
Extending Semantic RML Mappings with Additional Source Formats

Johannes Theissen-Lipp1,2 a, Niklas Schäfer3 b, Max Kocher1 c, Philipp Hochmann1 d,
Michael Riesener3 e and Stefan Decker1,2 f

1Chair of Databases and Information Systems, RWTH Aachen University, Aachen, Germany
2Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin, Germany

3Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen, Germany

Keywords: RML, RDF Mappings, Heterogeneous Formats, Domain-Specific Language, IFC, UML.

Abstract: Across many domains, the growing amount of data presents a challenge in extracting meaningful insights. A
significant hurdle is the accurate interpretation and integration of data from diverse sources, often dictated by
their specific applications. The RDF Mapping Language (RML), based on the W3C recommendation R2RML,
can be used to transform heterogeneous data formats to RDF using defined mappings. However, existing
RML implementations only support a limited set of (semi-)structured data sources such as CSV, SQL, XML,
and JSON, neglecting numerous use-cases relying on other formats. This work overcomes this limitation by
proposing a methodology to flexibly extend RML to support additional source formats. We systematically
analyze RML and its implementations to derive a generic concept for the extension of RML. Our contribu-
tions include a general workflow for extending RML with new formats and demonstrative implementations
of the RML Mapper for two examples from Building Information Modeling (BIM) and UML class diagrams.
Leveraging open-source code forks and a demonstrative domain-specific language ensures easy portability to
any other source format. The evaluation covers authoring of mappings, runtime performance, and practical
applicability. The results affirm the effectiveness of our generic methodology for extending RML mappings to
include additional source formats.

1 INTRODUCTION

The growth of web-based platforms and digitalization
across industries has led to a rise in data accumula-
tion, facilitating decision making and cross-domain
collaboration. To ensure effective sharing, semanti-
cally accurate and contextually aware data from dif-
ferent domains such as production, development, and
operations are required (Schuh et al., 2019). The
adoption of the graph-based Resource Description
Framework (RDF) as a standard data model enables
the representation of information and knowledge in a
machine-understandable and accessible manner. RDF
facilitates the merging of data sets from disparate net-
works using global identifiers and supporting tools
such as validators and reasoners. However, the appli-

a https://orcid.org/0000-0002-2639-1949
b https://orcid.org/0000-0003-4329-9244
c https://orcid.org/0000-0001-9801-0300
d https://orcid.org/0000-0001-8740-5606
e https://orcid.org/0000-0001-8633-7728
f https://orcid.org/0000-0001-6324-7164

cability of RDF as a general-purpose format is limited
due to potential data enlargement and inefficient pro-
cessing (Ravindra et al., 2011). Certain use cases re-
quire specialized data structures for efficient data ma-
nipulation, leading to interoperability challenges. As
a result, larger data sets often remain in their native
format and are selectively converted to RDF for spe-
cific purposes. Generating interpretable RDF requires
the inclusion of metadata, which is often implicit in
the source data. Various mapping languages facilitate
the manual addition of semantics from the input data
model to the conversion process.

The RDF Mapping Language R2RML, estab-
lished as a W3C recommendation in 2012 by the
RDB2RDF working group, facilitates the mapping of
relational databases to RDF citer2rml-tr. In addition,
Dimou et al. introduced source-independent map-
pings, extending the capabilities of RML to convert
formats beyond relational databases (Dimou et al.,
2013; Dimou et al., 2014; Dimou et al., 2020). RML
serves as a key mapping language for RDF, supported
by valuable tools such as a graph-based mapping edi-

Theissen-Lipp, J., Schäfer, N., Kocher, M., Hochmann, P., Riesener, M. and Decker, S.
Extending Semantic RML Mappings with Additional Source Formats.
DOI: 10.5220/0012551300003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 201-208
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

201



tor (Heyvaert et al., 2016) and an active research com-
munity. Experts analyze the syntactic and semantic
data structures of input data, and formulate and exe-
cute mappings to merge and transform heterogeneous
sources into RDF. Currently, RML supports hierarchi-
cal (e.g., JSON, XML) and tabular (e.g., RDB, CSV)
formats. Despite extensive research, the challenge of
conveniently extending RML’s supported source for-
mats to accommodate new ones based on domain or
application requirements remains.

