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Abstract: Privacy is an increasingly important concern especially in the European Union (EU). With the growing use of
technology individuals’ personal information is being collected and processed by companies and organizations
on a massive scale. In order to be compliant with Privacy regulations and General Data Protection Regulation
(GDPR) in particular, we could no longer use a software tool, LOGGIT, for several reasons. This tool was a
cornerstone in one of our Big-data pipeline ingestion. We did our best to comply with this requirement as soon
as possible. In this work, we discuss how we refactor our pipeline architecture several times in order to find a
balance between our requirements in terms of reliability and the regulations of the GDPR.

1 INTRODUCTION

This paper tackles the problem of refactoring a
BIG DATA pipeline in or Company. In particular, the
ingestion step is the part affected by the refactoring. A
sequence of exogenous events triggered the decision
to abandon a specific software tool - which is called
“LOGGIT” - and the need to find a suitable substitute
adopting in-house knowledge and open source tools.
The contribution we aim to provide is a real world use
case which might be useful for other companies when
dealing with similar issues.

Our Company, Lepida ScpA(lep, 2022), a sub-
sidiary of the Emilia-Romagna Region in Italy and it
is the main operational instrument regarding the im-
plementation of the Regional ICT Plan. It provides
a set of specialized services aimed to local Public
Administrations (PA) and citizens producing a huge
amount of unbounded heterogeneous data, such as:
(public) WiFi access locations, Regional healthcare
and IoT environmental monitoring data.

This flux of information is constantly growing and
has the potential to create many opportunities not just
for monitoring and managing each single sub-domain,
but also for the creation of new business models in-
volving public and private organizations and citizens.

Understanding the strategic importance of being
able to exploit these data, in 2018 Lepida ScpA
started with the creation of its first implementation of
a BIG DATA infrastructure in order to continue its tra-
dition of being the technological reference for the PA

in the Emilia-Romagna Region.
Recently, Lepida ScpA joined the Regional Big

data Platform “Big Data HPC” of the Emilia-
Romagna Region. This platform project is founded
with 3,5 MC by the Regional “Piano Sviluppo e Co-
esione” (PSC)1. This platform is going to be ready at
the beginning of 2024.

In this work, we focus on the specific use case of
WiFi Regional data. In fact, in recent years, Lepida
ScpA installed thousands of WiFi Access Points (AP)
in public places (e.g., train stations, plazas, libraries,
schools, and PA offices), conforming to the guidelines
of the European Digital Agenda. This Regional WiFi
(ssid: EmiliaRomagna-Wifi) service is 100% free and
open to the public without any need of authentication.

One of our BIG DATA pipelines reads the data flux
coming from our DHCP server logs in order to track
the locations and connection time of the devices con-
necting to the Regional network. This particular
pipeline exploited a software product, LOGGIT, devel-
oped by a local external Company as its main compo-
nent. As anticipated at the beginning, due to a series
of events that go beyond the scope of this document,
our management decided to do not renew the contract
with this Company and stop using the software. This
issue forced us to find a new in-house solution in a
short amount of time. In this work, we discuss the
new requirements we need for the ingestion, the en-
gineering choices we made and their evolution over
time.

1In English: “Plan for Development and Cohesion”.
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The remainder of this paper is organized as fol-
lows. We first discuss our problem in Section 2. Sec-
tion 3 discusses the choices taken for our architecture
and its implementation, Finally, 5 concludes the pa-
per.

2 THE PROBLEM

The pipeline we are considering is designed to ingest
data coming from our Company’s DHCP server logs.
By the way, the DHCP servers are actually two work-
ing in parallel. By the analysis of these logs we can
extract each distinct device which connects to the Re-
gional WIFI network, the time of the event and its lo-
cation. In fact, since each WIFI AP deployed in a zone
is associated with a specific sub-network IP, we can
guess each device location by checking in which sub-
network its IP is laying. Starting from this basic infor-
mation, many other can be inferred, such as tracking
a device movement over the Regional territory2.

We consider a device MAC address as its unique
identifier. Unfortunately, especially in newer devices,
a MAC address can change over time when a device
connects for the first time to a new or unknown wire-
less SSID network. When this happens, the same de-
vice will be considered multiple times, but we have
no practical options to avoid this behavior. However,
we consider the probability of this event quite low.

