud-Based

Keywords:

Abstract:

Distributed Data Warehouses

Fred E. R. Rabelo Ferreira®™?* and Robson do Nascimento Fidalgo
Center of Informatics (CIn), Federal University of Pernambuco (UFPE), Recife, PE, Brazil

Data Warehouse, Distributed SQL, NewSQL, HTAP Databases, Data Modeling, Performance Analysis.

Data Warehouses (DWs) have become an indispensable asset for companies to support strategic decision-
making. In a world where enterprise data grows exponentially, however, new DW architectures are being
investigated to overcome the deficiencies of traditional relational Database Management Systems (DBMS),
driving a shift towards more modern, cloud-based DW solutions. To enhance efficiency and ease of use, the
industry has seen the rise of next-generation analytics DBMSs, such as NewSQL, a hybrid storage class of
solutions that support both complex analytical queries (OLAP) and transactional queries (OLTP). We under-
stand that few studies explore whether the way the data is denormalized has an impact on the performance
of these solutions to process OLAP queries in a distributed environment. This paper investigates the role of
data modeling in the processing time and data volume of a distributed DW. The Star Schema Benchmark was
used to evaluate the performance of a Star Schema and a Fully Denormalized Schema in three different mar-
ket solutions: Singlestore, Amazon Redshift and MariaDB Columnstore in two different memory availability
scenarios. Our results show that data denormalization is not a guarantee for improved performance, as solu-
tions performed very differently depending on the schema. Furthermore, we also show that a hybrid-storage
(HTAP) NewSQL solution can outperform an OLAP solution in terms of mean execution time.

1 INTRODUCTION

In today’s data-driven world, where the amount of
enterprise data has increased exponentially, efficient
processing of vast volumes of information has be-
come paramount for organizations seeking to gain in-
sights and make informed decisions (Dumbill, 2013).
In this sense, Data Warehouse (DW) has become an
indispensable asset for decision support, being the en-
vironment responsible for the storage, processing and
analysis of large volumes of data (Murphy, 1988).
However, the increasing volume of data produced to-
day makes the successful implementation of a DW
increasingly challenging, and thus practitioners are
looking into new ways of modernizing their current
Data Warehousing installations.

Recently, advances in cloud computing have in-
troduced tools that simplify the creation, setup, and
scaling of a DW with the emergence of Databases
as a Service (DBaaS), which allows for straightfor-
ward deployment of Database Management Systems
(DBMS) in the cloud. Furthermore, the usage of

(12 https://orcid.org/0000-0002-1419-5043

Ferreira, F. and Fidalgo, R.

a DbaaS exempts the user from upfront investments
and allows cost optimization, since many DBaaS so-
lutions provide dynamic cloud resource allocation
(Idrissi, 2016). Such technology may help businesses
that cannot afford expensive DW infrastructures to
setup their first analytical application using cloud in-
frastructure as a service, i.e., a scalable Data Ware-
house as a Service (DWaaS) (Krishnan, 2013).

Along with the move from on-premise infrastruc-
ture to a cloud infrastructure, new technologies have
emerged to substitute traditional Relational Database
Management Systems (RDBMS), which typically do
not scale horizontally, to a more modern DBMS that
supports massively parallel data processing (MPP)
and scale natively in a cloud environment. A tradi-
tional RDBMS stores data in a row-by-row manner,
making it ideal for Online Transactional Processing
(OLTP) workloads. In the rowstore structure, entire
rows are physically stored together, facilitating effi-
cient insert, update, and delete operations that require
access to all fields of a record (Abadi, 2008).

However, to efficiently support Online Analyti-
cal Processing (OLAP) workloads, a DBMS will typ-
ically use a columnstore, which organizes data by

39

A Performance Analysis for Efficient Schema Design in Cloud-Based Distributed Data Warehouses.

DOI: 10.5220/0012546200003690
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 39-49

ISBN: 978-989-758-692-7; ISSN: 2184-4992

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

columns, allowing efficient access to specific columns
without the need to scan entire rows (Abadi, 2008).
This structure offers substantial benefits for a DW,
as it enables compression and allows for scanning
and aggregating specific columns without accessing
unnecessary data, ultimately improving query perfor-
mance (Jaecksch, 2010). Since 2012, cloud providers
such as Snowflake (Snowflake, 2023) and Amazon
Web Services (AWS) have begun to offer cloud-based
columnar DW solutions with services like Snowflake
and Amazon Redshift (Pandis, 2021).

More recently, a new class of DBMS is gain-
ing recognition in the realm of data analytics and
business intelligence. Although traditionally de-
signed for OLTP (Stonebraker, 2011) (Grolinger,
2013), NewSQL DBMSs are increasingly demon-
strating their ability in handling OLAP queries be-
cause of their horizontal scalability, data distribu-
tion mechanisms and specially designed storages built
to efficiently support Hybrid Transactional/Analytical
Processing (HTAP) (Pavlo, 2017): depending on the
solution, it can have both in-memory or disk-based
rowstore and duplicated columnstore data, or it can
have hybrid column-row stores.

Regardless of how the data is physically stored,
there are several approaches to how the data can be
modeled in an analytical database. For this study,
we highlight the Star Schema (SS) and the denormal-
ized Flat Table (FT). SS is a type of database schema
where a central fact table is connected to one or more
dimension tables through foreign key relationships,
allowing for complex queries across multiple dimen-
sions at the cost of the execution of join operations
(Kimball and Ross, 2013). On the other hand, FT
consolidates all data into a single table, completely
eliminating the need for joins, which is why it is com-
monly known to provide better query performance
(G. Lawrence Sanders, 2002). It comes, however, at
the cost of increased storage and maintenance com-
plexity due to data redundancy. Snowflake schema
was not considered for this study because, as cited
in (Kimball, 2002): “Disk space savings gained by
further normalizing the dimension tables typically are
less than 1% of the total disk space needed for the
overall schema”.