Enabling RML mappings for different source for-
mats is critical (Lipp et al., 2020). Incorporating
application-specific metadata is more advantageous
than a generalized approach. Extending RML to sup-
port new graph-based data models enhances knowl-
edge graph construction. The potential and limita-
tions are explored through two use cases: Unified
Modeling Language (UML) diagrams from Draw.io
and Industry Foundation Classes (IFC). Although
these formats have a graph data model, they lack
RML support.

IFC files in Building Information Modeling (BIM)
represent 3D building and factory models typically
created in proprietary BIM authoring tools such as
Autodesk’s Revit. Handling the IFC data model is
challenging because it was originally intended as an
exchange format (Malcolm et al., 2021). Converting
relevant components of a model to RDF allows for
reasoner-based evaluations to verify implicit build-
ing information and validate design scenarios (Beetz
et al., 2021; Burggräf et al., 2021). For example,
the calculation of escape route dimensions could au-
tomatically assists factory planners. RML mappings
could assist in the partial and thus scalable conversion
of IFC files for further analysis.

Draw.io can create diagrams such as UML class
diagrams representing object-oriented models. Stor-
ing the domain knowledge of class diagrams as an
ontology in an RDF model is desirable. However,
automatic conversion is hindered by the lack of an
established standard for mapping class diagram se-
mantics to ontology semantics. RML mappings could
describe how components are converted to the Web
Ontology Language (OWL), potentially accelerating
model-driven systems engineering.

This paper presents a general methodology for
systematically extending RML with new input for-
mats (see fig. 1). It addresses the research ques-
tions on (i) data format requirements for RML conver-
sion, (ii) enhancing user-friendliness of source-spe-
cific mapping components, and (iii) software compo-
nents and requirements for RML implementation.

Analysis of the RML
specification

Analysis of source
code of existing

mappers

Interface design for
two concrete formats

Implementation in
existing mappers

General workflow to
extend RML with new

formats

Figure 1: Our five-step approach for designing generic
RML extensions starts with an analysis of RML specifica-
tions, includes concrete implementations in use cases, and
finally derives a general RML extension workflow.

2 BACKGROUND

In the following, RML and its relation to IFC and
class diagrams are described. IFC defines a data
schema and exchange file format structure for BIM
data and is used as a demonstration format to develop
a general workflow for extending RML.

2.1 RDF Mapping Language (RML)

Established as a widely used mapping language,
RML builds on W3C recommendations such as
R2RML (Das et al., 2012) and is influenced by related
research such as RML-star (Iglesias-Molina et al.,
2022). It is influenced by Dimou et al. (Dimou et al.,
2013; Dimou et al., 2014) and enables users to convert
heterogeneous data formats such as CSV/SQL/XML
into RDF triples. RML mappings are typically de-
fined in RDF format using terms from the RML on-
tology1 and executed by RML processors. A mapping
consists of one or more TriplesMaps defining map-
pings from a source file to RDF triples. The result-
ing nodes can be joined to generate linked data from
heterogeneous sources. While most of a mapping
is source-independent and semantically describes the
creation of the output graph, source-dependent parts
include iterators and references that access the con-
tents of the input file during the mapping process.
Listing 1 provides an example RML mapping, which
extracts data from a JSON file by iterating over each
”contact” object, creating triples with the contact’s
name and phone field.

2.2 Industry Foundation Classes (IFC)

Defined in the international standard ISO 16739-
1:2018, the buildingSMART organization maintains
IFC as an open specification for representing 3D

1http://semweb.mmlab.be/ns/rml

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

202



Listing 1: Example RML mapping with an iterator and two
references highlighted in yellow.

<#PhoneMapping>
a rr:TriplesMap ;
rml:logicalSource [
rml:source "phone-numbers.json" ;
rml:referenceFormulation ql:JSONPath ;
rml:iterator "$.contacts[∗]"];

rr:subjectMap [
rr:template

"http://example.com/{name}";
rr:class foaf:Person];

rr:predicateObjectMap [
rr:predicate foaf:phone ;
rr:objectMap [rml:reference "phone"]].

building and factory data for construction and facil-
ity models over their lifecycle. To enable information
sharing and collaboration among users and software
applications, the standard specifies a data schema to
represent facilities with 3D models and their related
metadata. The data schema accords to the EXPRESS
data specification language by which industrial prod-
uct data is defined (International Organization for
Standardization, 2018). As an example, listing 2 con-
tains an excerpt of the definition of a factory door in
the IFC format. The graph-based structure contains
information about the entity, such as height and width,
and relationships to other building elements.