Figure 1 shows the web user interface (UI) of
LOGGIT, the actual component that we have to sub-
stitute. The following is a summary of the operations
carried out by this software:

• It receives log messages from our Networking
Department, where DHCP servers are hosted,
through a listening Syslog service

• (pseudo) anonymize any MAC address in mes-
sages

• parse each log message and creates a JSON object
populated with standard DHCP log parameters

• exploits an ElasticSearch (Mitra and Sy, 2016;
Zamfir et al., 2019) instance to store the parsed
messages in a specific index created with a re-
tention of 365 days. This index also fuels the UI
shown in Figure 1

• sends parsed messages to the next step of the
pipeline which is an Apache Kafka (Hiraman
et al., 2018) instance

2According to the GDPR we never track a single
device/MAC, but an aggregation of at least three devices.

The decision to abandon this tool and go for our
internal solution, has nothing to deal with the relia-
bility and effectiveness of the previously adopted tool
(i.e., LOGGIT), but rather with privacy issues concern-
ing sensitive data flowing to a system which is open
to an external Company.

In fact, DHCP log strings contain device mac ad-
dresses which are considered personal data and hence
sensitive. EU rules are pretty strict (gdp, 2023) when
dealing with privacy and Companies not compliant to
the rules are running the risk of a substantial fine or
even worst.

In addition, other technical choices have defined,
such as using a distinct hashing algorithm for MACs.

Therefore, we are forced to engineer an in-house
solution to implement all the features LOGGIT was
providing. We have to say that the availability of a
(web) UI has been a tremendous bonus from LOGGIT.
The possibility to literally ”see” what happens in al-
most real time and the option to make simple queries
over the data by filtering parameters gave us the
chance to spot problems before it was too late. Re-
implementing this particular feature turned out to be
the hardest part and, while we pave the road to solve
it (see Section 5), it is still an open question. For this
reason, we are going to discuss it later in Section 5.

3 ARCHITECTURE

Figure 2 shows the previous architecture. It is clear
that LOGGIT implements half of the entire pipeline.
The data stream, after reaching the Kafka queue, is
then moved to a relational (Postgres) database by a
Logstash instance. It is from the database that we ex-
tract knowledge via SQL processing.

Actually, when moving to the new Regional
BIG DATA infrastructure we stated in Section 1, the
relational database will be substituted by a Spark pro-
cess writing to a Delta Lake table over HDFS stable
storage. In this manner, we can keep the same SQL
processing interface using tools such as Sparl-SQL
(Armbrust et al., 2015; Shaikh et al., 2019), Hive
(Camacho-Rodrı́guez et al., 2019) or Trino (Fuller
et al., 2022).

In order to achieve our goal, we have to exploit
open source tools and the expertise in our Company’s
area to obtain a new architecture featuring the same
functions provided by LOGGIT since we can no longer
have a service exposing sensitive data.

Our methodology is to move towards our new so-
lution in a step by step manner. More precisely, we
plan to obtain our goal by successive iterations and
we in this work we describe and explain our choices
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Figure 1: A LOGGIT GUI snapshot. LOGGIT is the tool we have to substitute in our pipeline. In addition to data ingestion, it
allows to visualize and query ingested data.

Figure 2: Block diagram of the previous architecture ex-
ploiting LOGGIT.

during this path.
However, at the beginning, our main problem is

time: we have to bypass LOGGIT without any down-
time in the ingestion service as soon as possible.

3.1 Custom Architecture

Our first iteration of the refactored architecture is de-
picted in Figure 3. We labeled this attempt as ”cus-
tom” because we wrote some custom software in or-
der to switch from LOGGIT as soon as possible.

Here, a specific virtual machine substitute the one
running LOGGIT and hosts a custom program written

Figure 3: Block diagram of our first iteration of the architec-
ture. Two custom in-house developed software have been
adopted. The former performs pseudo-anonymization (e.g.,
hashing) over sensitive data, while the latter parses syslog
message content.

in Python language that listens to dhcp message log
sent by the Network Department Syslog server. Each
message is pseudo-anonymized by applying a hash
function and then it is sent to a topic (e.g., ”hdcp-
hashed”) on a Kafka queue.