The Star Schema is a firmly established schema
that the community widely embraces for DW mod-
eling (Adamson, 2006). However, the suitability of
this schema is unquestionable in the context of a tradi-
tional DW architecture within a centralized relational
database environment, which scales vertically. We are
now interested in understanding whether the suitabil-
ity of SS still holds when transitioning to a cloud-
based environment characterized by parallel and dis-

40

tributed processing. In this new environment, the
expense associated with performing join operations
within a distributed setup might outweigh the bene-
fits of dealing with a larger volume of redundant data
in a distributed Flat Table.

This hypothesis carries particular significance be-
cause, in a horizontally scalable DW within a cloud
environment, during periods of peak demand, one
would typically encounter a cluster comprising many
nodes, each with restricted memory capacity to main-
tain cost efficiency, rather than a single server boast-
ing substantial CPU and memory resources. We un-
derstand that there is a lack of methodological ap-
proaches in the schema design for distributed Data
Warehousing. Therefore, there are questions that
remain fairly unanswered by the scientific commu-
nity and practitioners: Is a multidimensional design
such as a star schema a suitable design pattern for
a distributed DW? How does the increase in volume
caused by data redundancy in FT affect the perfor-
mance of a distributed DW cluster? How can the
availability of memory at nodes affect data process-
ing? How does a NewSQL HTAP DBMS perform
compared to solutions built specifically for OLAP?

To answer these questions, an experimental study
was conducted by executing the Star Schema Bench-
mark (SSB) (O’Neil, 2009) and its 13 queries in two
data schemas: A Star Schema (SS) and a completely
denormalized Flat Table Schema. Three distributed
DBMSs were chosen for the experiment: Singlestore,
Amazon Redshift and MariaDB Columnstore, specif-
ically a hybrid store (favoring HTAP) and two colum-
nar stores (favoring OLAP). Since rowstores do not
favor OLAP queries, no rowstore DBMS was se-
lected. The solutions were chosen based on the fol-
lowing criteria: higher position in the ranking of the
"DB-engines’ website; the number of mentions on
websites and interests in Google Trends searches; the
solution must have a DBaaS offering of the product;
and it must provide a free license or free credits to run
the tests in the DBaaS.

This work aims to contribute to the literature by
performing an evaluation and discussion of adequate
data modeling, especially data denormalization, for
distributed data warehousing. For each of the solu-
tions, a detailed performance analysis was conducted
to analyze their strengths and weaknesses in SS and
FT. Furthermore, we also present a comparison of the
overall performance to complete the entire workload
in order to conclude which solution provides the best
efficiency for OLAP.

The rest of this article is organized as follows:
Section 2 presents related works. Section 3 describes
the design of the experiment, methods used and some

A Performance Analysis for Efficient Schema Design in Cloud-Based Distributed Data Warehouses

theoretical foundation. Section 4 presents the three
experiments performed, along with a detailed analy-
sis of the star and flat schema design’s performance
for each selected solution. Section 5 presents a com-
parative analysis of the overall performance between
the three DW solutions. Finally, conclusion and fu-
ture work are presented in Section 6.

2 RELATED WORK

We started our literature review by searching for stud-
ies related to Data Warehousing that carried out at
least one experimental performance analysis, prefer-
ably using a benchmark specific for OLAP, and stud-
ies that analyzed different data modeling techniques
and data schemas using one or multiple relational
DBMS, NoSQL or NewSQL solutions.

We found several studies that analyze the per-
formance of a DW using relational DBMSs. The
study by (Almeida et al., 2015) performs an exper-
iment to compare two relational DBMS to process
OLAP queries using the Star Schema Benchmark
(SSB): MySQL InnoDB and Microsoft SQL Server
2012 (MSSQL), in a variety of dataset sizes: 1GB,
3GB, 6GB, 12GB and 24GB, representing a fact ta-
ble with 6M, 18M, 36M, 71M and 144M rows re-
spectively. The author concludes that MSSQL out-
performs MySQL in general, especially for the larger
datasets, while MySQL has acceptable performance
only for workloads up to 6GB, mainly as a result
of the columnstore storage in MSSQL in compari-
son to MySQL InnoDB, which uses a rowstore stor-
age. In (S Ili¢, 2022), the author provides a thor-
ough investigation of rowstores versus columnstores
using a variety of different RDBMS: HP Vertica, Mi-
crosoft SQL Server, Oracle, MariaDB ColumnStore
and MySQL, concluding that all queries were ex-
ecuted in an acceptable time of under 10 seconds,
except for the databases using rowstore (MySQL),
meaning columnstore-based DBMSs are highly rec-
ommended for OLAP, but rowstores are not.

We also found a few studies that analyze the per-
formance of a DW using newer technologies, such
as NewSQL, and compare it with relational DBMSs.
The work of (Murazzo et al., 2019) analyzes the per-
formance of Google Cloud Spanner, a NewSQL so-
lution, and compares it with MySQL, both running
on the Google Cloud Platform (GCP). The author
uses the year 2018 from a public historical database
of the City of Buenos Aires as a workload, contain-
ing 895,000 lines, and saves the average time to ex-
ecute three different SQL queries. The results ob-
tained showed that Cloud Spanner achieved a lower

execution time than MySQL in all scenarios and tests.
However, the author points out that for query 3 (the
most complex query, as it has a higher number of
joins), Spanner’s performance is very close to that of
MySQL, leading to a preliminary conclusion that the
greater the complexity, or the higher the number of
joins, the greater the tendency of the two DBMSs to
converge towards a greater and equivalent execution
time.

In (Oliveira, 2017), the authors conduct ex-
periments on MemSQL (currently Singlestore) and
VoltDB using the TPC-H benchmark in SF =1 (6
million rows, 1GB of size) and on a single machine
with 40GB of RAM. The study shows that MemSQL
achieves better performance in both load time and
average query time, saving 92% of the average time
spent compared to VoltDB. According to the authors,
the reason for MemSQL’s better performance when
executing queries is due to its in-memory cache stor-
age, offering time savings for reexecutions. To an-
alyze a distributed DW, the setup of the experiment,
however, is not ideal, as only one node is used in
the cluster, and the data volume using SF = 1 is too
small a volume to simulate a realistic DW environ-
ment (data always fit in memory).