Listing 2: Extract from the EXPRESS definition for a
IfcDoor entity in IFC 4.3.rc.2.

ENTITY IfcDoor
SUPERTYPE OF (ONEOF
(IfcDoorStandardCase))

SUBTYPE OF (IfcBuiltElement);
OverallHeight : OPTIONAL

IfcPositiveLengthMeasure;
OverallWidth : OPTIONAL

IfcPositiveLengthMeasure;
[...]
END_ENTITY;

Software support for IFC is given, e.g., by the
BIMserver software package (Beetz et al., 2010) that
provides parsing and a Java API to use the contained
entities as Java objects. The API is directly gener-
ated from the EXPRESS schema with the help of the
Eclipse Modeling Framework2. To represent IFC data
in RDF, the ontology IfcOWL (Pauwels and Terkaj,
2016) has been defined by Pauwels and Terkaj. It is
directly related to the EXPRESS schema and includes
a class for each entity type and a property for each re-
lationship.

2https://eclipse.dev/modeling/emf/

Several IFC data query languages have been pro-
posed. They aim to provide shortcuts and abstrac-
tions from the IFC data model to make accessibility
easier for authors. BimSPARQL is an extension of
SPARQL that lets the user query IfcOWL data more
conveniently as it defines special operators and geo-
metric algorithms for common use cases (Zhang et al.,
2018). The BIM query language BimQL (Mazairac
and Beetz, 2013) is a new domain specific language
whose syntax is similar to SQL and SPARQL. It
defines shortcuts to hide the technicalities of the
EXPRESS data model and allows binding of vari-
ables, aggregation and comparison of data. BIM-
server comes with a simple filter language3 based on
JSON that can filter entities based on their type, at-
tributes, and relationships. However, is does not sup-
port any data transformation such as binding of vari-
ables or arithmetic operators. Graph-based search al-
gorithms have been proposed to evaluate a query on
IFC data (Tauscher et al., 2016; Ismail et al., 2017).

2.3 UML Class Diagrams

To aid in model-driven development processes, the
conversion of UML class diagram data to RDF or
OWL is of particular interest to reduce modeling
efforts. For example, relevant transformation rules
to create ontologies in OWL are described (Vo and
Hoang, 2020). Similarly, existing tools such as UML-
toOWL4 allow for automized conversion. However,
the available solutions require specific source for-
mats that are mostly XML-based and thus already ad-
dressed by current RML mappers. In practice, do-
main experts design their class diagrams with end-
user software such as draw.io or the yEd Graph Ed-
itor (redacted, project-internal survey), which provide
their own data formats. An implementation convert-
ing visualizations of ontologies designed in Draw.io
to RDF/OWL was given by Chávez-Feria et al. (Feria
et al., 2021)

3 EXTENDING RML WITH
ADDITIONAL SOURCE
FORMATS

An overview of our methodology to extend RML with
new source formats is depicted in fig. 1. The follow-
ing five subsections cover these five steps in detail,
respectively.

3https://github.com/opensourceBIM/BIMserver/wiki/
JSON-Queries

4https://www.sfu.ca/∼dgasevic/projects/UMLtoOWL/

Extending Semantic RML Mappings with Additional Source Formats

203



3.1 Analysis of the RML Specification

In this section, document refers to the input file to
be mapped to RDF. Mapping refers to the resulting
RML mapping file. We derive a general interface that
needs to be implemented to access the data of the doc-
ument. For this purpose, the functions I (Iterator) and
E (Reference Extractor) define the semantics of two
formal languages, i.e. they map strings to a meaning
and are used to access the content of the document.
I and E are format-specific, because query languages
are. For example, IXML and EXML are defined using
XPath. A document is composed of records. The
iterator language I is used to specify the records to
convert. Each record is converted into an RDF node
during RML’s iteration loop. Let D denote the set of
documents and Rd denote the set of records contained
in a document d ∈ D. I maps a document d to a subset
of records using a string specified as rml:iterator
in rml:LogicalSource. The iterator can be omitted
for tabular input.