Actually, we have to apply two distinct hash
function to the sensitive information (i.e., MAC ad-
dresses). In fact, while LOGGIT was using a SHA-
256 hash, we decided to adopt Fowler/Noll/Vo (FVN)
(fvn, 2023; Sadeghi-Nasab and Rafe, 2022) algorithm
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since it is better optimized (in space) for our appli-
cation. In addition, SHA-256 was not in accordance
with what it was written in our Privacy Statement
which was actually referring explicitly to the FVN al-
gorithm.

The reason to adopt Python here is twofold: (i)
we are proficient with this language and (ii) an imple-
mentation of the FVN algorithm is easily available in
Python.

The message parsing process is carried out by an-
other ”custom” program written in Java. We have
developed this program a few years ago during the
early days of our BIG DATA area. Its adoption was
the fastest route to have a new and working ingestion
pipeline.

This program is a Kafka consumer that reads from
”hdcp-hashed” topic and writes to the ”dhcp-stream”
one after having parsed each message. Both syslog
and dhcp tokens are taken into account during pars-
ing.

By keeping the ”dhcp-stream” topic as interface,
the rest of the pipeline remains untouched.

This approach can substitute the previous tool and
we achieved a working, production-ready pipeline in
a few days (testing inclusive). Essentially, we accom-
plished our first goal to bypass the previous tool in
a short amount of time. However, this approach has
some weaknesses.

Fist, our Data protection Officer (DPO) pointed
out that even if we have pseudo-anonymized MAC
addresses, in the Kafka topics we still have data that
have not been declared into the Privacy Statement and
we cannot modify it3.

Second, the use of custom software might not be
as reliable as exploiting a specific tool tailored for this
task. In addition, the lack of a monitoring tool of any
kind would likely let us discover any issues with an
unmanageable delay.

3.2 All in One Architecture

In order to cope with the issues of the first architec-
ture, we designed and implemented the second one
which we called ”all in one”. A block diagram of this
solution is depicted in Figure 4.

Here, the idea is to avoid to write on stable storage
- on the Kafka queue in this case - something that is
not declared in the Privacy Statement and that can be
considered a bad practice of any kind.

Essentially, we have to perform MAC hashing and
message parsing in s single step and writing the final

3Since it has been recently modified and, at the time of
writing, it is a pending-approval state by the Data Protection
Authority.

Figure 4: Block diagram of the All in one architecture:
MAC hashing and message parsing have been condensed in
a single step. In contrast to the previous solution, a Logstash
instance has been adopted as tool instead of custom written
software.

result to the ”dhcp-stream” Kafka topic.
Instead of using our custom software, we choose

a different route and we adopted a Logstash (Mitra
and Sy, 2016) instance. We have some experience
in using LogStash, which is part of the Elastic Stack
framework (Zamfir et al., 2019), but the FVN hashing
function is not managed by any of its huge library of
plugins. This is what had stopped us from using it at
a first stance.

Unfortunately, we have no experience with Ruby
language and its ecosystem, but diving into Ruby
code is the only way to add extra features outside the
ones provided by standard plugins in Logstash dis-
tribution. However, we invested a little time and it
turned out to be easier than expected.

Figure 4 shows some details of the adopted
Logstash instance. Its input plugin listens (over UPD
port 514) for syslog messages. Upon arrival, each
message is first parsed and then hashed. In contrast
to the previous solution, here we have actually in-
verted the sequence hashing-parsing. In fact, parsing
and then hashing is more efficient.

This is due to the fact that the message parsing
process follows a set of specific standard rules and
each token of the log string is mapped to a specific
field name. In this manner, for example, we know that
the MAC address will be in a mac address field. In
order to hash it, we do not have to search it inside the
raw message string as we would do without parsing
first.

As already stated we have to hash in two distinct
manner, since we need: (a) SHA-256 for compati-
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bility with the data collected so far and (b) FVN al-
gorithm for better resource utilization (Zhuoyu and
Yongzhen, 2022). According to Privacy regulations,
we can keep our pseudo-anonymized (hashed) data
for 1 year. This means that we have to keep this dou-
ble hashing for 1 year as well.

We provided Logstash with an open source
Ruby implementation of FVN algorithm and we in-
structed to calculate the hash in a specific field (e.g.,
fowler hash).