In a study by (Costa et al., 2017), the authors in-
vestigate the role of data modeling in the process-
ing times of big data DWs implemented using two
SQL-on-Hadoop systems: Hive, an open-source, dis-
tributed NoSQL DBMS by Apache, and Engine-X
(real name omitted due to licensing limitations), an
enterprise NoSQL system. The authors specifically
benchmark multidimensional star schemas and fully
denormalized tables, investigating how data denor-
malization and partitioning affects the performance
of Hive on Tez using the SSB with different Scale
Factors: SF = 10, SF = 30, SF = 100 and SF = 300
in a Hadoop cluster with 5 nodes, each with 32GB
of RAM. The authors conclude that the usage of the
star schema for DWs on Hive may not be the most
efficient design pattern: despite saving a significantly
larger amount of data (SS was 3x smaller than the FT),
Hive still favors the denormalized schema with faster
query execution, less memory requirements, and less
intensive CPU usage. This conclusion arises directly
from evaluating the effort required by the solution
to handle data redundancy in comparison to the ef-
fort needed to manage join operations in a distributed
cluster with 5 nodes. The conclusion, however, can-
not be extended to other classes of DWs, since the au-
thors only experiment with SQL-on-hadoop systems.

In a more recent study, in (Eduardo Pina, 2023)
the authors used OSSpal methodology to analyze
the performance of three NewSQL databases, Cock-

41

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

roachDB, MariaDB Xpand and VoltDB in the con-
text of DW using the SSB in SF = 1 and SF = 10,
respectively 1GB and 7GB of data. The authors con-
clude that the DBMS with the best score was Mari-
aDB Xpand, followed by VoltDB and CockroachDB.
The authors also showed that VoltDB has better per-
formance in terms of query execution time, as it is
an in-memory database. On the other hand, Cock-
roachDB showed better performance when loading
data and lower consumption of resources such as CPU
and RAM. However, the setup of the experiment is
not ideal, as the volume of data used fits entirely in
the main memory of the server. In addition to that,
the work does not analyze data distribution, since
only one node with 28GB of RAM is used in the
experiment’s cluster. Furthermore, the study does
not analyze the impact of the denormalization of the
schema in terms of data volume and query perfor-
mance, nor does it include HTAP NewSQL DBMSs,
such as Singlestore. In our extensive literature review,
we also did not find papers that specifically evaluated
the performance of NewSQL solutions provided as
cloud services or DW solutions provided specifically
as DWaaS.

3 EXPERIMENTAL DESIGN AND
METHODS

This section describes the materials and methods used
in this research. Since this paper discusses some best
practices for data modeling, we were careful to pro-
vide detailed information on our setup and guidelines
in order to support experiment replication.

3.1 Star Schema Benchmark

In order to maintain the same process across different
setups, we looked at the literature to find a suitable
benchmark for our study. There are several bench-
mark approaches for DW and OLAP systems, with
TPC-H(Serlin, 1998), TPC-DS (Nambiar and Poess,
2006) and SSB (O’Neil, 2009) being the most widely
accepted by the industry. We chose to continue our
experiment using SSB because it is based on the Star
Schema, a prevalent structure in many business intel-
ligence and data warehousing systems. Unlike TPC-
H, which simulates a broad spectrum of ad hoc busi-
ness queries, and TPC-DS, which spans a diverse
range of decision support functions, SSB offers a sim-
pler but focused assessment for dimensional models
based on the TPC-H.

The Star Schema Benchmark is composed of a
fact table (Lineorder) and four dimension tables (Sup-

42

plier, Customer, Part and Date). The data from SSB
can be obtained in different scale factors (SF), which
determine the amount of data in the fact table and
dimension tables, with the exception of the Date ta-
ble, which has 2556 records in any SF, representing
an interval of 7 years. The SSB also provides 13
SQL queries involving common operations used in
DW such as drill down, roll up, slice and dice. These
queries are classified into four groups that differ from
each other in the number of joined tables and in the
complexity of the queries:

e Group 1: Queries QI.1, Q1.2 and Q1.3 restrict
revenue, with different ranges and filter factors, to
find potential revenue increases. Typically, they
calculate the increase in revenue that would re-
sult from eliminating certain discounts by a cer-
tain percentage for products shipped in a given
year.

e Group 2: Queries Q2.1, Q2.2, and Q2.3 restrict
the data in two dimensions, comparing revenues
for all orders in all years for suppliers in a given
region and for a given class of products.

e Group 3: Queries Q3.1, Q3.2, Q3.3 and Q3.4 re-
strict data in three dimensions, calculating rev-
enue volume over a given period of time by cus-
tomer country, supplier country, and year within a
given region.

* Group 4: Queries Q4.1, Q4.2 and Q4.3 represent a
”What-If” sequence. It starts with query Q4.1 us-
ing a group by in two dimensions and weak con-
straints in three dimensions to measure aggregate
profit.

3.2 Process

We used the DBGEN software to generate SSB data at
the SF = 10 and SF = 50 Scale Factors, where the Li-
neorder table has approximately 60 million and 300
million rows respectively. The FT schema was cre-
ated by joining the Star Schema fact table with its di-
mension tables, discarding foreign keys, and adjust-
ing field names accordingly. As a result, we ended up
with a copy of the SSB data organized as a flat table.
In addition, we adapted all thirteen queries provided
by SSB to fit the new fully denormalized table, this
time without the joins, providing the same results as
the original SSB dimension and fact tables.

The first stage of the experiment was the creation
of the DBMS cluster in the selected solution using
credits or a test account provided by the DBaaS. Once
the cluster is online, for each solution, we create the
SSB tables, first in SS and then in FT. All data (SS
and FT) were previously generated and stored in an

A Performance Analysis for Efficient Schema Design in Cloud-Based Distributed Data Warehouses

Amazon S3 bucket as a .CSV file, to be then loaded
into the DBMS through either an import operation or
an import pipeline. Once we have the cluster running
and the tables created and populated, the experiment
is started, one solution at a time and one configuration
at a time.