I(d, i) ∈P(Rd), d ∈ D, i ∈ Strings

I maps a string and a document context to a list of records.

Records are still part of the document’s data model
and cannot be directly mapped to RDF. A reference
extractor E extracts a list of strings from a record us-
ing a reference text (hereafter called reference) at var-
ious points during the iteration loop. These strings are
inserted into RDF, e.g. as labels, predicates or URIs.
Thus, the evaluation of a reference serves as the ac-
tual conversion between data models. It converts the
input’s data model to a list of strings that can be put
directly into RDF.

E(r,e) ∈P(Strings), r ∈ Rd , e ∈ Strings

E maps a string with context of a record to a list of strings.

With this proposal, RML is extended with IFC and
Draw.io Class Diagrams by designing and implement-
ing IIFC, ICD, EIFC and ECD.

3.2 Analysis of Source Code of Existing
Mappers

For the purpose of choosing the best suited RML pro-
cessor to fork and extend, existing processors have
been analyzed regarding the interface described in
section 3.1 can be identified in their source code and
to what extend their architecture is suitable to be ex-
tended by further input formats. Here, RML Mapper5

5https://github.com/RMLio/rmlmapper-java

(reference implementation), RocketRML6 and SDM-
RDFizer (Iglesias et al., 2020) have been analyzed. In
terms of extensibility and code quality, RML Mapper
and Rocket RML perform similarly well and outper-
form the SDM-RDFizer. Interfaces for I and E can be
identified in the source code, decoupling the logic of
RML from support for different input formats. Since
the reference implementation RML-Mapper is guar-
anteed to cover all of RML’s features, it is chosen for
the here discussed extension by creating a fork of the
repository7.

3.3 Extending RML with IFC

IFC is a structured file format, and entities, entity at-
tributes, and links between entities are defined in the
associated EXPRESS schema. The following section
describes the implementation of IFC file support in
RML Mapper. For this purpose, the new ontology
ifcrml is introduced. To extend RML by a new for-
mat, as described in section 3.1, I and E for the new
format must be implemented. The following sections
describe design and implementation of IIFC and EIFC.

IFC Iterator. The iterator extracts records from the
document, converting each into an RDF subject, en-
suring its individual significance. In IFC, records cor-
respond to entities defined in the EXPRESS schema.
While IFC files contain thousands of entities, not all
are relevant as subjects in the result. Query languages,
including BimQL, are typically used to filter out rel-
evant records, though textual queries are rare in prac-
tice. BIMserver supports a JSON-based filter lan-
guage for selecting IFC entities, used in tools like
bimvie.ws for interactive model viewing. While ex-
pressive, BimQL’s limited development and adoption
pose challenges. To address limitations, Java’s full
expressiveness is leveraged using the Function On-
tology (FnO) to implement a filter function. This
Java function receives entity lists and other param-
eters, returning processed and mapped IFC entities.
FnO defines function signatures linked to Java meth-
ods, facilitated by ifcrml ontology for parameter as-
signment (De Meester et al., 2020).

IFC ReferenceExtractor. A ReferenceExtractor
extracts text locally from a specific record. Each
IFC entity contains various attributes that are speci-
fied in the EXPRESS schema. These attributes can
be labels or identifiers of other entities for cross-
referencing. A clean syntax has been created that ex-

6https://github.com/semantifyit/RocketRML
7https://github.com/PHochmann/rmlmapper-java

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

204



tracts text from an attribute by its name. For label
attributes, the reference evaluates its text. If the at-
tribute is a cross-reference to another entity the state-
ment must be continued with an attribute of the ref-
erenced entity until it ends with a label. Attribute
references are separated by a period. Additionally,
a pseudo attribute IfcType has been implemented
that evaluates the name of the EXPRESS class of the
entity. This can be used to structure URIs of en-
tities based on their classes (such as rr:template
"https://standards.buildingsmart.org/IFC/
DEV/IFC2x3/FINAL/OWL/IFCType", which uses the
IFCType attribute to define an URI template). The
described functionality was implemented using BIM-
server which operates on IFC files. Communication
between our fork of RML Mapper and a BIMserver
instance follows the architecture from fig. 2.