Finally, some processing is applied to the fields.
This includes the following: (a) field renaming
to maintain compatibility with the JSON structure
adopted since the LOGGIT era, (b) adding a uuid field,
(c) pruning any field that can no longer be exposed
(e.g., such as the gateway, or DHCP server IPs or
names).

Messages are then pushed downwards to the
Kafka queue in form of JSON object such as the fol-
lowing:

{
” t s ” : ” 2023 −09 −18T04 : 2 5 : 2 3 . 0 0 0 Z” ,
” dhcpd ” : {

” t y p e ” : ”REQUEST” ,
” l e a s e ” : {

” i p ” : ” 1 0 . 5 1 . 9 . 1 5 0 ” ,
” m a c a d d r e s s ” : ” c203bba34 . . . ”

}
} ,
” uu id ” : ” b 3 f a 8 f 2 f −a596 −4d56 − . . . ” ,
” epoch ” : 1695011123000 ,
” f o w l e r h a s h ” : ” ee5b7eb2eae3cedd ”

}
This architecture solved the Privacy concerns and

we believe it is potentially more reliable than our cus-
tom software. In fact, it has being grounded on a rep-
utable software - Logstash - which has been carefully
configured for our specific task.

However, this approach raises another issue with
which any enterprise system has to deal with. Hav-
ing condensed so many features in a monolithic com-
ponent, this raises a problem when any maintenance
operation is required. In fact, any restart of the vir-
tual machine (e.g., for security updates), any minor
or substantial change to the process configuration or
bug fix implies shutting down the service and loosing
incoming data.

This inconvenience requires a solution which we
describe in the following section.

3.3 Split Architecture

We considered several options in order to make the in-
gestion less brittle. The common denominator among

Figure 5: Block diagram of our split architecture: the pre-
vious monolithic Logstash component has been split into
two Logstash instancies, respectively: STEP-A and STEP-
B, running on distinct virtual machines. STEP-A is basi-
cally a ”pipe” with a buffer, while STEP-B performs a pro-
cessing over the data.

these is to split the previous Logstash process into two
distinct processes. We are going to call them respec-
tively STEP-A and STEP-B. Each process is hosted on
a different virtual machine. We considered the fol-
lowing two options:

• STEP-A listens for syslog messages as usual and
delivers them to STEP-B via an http-output plug-
in. This plug-in provides a delivery feedback and
thus STEP-A can detect if STEP-B goes offline. In
this case, STEP-A still collects data using its Per-
sistent Queue (PQ4) on stable storage. STEP-A
does not do any processing, it is like a pipe, but
with a persistent buffer.
In this manner, we would obtain two advantages:
(i) in case of STEP-B failure, when it returns on-
line, the fact will be detected by STEP-A and it will
restart sending messages (i.e., nothing is lost), (ii)
in case STEP-A fails, its PQ ensures that anything
not yet delivered to STEP-B is not lost.
However, the drawback of this solution is that the
PQ is in clear text and there is not even a chance
to encrypt it since the PQ is just after the receive
message phase and before any processing (i.e.,
”filtering” in Logstash jargon).

• Instead of using the PQ, we exploit a Kafka
topic to implement our own persistent queue fla-

4The Persistent Queue is a Logstash feature.
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vor. This time, STEP-A encrypts the raw message
string. Conversely, STEP-B reads from the topic,
decrypts each message and apply the processing
as in the all-in-one architecture case. In this sce-
nario, AES-256 algorithm would be adopted for
encryption/decryption and a strong random pass-
word would be shared between the processes us-
ing the Logstash key-store service.
In this manner, we would obtain the same fea-
tures as the previous option, with the extra ben-
efit of securing any sensitive information. The ex-
tra complexity due to the requirement of Kafka
is not an issue, since its resilience - when prop-
erly deployed as a cluster - is much higher than a
Logstash instance.
Unfortunately, after testing the feasibility of this
approach, our DPO warned us that we cannot do
that because this encryption mechanism and its
presence on our storage is something which is not
declared in our Privacy Statement.

Essentially, it seems that, even if we encrypt what-
ever persistent queue we choose, any processing that
is written on a persistent storage is a data treatment
and - at least - it must be declared.