A Python script (code available publicly) was cre-
ated to run each of the 13 SSB queries 60 times, sav-
ing data volume and mean execution time for each ex-
ecution (Rabelo Ferreira, 2023). We were careful to
drop the cache and memcache before each run. The
number of runs for each query was chosen according
to the central limit theorem, so that we had a sample
large enough to obey a normal distribution. Each in-
dicator was saved along with its mean, standard de-
viation and confidence interval (p=0.95). Once all
the queries are executed, we drop the tables, drop the
database, and do the whole process again for a new
data schema, a new scale factor, and then the next so-
lution to be analyzed.

The proposed experiment aims to analyze the per-
formance of each DBMS in its offer as DBaaS in
the cloud, that is, in the standard configurations of-
fered by each supplier. We standardized the clusters
in all solutions to contain exactly three distributed
nodes, each node with 16GB of RAM. On Single-
store, the DBaaS offering for 16GB of RAM has 2vC-
PUs. In MariaDB Columnstore, the DBaaS offering
for 16GB of RAM has 4vCPUs. In Amazon Redshift,
the DbaaS for 16GB of RAM has 2vCPUs but uses
1GB of RAM for internal processing, resulting in an
actual 15GB of RAM availability. All solutions were
hosted on the Amazon AWS cloud at Region ’us-east-
I’ (North Virginia).

The usage of 16GB nodes in the cluster was pur-
posely chosen by the author because it is the small-
est amount of memory available across the different
DBaaS offerings in the market today and represents a
real scenario where practitioners will select the cheap-
est possible infrastructure for the DW in idle time and
scale out the number of nodes as the necessity arrives
(peak in demand). Furthermore, we specifically de-
signed the experiment to test a scenario in which the
volume of the denormalized table does not fit the total
memory available in the cluster (SF = 50). In a clus-
ter with 3 nodes, which is used in our experiments,
the total amount of memory available is 3 x 16GB
= 48GB, forcing the DW to perform main and sec-
ondary memory operations along with data distribu-
tion to provide the results. These scenarios were cho-
sen because FT is commonly known to provide better
query performance since it eliminates the joins of a
query (G. Lawrence Sanders, 2002).

4 EXPERIMENTS

This section presents the experiments performed for
each DBMS solution selected, along with its results
and a thorough analysis comparing the performance
of a DW built with a design using the star schema and
one with a fully denormalized schema. In some cases,
relevant variables such as data volume and memory
consumption are also analyzed if pertinent to under-
stand the solution’s behavior and performance. The
results depicted in this section are relevant to high-
light several factors that data managers and engineers
must take into account when designing a distributed
DW.

Before the experiments began, all the SSB data
was loaded into the DBaaS. Tables 1 and 2 below
show the total amount of data of the denormalized flat
table and the SS’s fact table for both Singlestore and
Redshift. Due to limitations in the DbaaS, it was not
possible to gather data volume for columnstore tables
in MariaDB Columnstore in the SkySQL offering. We
also present the data compression ratio of the data in
each solution compared to the total amount of data
organized as a tab-separated .CSV file, along with the
total amount of time in seconds to transfer and load
the data from Amazon S3 to the solution.

Table 1: Comparison of Fact table (SS) and Flat Table (FT)
data volume and data dump elapsed time - SF = 10.

SF - Schema SF10 - SS SF10 - FT

Solution Singlestore | Redshift | Singlestore | Redshift
Volume 3.0GB 2.4GB 8.5GB 12.5GB
Compression 1.86 233 3.04 2.07
Ratio

Data loading | 477.6 111.5s 2296.9s 674.9s
time

Table 2: Comparison of Fact table (SS) and Flat Table (FT)
data volume and data dump elapsed time - SF = 50.

SF - Schema SF50 - SS SF50 - FT

Solution Singlestore | Redshift | Singlestore | Redshift
Volume 18.7GB 12.7GB 66.8GB 62.7GB
Compression 1.51 223 1.94 2.07
Ratio

Data loading | 1766.5 546.7s 9246.4s 2313.1s
time

An analysis of the results shows that, with the ex-
ception of FT in SF = 10, Redshift has a higher com-
pression ratio than Singlestore, especially for multidi-
mensional schemas, meaning that its algorithms and
storage structure presents an advantage in data com-
pression compared to Singlestore. For SF = 10, Red-
shift data volume is 20% smaller in SS but 47% larger
in FT. For SF = 50, Redshift data volume is 32%
smaller in SS and 6% smaller in FT. Regarding the

43

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

total amount of time to load the data in the solution,
Redshift has a clear advantage over Singlestore, prob-
ably due to the overload of work necessary to store the
data in its hybrid structure to support HTAP: For SF
= 10, Redshift loads the data 77% faster than Single-
store in SS and 70% faster in FT. For SF = 50, Red-
shift loads the data 69% faster than Singlestore in SS
and 75% faster in FT.

4.1 Experiment 1: Singlestore

SingleStore (formerly known as MemSQL) is a dis-
tributed database focusing on high performance in
both transactional and analytical workloads. It can
be categorized as a Single-Store Architecture HTAP
database with Primary Columnstore + In-memory
Rowstore. Officially launched in 2013, it was one of
the first general-purpose databases, introducing a pro-
prietary storage engine called S2DB, which combines
in-memory rowstore and on-disk columnstore, as well
as vectorization techniques, columnar scanning using
secondary indexes, among others (Prout, 2022).