RML Mapper

BIMserver

BIMserver client API

Mapping RDF

*.ifc,
optional Query

EMF
Objects

Figure 2: Architecture of our extended RML Mapper that
communicates with a BIMserver to execute mappings for
the IFC format. It transforms *.ifc files from a local file
system to the BIMserver (Beetz et al., 2010) for parsing.
We offer optional filtering via provided queries. Returning
Eclipse Modeling Framework objects represent the queried
IFC entities and are finally transformed to RDF.

3.4 Extending RML with Draw.io Class
Diagrams

UML can express object-oriented structures using
class diagrams. Classes are shown with their names,
attributes and methods, as well as relationships be-
tween classes. Draw.io class diagrams can be ex-
ported as XML, so it would be possible to use the
already existing implementation of RML for XML to
convert information from class diagrams to RDF. Ele-
ments could be selected from XML using XPath. Be-
cause a class diagram is a generic graph, and XML
documents are tree-structured, it is challenging to ex-
tract information directly using XPath. In addition,
the semantics of a class diagram are not fully reflected
in its serialization, e.g. which class an arrow points
to. To overcome these problems, we propose a query
language for class diagrams to hide the intricacies of
XML serialization from the mapping author.

Class Diagram Iterator. This section outlines the
design of ICD, the iterator tailored to the class di-
agram input format. Identifying the records within
a data model is critical to designing an iterator. In
essence, an iterator accesses these records and fa-
cilitates their availability to the RML mapping en-
gine. The data model of UML class diagrams is sim-
ilar to a generic graph because classes can be con-
nected by arrows indicating inheritance or dependen-
cies. The key to a class diagram is the classes, their
attributes, and the relationships between them. How-
ever, working only with classes as records may not
be intuitive. For example, to map attributes that sat-
isfy some condition X , mapping authors would first
have to select classes that potentially contain those
attributes. They could then use a reference such as
”attributes.name where X” to establish a link be-
tween the containing class and the labels of its at-
tributes. Although this method allows multiple val-
ues to be extracted with a single reference, linking the
class to other resources would require repeating the
constraint in each reference. In addition, RML’s joins
could not later link the attributes together because
only nodes that emerge from records can be joined,
compromising the quality of the resulting linked data.

To address these challenges, a simplified data
model for class diagrams is advocated, consisting of
the record types classes, attributes, and arrows with a
limited number of properties. The iterator is concep-
tualized as a context-free language.An excerpt of the
producing grammar is shown in fig. 3.The start rule S
specifies that each iterator consists of a class selection
and, optionally, a prefix and a where clause.A class
selection embodies a recursive statement that encodes
a breadth-first search of the diagram, returning a set
of selected classes.It serves as the basis for select-
ing either the classes themselves as records, their at-
tributes, or arrows.The prefixes attributes of and
usages of/by modify the record type.If the prefix
is omitted, the classes themselves are extracted as
records.A WhereClause allows filtering based on in-
dividual properties of the record. A simple example
is usages by Student to select all arrows coming
from Student classes.

Implementation. Draw.io class diagrams can be
exported as XML files. Since the meaning of the doc-
ument is not well reflected in its syntax, the imple-
mentation was comparatively complex. After using
a standalone XML parser, the deserialized data must
first be converted to the target data model. XML has
a tree structure, so IDs and cross-references are used
to represent the arbitrary graph of a class diagram. In
addition, Draw.io’s serialization to XML is more fo-

Extending Semantic RML Mappings with Additional Source Formats

205



S →[Prefix] ClassSelection [WhereClause]
Prefix →attributes of

Prefix →usages (of | by )

WhereClause → where Restriction
Restriction →Reference PropOp String

[PropOp Restriction]

Figure 3: Excerpt from the production rules of the context-
free grammar that produces the iterator language.

cused on the graphical representation of the diagram
using shapes, rather than the semantics of the data be-
ing represented. For example, attributes and functions
within a class rectangle are distinguished by compar-
ing their y-coordinate to the y-coordinate of the line
separating them. Serialized documents created by do-
main experts contain errors such as missing or incor-
rect arrow attachments, which are geometrically re-
constructed in post-processing.