Therefore, we have to relax our goal and come up
with a compromise solution which is depicted in Fig-
ure 5.

We still have two instancies of Logstash, respec-
tively: STEP-A and STEP-B, running on distinct vir-
tual machines. The former listens for syslog messages
and delivers them to STEP-B via an http-output plug-
in, exactly as in the previous first option. However,
this time we use the Logstash PQ in a relaxed fash-
ion: using the in-memory queue type. As the type
suggests, the queue is no more really persistent, but
volatile since it is kept in RAM memory. If STEP-
A fails, any non delivered message is lost. If STEP-B
fails instead, nothing is lost: STEP-A buffers messages
and will deliver them to STEP-B when it will eventu-
ally return online.

STEP-A does not do any processing, it is like a
pipe, but with a (volatile) buffer. Its simplicity im-
plies that the probability to have to fix it or to change
something is low. Instead, STEP-B is more likely to
need modifications and updates over time. Mainte-
nance does not imply losing data in this case.

It is worth noting that the PQ in memory is work-
ing with no encryption at all. This approach is per-
fectly fine for the Data Protection Authority point
of view as long as data are kept in memory and ac-
cessible to just a software process with no practical
chances to be exposed or extracted.

Unfortunately, none of our approaches provides a
UI (see Figure 1) with details about the ingested data.

Also our last architecture behaves like as ort of black
box: we can just see the events flowing on the Kafka
topic. However, while we do not have a GUI yet,
we have activated the monitoring features of Logstash
which allows to collect runtime metrics about nodes
and plugins via a REST API. In this manner, it is
possible to track the pipeline behavior by triggering
a REST call by configuring, for example, an external
tool such as CheckMK (che, 2023).

4 STATE OF THE ART

Unfortunately, it seems that there is not much knowl-
edge about the process of refactoring a BIG DATA

pipeline in literature in terms of patterns and best
practices to choose from.

Refactoring areas can be restricted to the five (Pe-
ruma et al., 2021) following topics: (i) code, (ii) tools
or IDEs, (iii) architecture and design patterns, (iv) unit
testing and (v) database. However, most of the litera-
ture focuses on the first one (e.g., code refactoring).

In (Peruma et al., 2021), the authors highlight
the need for bridging the gap between refactoring, as
research, and its adoption in practice, by extracting
common refactoring intents that are more suitable for
what developers face in reality.

An interesting study (AlOmar et al., 2021) from
Xerox Corporation aims to reveal insights into how
reviewers develop a decision about accepting or re-
jecting a submitted refactoring (code) request, and
what makes such review challenging. They present an
industrial case study where they analyze the motiva-
tions, documentation practices, challenges, verifica-
tion, and implications of refactoring activities during
code review. The results report the lack of a proper
procedure to follow by developers when documenting
their refactorings for review. As a countermeasure for
their findings, they designed a specific procedure to
properly document refactoring activities.

In our case, since our refactoring regards a spe-
cific ingestion process, we could not find any specific
guideline to follow and we could not even provide any
general one for the same reason. Our contribution is
to provide a detailed use case scenario and its solu-
tion.

5 DISCUSSION AND
CONCLUSIONS

In this paper we discussed the reasons why we have
to refactor our ingestion pipeline. Unfortunately, pri-
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vacy concerns forced us to abandon the LOGGIT soft-
ware which was a cornerstone in our pipeline archi-
tecture. We did our best to comply with this require-
ment as soon as possible.

The aim of our contribution is to provide a real-
world scenario or use case which might be useful for
other companies when dealing with similar issues.

We iteratively refactored our pipeline architecture
several times in order to find a balance between our
requirements in terms of reliability and the sometimes
convoluted rules of the Data Protection Authority.

We discussed each iteration and the choices we
made. Our pipeline has been up and running since
the first iteration and we had no data loss due to the
switch.

While we are still missing the visualization feature
of the previous tool (LOGGIT), we managed to provide
a basic monitoring facility. In order restore the pre-
vious web interface facility, our basic plan is to index
the data stream into an Elastic stack (e.g., OpenSearch
+ OpenDashboard) and replicate the LOGGIT visual-
izations. We consider the addition of a monitoring
and visualization interface as our next future goal.
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