The Singlestore structure is composed of S2DB
clusters, which have two layers: aggregator nodes,
which function as SQL query routers and act as a
gateway in the distributed system, and leaf nodes,
which are responsible for the distributed and paral-
lel execution of queries, as well as aggregate the re-
sult and return it to the customer. Singlestore uses
a shared-nothing architecture, with each node in the
cluster responsible for a subset of the data. Commu-
nication with the client is carried out via SQL com-
mands under a MySQL protocol (Geomar Schreiner,
2019). Last checked in August 2023, the service has
three plans: Standard, whose cost starts from $0.65
per hour; Premium, starting at $1.30 per hour; and
Dedicated, a unique service for on-demand projects in
which the price is based on a dedicated budget. It is
also possible to use Singlestore in Self-hosted mode,
where the customer hosts and manages his own sys-
tem (Singlestore, 2023).

Table 3 shows the results of the average execu-
tion time for different scale factors, SF = 10 and SF =
50 using Singlestore, with lower values highlighted in
bold and followed by a (-); higher values are followed
by a (+). According to our experiment, FT outper-
formed SS in all but one query (Q1.3) in SF = 50. An
explanation for this behavior is the fact that group 1
of queries only joins the fact table with the date di-
mension. Considering that the denormalized flat table
is 3.5 times larger than the normalized fact table in
SF = 50, there is an overload of work to handle the
redundancy of the data in the flat table in which is
equivalent to perform the single join operation.

44

Table 3: SSB average execution times (in miliseconds) on
Singlestore: star schema (SS) and flat table (FT).

SF=10 SF =50
Query Ss FT Ss FT
Ql.1 226 (+) 136 (-) 793 (+) 561 (-)
Q1.2 185 (+) 143 (-) 654 (+) 539 (-)
QL3 159 (+) 126 (-) 505(-) 509 (+)
Q2.1 245 (+) 144 (-) 1145 (+) 582 (-)
Q2.2 221 (+) 149 (-) 1014 (+) 583 (-)
Q23 331 (+) 124 (-) 1183 (+) 452 (-)
Q3.1 316 (+) 177 (-) 1194 (+) 711 (-)
Q3.2 246 (+) 169 (-) 983 (+) 721 (-)
Q3.3 168 (+) 115 (-) 763 (+) 356 (-)
Q3.4 158 (+) 115 (-) 544 (+) 338 (-)
Q4.1 381 (+) 181 (-) 1598 (+) 740 (-)
Q4.2 433 (+) 1205 (-) 1489 (+) 848 (-)
Q4.3 299 (+) 155 (-) 1031 (+) 915 (-)
TOTAL 3368 (+) 1939 (-) 12896 (+) 7855-
Comparative -42% -39%
%

The experiment carried out shows that for Single-
store, the denormalization in the FT scheme brings a
clear performance improvement to DW, with an over-
all performance advantage of 42% in SF = 10 and
39% in SF = 50 compared to SS (meaning that FT
can complete the workload up to 42% faster than SS).

Q1 Q2 a3 @1 @2 @8 @1 32 @33 34 04l a2 a3

500
aQuery

Figure 1: SS increase in execution time, memory usage and
CPU time when compared to FT in %; SF = 50.

Figure 1 compares the percentage of increased
memory use and CPU time in addition to the query ex-
ecution time discussed above. It is possible to see that
SS has much higher CPU time (71% on average) than
FT. Regarding RAM memory consumption, however,
we notice that SS’s increase in memory usage for
query group 3 has fallen below zero, meaning that FT
has used much more memory than SS to execute all
four queries of group 3, on average 281% more mem-
ory. This might be explained by the fact that these
queries calculate revenue volume over a given period
of time, dealing with even more data than group 4 of
queries, which emulates a "what-if” sequence. For all
other queries, with the exception of group 3, SS has
increased memory consumption compared to FT.

A Performance Analysis for Efficient Schema Design in Cloud-Based Distributed Data Warehouses

4.2 Experiment 2: Amazon Redshift

Launched in 2013 by Amazon Web Services (AWS),
it is considered the first 100% cloud-managed en-
terprise quality DW, focused on massively parallel
data processing (MPP) and columnar storage. Red-
shift brought simplicity and better cost-effectiveness
to the market, introducing the concept of DWaaS to
the world (Pandis, 2021). As of August 2023, Red-
shift is offered exclusively as a cloud-based DBaaS,
fully managed by the solution and hosted on AWS.
The service can be scaled manually and automati-
cally, depending on the required infrastructure (size
of infrastructure and cluster nodes) and the necessary
availability zone, with costs starting at $0.25 per hour
per node. The Redshift cluster architecture is based
on a shared-nothing strategy, layered and composed
of a coordinator node, called the leader node, and
multiple computing nodes. Data is stored in Redshift
Managed Storage, located in Amazon S3, cached on
compute nodes on SSDs local to the DBMS and com-
pressed in columnar format. Tables are replicated on
each node, or partitioned across multiple S3 buckets
and distributed across nodes (Pandis, 2021).

An analysis of Table 4 shows that in group 1 of
queries (Q1.1, Q1.2, and Q1.3), both in SF = 10 and
SF = 50, FT outperforms SS in Redshift, even with
an increase in data volume in FT due to data redun-
dancy (the flat table is four to five times bigger than
the normalized fact table in Redshift). One can con-
clude that, for this solution in group 1, the smaller
size of SS does not compensate for the overhead of
performing the join operation, in which is preferable
to handle the larger volume of data in FT. In further

Table 4: SSB average execution times (in miliseconds) on
Redshift: star schema (SS) and flat table (FT).