3.5 General Workflow to Extend RML
with New Formats

This section addresses the research question of this
work by proposing a a workflow for extending RML
with new source formats.
Feasibility Analysis. The criteria for assessing
whether a given format can be supported by RML
in relation to the semantics of the data it contains,
while the syntax influences the technical implemen-
tation and effort. The data model of the source must
define mutually delimitable, enumerable records that
contain meaningful data to be converted into an RDF
resource. If individual records can be identified, it is
necessary to decide how to convert parts of a record
into a textual representation. Records should be suffi-
ciently similar to be treated by a maintainable amount
of TriplesMaps. For each record, similar RDF sub-
graphs are created. Variation of these subgraphs are
generated by joins, non-constant predicates and ob-
jects that can be defined in rr:PredicateMaps and
rr:ObjectMaps. However, the reference texts that
are used to extract a string from a record are always
the same within each TriplesMap. Records should be
kept as simple as possible, to avoid too much variety,
and to keep references simple. At the same time, they
should be complex enough to carry meaning them-
selves. If a logical concept is spread over several
records, it must be reconstructed in the mapping via
joins and cannot be identified with a single URI. Lim-
ited variety and semantic independence are therefore
conflicting goals.
Design of I and E. The iterator language must pro-

vide means for navigating within a document as well
as filtering records based on their shape. A trade off
between expressive strength and ease of use is needed.
In the case of graph-based data models, complex ex-
pressions of navigation patterns on the data might be
needed to retrieve meaningful records. The reference
extractor language should be kept as simple as possi-
ble. To improve maintainability, a reference is only
an attribute name without requiring much navigation
within the record.
Implementation Phase. The complexity of the im-
plementation phase depends on the serialization of the
documents and the complexity of aforementioned lan-
guages. First, a parser is needed to deserialize the
document. The result of the parsing is an object of
a programming language, whose structure reflects the
data model of the source format. It provides access to
the contained data. Records are selected from these
objects using the iterator. If records are selected in
such a way, that they cannot be derived directly from
the syntactic structure of the document, the parsed
data must be post-processed. Afterwards, the refer-
ence extractor which takes a record and extracts text
locally can be implemented.

4 EVALUATION

The evaluation of the two demonstrated extension
formats for RML includes several aspects: Author-
friendliness evaluates whether all mapping compo-
nents are intuitive and conversion via RML is time-
efficient. Expressiveness evaluates whether all infor-
mation can be extracted and converted. Performance
evaluates whether large files can be processed quickly.
All run times were measured using Apache Com-
mons’ StopWatch on an AMD Ryzen 7 PRO 3700U
@2.7GHz, Linux 5.10.84-1-MANJARO with Open-
JDK 17.0.1.

4.1 Conversion of IFC

In the following section, the IFC implementation is
evaluated using an IFC file provided by the use case.
See fig. 4 for a visual representation of the file, which
consists of a model of a demonstration factory. The
goal of this use case is to map all coverings (e.g., win-
dows, doors) of a single wall that is specified by its
GlobalID-attribute to RDF. Each covering should be
converted to a named node and additional labels spec-
ifying its entity-properties, such as name, dimensions,
type of door, and so on.

The lack of expressiveness in the BIMserver fil-
ter language requires entity selection through a Java

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

206



Figure 4: Visual representation of an experimental factory
plan provided by a use case as an IFC file.

function, which is challenging because it requires de-
tailed knowledge of the EXPRESS schema, especially
for complex cross-references such as IfcRelVoidsE-
lement, IfcOpeningElement, IfcRelFillsElement, and
RelatedBuildingElement. However, these entities
contain few attributes, and obtaining additional infor-
mation about windows or doors increases the com-
plexity of the Java function. While the current state
of the art approach involves converting the entire IFC
model to IfcOWL and validating it using SPARQL
or SHACL, this results in large mapped files com-
pared to the proposed solution which, while less user
friendly, leverages existing technology without hav-
ing to learn a new language with limited versatility.
The measured runtimes are dominated by the check-
in of the IFC files to the BIMserver and take up to 46
seconds for an 8 MB file with 140253 entities, includ-
ing conversion into Java objects. Further processing
takes milliseconds, even though several thousand ob-
jects from the Eclipse Modeling Framework are iter-
ated to select the appropriate objects. Caching these
objects and avoiding multiple check-ins of a file could
reduce the runtime even more.