Query SF =10 SF =50

SS FT SS FT
Ql.1 140 (+) 85(-) 630 (+) 382 (-)
Q1.2 116 (+) 67 (-) 522 (+) 297 (-)
Q1.3 108 (+) 68 (-) 478 (+) 294 (-)
Q2.1 266 (-) 1003 (+) 1142 (-) 4917 (+)
Q2.2 226 (-) 984 (+) 1530 (-) 4909 (+)
Q2.3 210 (-) 804 (+) 878 (-) 4006 (+)
Q3.1 438 (-) 1587 (+) 2360 (-) 8002 (+)
Q3.2 257 (-) 1557 (+) 1099 (-) 7874 (+)
Q3.3 214 (-) 798 (+) 970 (-) 3953 (+)
Q3.4 202 (-) 1165 (+) 902 (-) 5711 (+)
Q4.1 491 (-) 1393 (+) 2654 (-) 7029 (+)
Q4.2 452 (-) 1558 (+) 1996 (-) 7893 (+)
Q4.3 320 (-) 1554 (+) 1284 (-) 7846 (+)
TOTAL 3440 (-) 12623 (+) 16345 (-) 63113 (+)
Comparative| -72% -74%
%

analysis of query group 1, we can notice that queries
Ql.1, Q1.2 and Q1.3 only filters columns from the
Lineorder and Date tables, not using any VARCHAR
columns from the Part, Customer or Supplier tables.
Because Redshift uses columnar storage, the solution
does not need to retrieve the entire distributed flat ta-
ble to return the results, thus resulting in a better per-
formance in FT. As the queries become more com-
plex, however, we can see that there is a reversal in
the performance of FT compared to SS.

In all remaining 20 distinct queries in groups 2, 3
and 4, SS outperformed FT in both SF = 10 and SF
= 50. The overall performance advantage for the star
schema (SS) using Redshift is 72% in SF = 10 and
74% in SF = 50 (meaning SS can complete the work-
load up to 74% faster than FT). A contributing factor
to the advantage of SS in SF = 50 is the fact that it
is the workload in which the total size (62.7GB) of
the denormalized table (FT) does not fit in the total
amount of memory available for querying in the clus-
ter (3 x 16 GB = 48GB), meaning the solution has
to perform swaps between main and secondary mem-
ory, along with handling the distribution of data in the
nodes of the cluster.

Unlike Singlestore, which has hybrid storage for
HTAP operations, the optimized columnar storage of
Redshift, the distributed allocation of data in the clus-
ter, and the selectivity of SSB’s query constraints to
filter data selection may be responsible for these re-
sults, in which it is preferable to perform the join op-
erations than to handle the larger volume of data in
the FT, i.e. data denormalization does not improve the
overall performance of a distributed DW in Redshift.

4.3 Experiment 3: MariaDB
Columnstore

Released in 2016, MariaDB ColumnStore is a dis-
tributed DBMS that provides high performance in ex-
ecuting distributed queries, especially for analytical
(OLAP) queries that involve scanning large datasets.
Although it also has rowstore storage, its architecture
is especially focused on columnar storage (defined
when creating the table), which was built by porting
InfiniDB 4.6.7 to MariaDB Server. Its architecture is
composed of several MariaDB servers, operating as
modules and working together to offer linear scala-
bility and high performance using a shared-nothing
architecture.

MariaDB Columnstore is offered in three modal-
ities: MariaDB Community Server, an open source
solution that can be managed and hosted by the cus-
tomer in their own cloud, MariaDB Enterprise, a ded-
icated solution for scaled production environments,

45

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

with DBMS management and support provided by
MariaDB, and SkySQL. SkySQL is a DbaaS solution
offering that automates the deployment and sizing of
MariaDB Columnstore and MariaDB Xpand DBMS
in the cloud, in an environment fully managed by the
solution and with costs starting at $0.1318 per hour.
The analysis of mean execution time for MariaDB
Columnstore presents, again, a curious scenario, as
shown in table 5: In group 1 (Q1.1, Q1.2 and Q1.3),
where the queries are simpler (group 1 only joins the
fact table with the date dimension), both in SF = 10
and SF = 50, FT outperforms SS, even though there is
an increase in data volume in FT due to redundancy.
Again, we conclude that the columnstorage architec-
ture of MariaDB Columnstore favors FT as it does not
need to touch the entire distributed flat table to return
the results, but only a few columns. As the queries be-
come more complex, however, we can see that there is
a reversal in the performance of FT compared to SS.

Table 5: SSB average execution times (in miliseconds) on
MariaDB Columnstore: star schema (SS) and flat table
(FT).

Query SF =10 SF =50

SS FT SS FT
QL.1 568 (+) 389 (-) 2202 (+) 1067 (-)
Q1.2 261 (+) 226 (-) 1122 (+) 675 (-)
Ql.3 248 (+) 233 (-) 1089 (+) 698 (-)
Q2.1 2468 (-) 4163 (+) 8735 (-) 10226 (+)
Q2.2 1957 (-) 4279 (+) 7111 (-) 10375 (+)
Q23 1191 (-) 4078 (+) 4163 (-) 9952 (+)
Q3.1 2856 (-) 6362 (+) 13615 (-) 15931 (+)
Q3.2 1815 (-) 5886 (+) 7781 (-) 14796 (+)
Q3.3 1174 (-) 7989 (+) 6478 (-) 19906 (+)
Q34 1010 (-) 8763 (+) 3769 (-) 21901 (+)
Q4.1 3300 (-) 9237 (+) 14883 (-) 22504 (+)
Q4.2 1968 (-) 2720 (+) 7725 (+) 6789 (-)
Q4.3 1465 (-) 1868 (+) 5699 (+) 4753 (-)
TOTAL 20281 (-) 56193 (+) | 84372 (-) 139573 (+)
Comparative % -63% -39%

Regarding the remaining 20 query executions
compared in groups 2, 3 and 4, SS outperformed FT in
18 queries, with the exception only of Q4.2 and Q4.3
in SF = 50, where FT outperforms SS by a slight ad-
vantage (12% faster in Q4.2 and 16% faster in Q4.3).
The overall performance advantage, however, for the
star schema (SS) using MariaDB Columnstore is 63%
in SF =10 and 39% in SF = 50 (meaning SS can com-
plete entire workload up to 63% faster than FT). Just
like Redshift, the optimized architecture of MariaDB
Columnstore, which uses a columnar storage only,
makes it preferable to perform the join operations
along with the constraints in groups 2, 3, and 4 of
queries, rather than handle the larger volume of data
distributed in the cluster. One can conclude that the

46

denormalization of data does not improve the over-
all performance of the distributed DW in MariaDB
Columnstore.

S HORIZONTAL ANALYSIS OF
RESULTS

This section presents a comparative analysis of the
experiments and its results presented in the previous
section. Taking into account the different architec-
tures of the selected DBaaS solutions and different
behavior in the test scenarios, a comparative analy-
sis of performance is presented. The results depicted
in this section are relevant to highlight some of the
variables that CTOs, data managers, and/or data en-
gineers must take into consideration when selecting a
cloud solution for a distributed DW.

Figures 2 and 3 compare, respectively, for SF =10
and SF = 50, the percentage increase in the execution
time of SS in relation to FT for each of the solutions
studied. It is easy to notice that Singlestore is the only
solution with results above zero, meaning that FT is
faster than SS. For MariaDB Columnstore and Red-
shift, we can notice that both favor SS, as SS actu-
ally decreased the execution time. We also notice that
Redshift, with the exception of Q3.3 and Q3.4 in SF
= 10, has even higher performance increase when us-

200000

300000 —m-REDSHIT

—e— MARIADB COLUMNSTORE
200000

4 SINGLESTORE
500000
500000

700000

800000

~800.000
awery

Figure 2: SS increase in execution time when compared to
FT in %, per solution; SF = 10.

300,000
—e— MARIADE COLUMNSTORE

-+ SINGLESTORE

400,000
“500.000

600,000

-700.000

Query

Figure 3: SS increase in execution time when compared to
FT in %, per solution; SF = 50.

A Performance Analysis for Efficient Schema Design in Cloud-Based Distributed Data Warehouses

ing SS instead of FT compared to MariaDB Column-
store. One can notice that queries Q3.3 and Q3.4 are
the ones with higher selectivity.

Figures 4 and 5 show, respectively for SF = 10
and SF = 50, the overall performance depicted earlier
in a comparative scenario per solution and per data
schema. It is possible to notice that in both schemes
(SS and FT) and in both scale factors, Singlestore has
a superior performance, followed by Amazon Red-
shift and then by MariaDB Columnstore. This re-
sult shows that, despite having a hybrid structure to
perform OLAP and OLTP queries, and hypothetically
an overload of functions in the structure to maintain
row and columnar storage, Singlestore’s total execu-
tion time to conclude the workload was still advanta-
geous compared to other solutions, except only in the
comparison of Singlestore’s SS schema to Redshift’s
SS schema in SF = 10, which have equivalent per-
formance considering the confidence interval of the
results.

60000

s0000
2 0000
20000

£ 20000

10000

SsF-10

Figure 4: Total execution time (milliseconds) by scheme
and solution; SF = 10.

140000
120000

100000
g

£ o000

§ o000
3

0000

20000

o

SF=50

Solution- Schema

Figure 5: Total execution time (milliseconds) by scheme
and solution; SF = 50.

In SF = 10, the overall performance of Singlestore
(considering SS and FT) is 67% faster than Redshift,
which is 78% faster than MariaDB Columnstore. In
SF = 50, the overall performance of Singlestore is
73% faster than Redshift, which is 64% faster than
MariaDB Columnstore. In a further analysis of the or-
der of performance in figures 4 and 5, we can notice

the clear difference in the execution process and in
the architecture of Singlestore compared to Redshift
and MariaDB Columnstore, with a clear optimization
in SS compared to FT in the last two. This evidence
suggests that, contrary to the common belief that de-
normalization is a guarantee of performance improve-
ment, there are scenarios in which SS will perform
better than FT, even with the necessity to perform join
operations in a distributed DW.

6 CONCLUSION

Data modeling and performance tuning are the most
difficult aspects of data management. It is especially
challenging in the context of a distributed DW: Data
is no longer centralized and limited to the company’s
OLTP systems, being now highly distributed, with
different structures, and growing at an exponential
rate, resulting in a variety of factors that may influ-
ence a DW’s performance.

This work presented an evaluation and discussion
of adequate data modeling strategies for data ware-
housing using three different DBaaS solutions: Sin-
glestore, a hybrid store that favors HTAP and two
columnar stores that favor OLAP: Amazon RedShift
and MariaDB Columnstore. The SSB was used to
evaluate the performance of a star schema and a fully
denormalized schema in a distributed DW. Two scale
factors were used: SF = 10, with 60 million rows
(a volume where the data fit in memory both in SS
and FT), and SF = 50, with 300 million rows (a vol-
ume where the data in FT do not fit in the total avail-
able memory of the cluster). The same cluster in-
frastructure (3 nodes and 16GB of RAM available in
the nodes) was used across the solutions. For each
solution, a detailed performance evaluation was per-
formed to analyze the advantage of data denormaliza-
tion in their design. Finally, we compared the overall
performance of the DW to complete the entire work-
load in order to conclude which one delivers the most
value.

Regarding the comparison between a DW built us-
ing a star schema and a DW built using a fully de-
normalized schema, this paper concludes that the de-
normalization of data is not a guarantee of perfor-
mance improvement in a columnar distributed data
warehouse. In the results achieved in the benchmark
for Redshift and MariaDB Columnstore, SS outper-
formed FT respectively by 74% and 63%, meaning
the star schema executes the workload considerably
faster than the denormalized table for these solutions,
even with the necessity to perform join operations.
On the other hand, the results of the benchmark ex-

47

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

ecuted using Singlestore showed that FT completes
the workload 42% faster than SS, meaning that de-
normalization, for this solution, can improve perfor-
mance, even with the redundancy of data generated
by the FT.

One can notice great disparities in the results of
the experiment as a result of the difference in the
architecture of the solutions. While Singlestore of-
fers a single all-purpose solution focused on HTAP
(transactional and analytical operations altogether),
Redshift and MariaDB Columnstore are characterized
as solutions focused specifically on OLAP. Surpris-
ingly, our results show that a NewSQL HTAP solu-
tion, which would supposedly have an overhead of
functions to handle both workloads, can have equal
or superior performance in comparison to a solution
specifically focused on OLAP workloads, given the
NewSQL DW is built with a schema design using a
fully denormalized table.