The proposed methodology has demonstrated its
effectiveness in partially converting IFC files. Ex-
traction of records for RDF mapping occurs within
milliseconds, allowing for deeper analysis of use-
case relevant information not possible with full rep-
resentations such as IfcOWL. This solution opens up
new possibilities for analyzing building and plant data
with Semantic Web tools, such as validating planning
scenarios with reasoner-based evaluations or infer-
ring implicit information (Beetz et al., 2021; Burggräf
et al., 2021). Proper industrial application may be
limited to experts because of limitations such as the
weak documentation of the IFC query language, the
approaches still in the experimental stage, the limited
expressiveness of the BIMserver filter language, and
the complexity of the Java filter function.

4.2 Conversion of Class Diagrams

This section uses a real-world use case to evaluate
support for class diagrams, with the goal of mapping
the diagram to RDF/OWL by describing an equiva-
lent ontology. A comparison can be made with an on-
tology created in an ontology editor such as Protégé.
While the semantics of the diagram is different from
the standard UML class diagram, it has strong sim-
ilarities as a metamodel with a class concept. UML
classes correspond to OWL classes, arrow relation-
ships correspond to ObjectProperties, and attributes
correspond to DatatypeProperties, with arrows la-
beled with corresponding ObjectProperty names and
attributes specifying DatatypeProperty names. The
RML mapping consists of five TriplesMaps and took
about an hour to formulate, requiring only basic OWL
knowledge, with a runtime of about 100 milliseconds.
The use of RML for class diagram conversion proved
successful in our application scenario, minimizing the
end-user workload by eliminating the need for man-
ual ontology creation in Protégé. However, the output
is limited to components of the ontology that can be
described by recognized UML syntax elements, ex-
cluding ontology meta-information from the output.

5 CONCLUSION AND FUTURE
WORK

In this paper, we have extended the RML Mapper to
support two new formats and demonstrated a generic
workflow for RML extension. Our exploration of
IFC file conversion demonstrated the practical appli-
cability of our methodology, albeit the complexity of
the IFC data schema. Support for UML class dia-
grams demonstrated author-friendly mappings using
an iterator language that reflects the semantics of the
source data model. Lessons learned from both exam-
ple implementations influenced the development of a
generic workflow for extending RML.

Our work has not only extended the function-
ality of RML, but also addressed specific chal-
lenges in practical implementations. The pro-
posed enhancements, such as the introduction of
the rml:condition property and considerations for
query language implementation, pave the way for fur-
ther advances in semantic data integration. The evo-
lution of RML to support a broader range of formats
while adhering to the principles of linked data under-
scores our commitment to advancing data interoper-
ability.

Extending Semantic RML Mappings with Additional Source Formats

207



ACKNOWLEDGMENTS

Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC-2023 Internet of
Production – 390621612.

Funded by the FAIR Data Spaces project of
German Federal Ministry of Education and Re-
search (BMBF) under the grant numbers FAIRDS05,
FAIRDS14 and FAIRDS15.

REFERENCES

Beetz, J., Pauwels, P., McGlinn, K., and Tormä, S. (2021).
Linked Data im Bauwesen, pages 223–242. Springer
Fachmedien Wiesbaden, Wiesbaden.

Beetz, J., van Berlo, L., de Laat, R., and van den Helm,
P. (2010). Bimserver.org – an open source ifc model
server. In Proceedings of the CIP W78 conference,
page 8.

Burggräf, P., Dannapfel, M., Ebade-Esfahani, M., and
Scheidler, F. (2021). Creation of an expert system for
design validation in bim-based factory design through
automatic checking of semantic information. Proce-
dia CIRP, 99:3–8. 14th CIRP Conference on Intelli-
gent Computation in Manufacturing Engineering, 15-
17 July 2020.

Das, S., Sundara, S., and Cyganiak, R. (2012). R2RML:
RDB to RDF mapping language. Technical report,
W3C. Retrieved from https://www.w3.org/TR/r2rml/,
on 05.05.2022.

De Meester, B., Seymoens, T., Dimou, A., and Verborgh, R.
(2020). Implementation-independent function reuse.
Future Generation Computer Systems, 110:946–959.

Dimou, A., Sande, M. V., De Meester, B., Heyvaert,
P., and Delva, T. (2020). RDF Mapping Language
(RML). Technical report, IDLab - imec - Ghent Uni-
versity. Retrieved from https://rml.io/specs/rml/, on
05.05.2022.