Regarding the comparison of performance be-
tween solutions, Singlestore appears highest in the
rank, followed by Redshift and then by MariaDB
Columnstore. Singlestore presents better results in
terms of fastest total query execution time to complete
the workload. Redshift, however, has better data com-
pression and faster data loading time from .CSV files.

As future work, we intend to analyze in more de-
tail the opposite scenario analyzed by this paper: in-
stead of verifying the performance of data denormal-
ization in the flat table, we intend to analyze the per-
formance of OLAP queries in HTAP databases that
claim no ETL process is needed, i.e., we can run an-
alytics using the same normalized data schema de-
signed for transactional workloads. We also intend
to carry out experiments varying the number of nodes
in the cluster and with a larger number of NewSQL
DBaasS solutions.

DECLARATION OF COMPETING
INTEREST

The authors declare that they have no known com-
peting financial interests or personal relationships that
could have appeared to influence the work reported in
this paper.

DATA AVAILABILITY

Data will be made available on request.

48

TRADEMARKS

All commercial products cited in this article are reg-
istered trademarks of their respective companies.

REFERENCES

Abadi, D. J.; Madden, S. R. . H. N. (2008). Column-Stores
vs. Row-Stores: How Different Are They Really? Pro-
ceedings of the ACM SIGMOD Conference on Man-
agement of Data, 967-980.

Adamson, C. (2006). Mastering data warehouse aggregates
: solutions for star schema performance. Proceedings
of the 21st International Conference on Information
Integration and Web-Based Applications e Services.
Association for Computing Machinery. (iiWAS2019),
p.- 361-369., Wiley Pub, Indianapolis.

Almeida, R., Furtado, P., and Bernardino, J. (2015). Per-
formance evaluation mysql innodb and microsoft sql
server 2012 for decision support environments. pages
56-62.

Costa, E., Costa, C., and Santos, M. Y. (2017). Efficient
big data modelling and organization for hadoop hive-
based data warehouses. In Themistocleous, M. and
Morabito, V., editors, Information Systems, pages 3—
16, Cham. Springer International Publishing.

Dumbill, E. (2013). Making sense of big data, page 1-2.

Eduardo Pina, Filipe S4, J. B. (2023). Newsql databases as-
sessment: Cockroachdb, mariadb xpand, and voltdb.
Future Internet.

G. Lawrence Sanders, S. S. (2002). Denormalization ef-
fects on performance of relational database for data
warehouse. State University of New York at Buffalo
ProQuest Dissertations Publishing, New York.

Geomar Schreiner, Ronan Knob, A. F. R. M. (2019). Uma
andlise de solu¢des newsql. 2019: ANAIS DA XV
ESCOLA REGIONAL DE BANCO DE DADOS.

Grolinger, K; Higashino, W. T. A. C. M. (2013). Data man-
agement in cloud environments: Nosql and newsql
data stores. Journal of Cloud Computing: Advances,
Systems and Applications.

Idrissi, M. A. A. (2016). Database-as-a-service for big data:
An overview. (IJACSA) International Journal of Ad-
vanced Computer Science and Applications, Vol.7.

Jaecksch, B.;Lehner. W;; Faerber, F. (2010). A plan for
OLAP. Proceedings of the 13th International Con-
ference on Extending Database Technology, Pages
681-686.

Kimball, R.; Ross, M. (2002). The data warehouse toolkit
: the complete guide to dimensional modeling. Wiley,
New York.

Kimball, R. and Ross, M. (2013). The Data Warehouse
Toolkit: The Definitive Guide to Dimensional Model-
ing. Wiley Publishing, 3rd edition.

Krishnan, K. (2013). Data Warehousing in the Age of Big
Data. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA.

A Performance Analysis for Efficient Schema Design in Cloud-Based Distributed Data Warehouses

Murazzo, M., Gémez, P., Rodriguez, N., and Medel, D.
(2019). Database NewSQL Performance Evaluation
for Big Data in the Public Cloud, pages 110-121.

Murphy, B. D. P. T. (1988). An architecture for a business
and information system. IBM Systems Journal, Vol.
1.

Nambiar, R. O. and Poess, M. (2006). The making of tpc-
ds. In VLDB, volume 6, pages 1049-1058.

Oliveira, J.; Bernardino, J. (2017). Newsql databases -
memsql and voltdb experimental evaluation. KEOD.
[S.1.: s.n.], p. 276-281.

O’Neil, P; O’Neil, B. C. X. (2009). Star schema bench-
mark. IEEE 9th International Conference on Research
Challenges in Information Science (RCIS) pp. 480-
485, doi: 10.1109/RCIS.2015.7128909.

Pandis, I. (2021). The evolution of amazon redshif. Pro-
ceedings of the VLDB Endowment.

Pavlo, A.; Aslett, M. (2017). What’s really new with
newsql? Association for Computing Machinery v. 45,
n. 2, p. 45-55., New York, NY.

Prout, S.-P. W.J. V.Z.S. Y.L.J.C.E.B.E.H.R. W.R. G.
N. S. A. (2022). Cloud-native transactions and analyt-
ics in singlestore. SIGMOD: Proceedings of the 2022
International Conference on Management of Data.

Rabelo Ferreira, F. (2023). Python scripts created for the
experiment. .

S 1li¢, S Ili¢, I. M. D. M. (2022). A comparison of query
execution speeds for large amounts of data using var-
ious dbms engines executing on selected ram and cpu
configurations. volume 29.

Serlin, O; Sawyer, T. G. J. (1998). Tpc-h and tpc-ds.
https://www.tpc.org.

Singlestore (Accessed in April, 2023). Singlestore pricing
website. .

Snowflake (September, 2023). Snowflake: One platform,
all your data, all your users. .

Stonebraker, M. (2011). Newsql: An alternative to nosql
and old sql for new oltp apps. Communications of the
ACM Blog.

49