Dimou, A., Vander Sande, M., Colpaert, P., Mannens, E.,
and Van de Walle, R. (2013). Extending r2rml to a
source-independent mapping language for rdf. In In-
ternational Semantic Web Conference (Posters & De-
mos), volume 1035, pages 237–240.

Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R.,
Mannens, E., and Van de Walle, R. (2014). Rml: A
generic language for integrated rdf mappings of het-
erogeneous data. In LDOW.

Feria, S. C., Garcı́a-Castro, R., and Poveda-Villalón, M.
(2021). Converting UML-based ontology conceptu-
alizations to OWL with chowlk. In ESWC2021 Poster
and Demo Track.

Heyvaert, P., Dimou, A., Herregodts, A.-L., Verborgh, R.,
Schuurman, D., Mannens, E., and Van de Walle, R.
(2016). Rmleditor: A graph-based mapping editor
for linked data mappings. In European Semantic Web
Conference, pages 709–723. Springer.

Iglesias, E., Jozashoori, S., Chaves-Fraga, D., Collarana,
D., and Vidal, M.-E. (2020). Sdm-rdfizer: An rml
interpreter for the efficient creation of rdf knowledge
graphs. In Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Man-
agement, pages 3039–3046.

Iglesias-Molina, A., Arenas-Guerrero, J., Delva, T., Di-
mou, A., and Chaves-Fraga, D. (2022). RML-star.
Technical report, W3C Knowledge Graph Construc-
tion Community Group. Retrieved from https://
kg-construct.github.io/rml-star-spec/, on 05.05.2022.

International Organization for Standardization (2018). In-
dustry Foundation Classes (IFC) for data sharing in
the construction and facility management industries
— Part 1: Data schema. Standard, International Orga-
nization for Standardization, Geneva, CH.

Ismail, A., Nahar, A., and Scherer, R. (2017). Application
of graph databases and graph theory concepts for ad-
vanced analysing of bim models based on ifc standard.

Lipp, J., Gleim, L., and Decker, S. (2020). Towards
Reusability in the Semantic Web: Decoupling Nam-
ing, Validation, and Reasoning. In Proceedings of
the 11th Workshop on Ontology Design and Patterns.
CEUR Workshop Proceedings.

Malcolm, A., Werbrouck, J., and Pauwels, P. (2021). Lbd
server: Visualising building graphs in web-based en-
vironments using semantic graphs and gltf-models. In
Eloy, S., Leite Viana, D., Morais, F., and Vieira Vaz,
J., editors, Formal Methods in Architecture, pages
287–293, Cham. Springer International Publishing.

Mazairac, W. and Beetz, J. (2013). Bimql – an open query
language for building information models. Advanced
Engineering Informatics, 27:444–456.

Pauwels, P. and Terkaj, W. (2016). Express to owl for con-
struction industry: Towards a recommendable and us-
able ifcowl ontology. Automation in Construction,
63:100–133.

Ravindra, P., Hong, S., Kim, H., and Anyanwu, K. (2011).
Efficient processing of RDF graph pattern matching
on MapReduce platforms. In Proceedings of the sec-
ond international workshop on Data intensive com-
puting in the clouds - DataCloud-SC '11. ACM Press.

Schuh, G., Prote, J.-P., Gützlaff, A., Thomas, K., Sauer-
mann, F., and Rodemann, N. (2019). Internet of
production: Rethinking production management. In
Wulfsberg, J. P., Hintze, W., and Behrens, B.-A., ed-
itors, Production at the leading edge of technology,
pages 533–542, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Tauscher, E., Bargstädt, H.-J., and Smarsly, K. (2016).
Generic bim queries based on the ifc object model us-
ing graph theory. In Proceedings of the 16th Interna-
tional Conference on Computing in Civil and Building
Engineering, Osaka, Japan, pages 6–8.

Vo, M. H. L. and Hoang, Q. (2020). Transformation of uml
class diagram into owl ontology. Journal of Informa-
tion and Telecommunication, 4(1):1–16.

Zhang, C., Beetz, J., and Vries, d. (2018). Bimsparql:
Domain-specific functional sparql extensions for
querying rdf building data. Semantic Web, pages 1–
27.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

208


