Testing on Dynamically Adaptive Systems: Challenges and Trends

Isabely do Nascimento Costa' @3, Ismayle S. Santos?®° and Rossana M. C. Andrade' ©¢

Keywords:

Abstract:

! Federal University of Ceard (UFC), Fortaleza, Brazil
2Ceard State University (UECE), Fortaleza, Brazil

Adaptive Systems, Software Testing, Systematic Review.

Dynamically Adaptive Systems (DAS) are systems capable of modifying themselves automatically according
to the surrounding environment. Traditional testing approaches are ineffective for these systems due to their
dynamic aspects, making fault detection complex. Although various testing approaches have been proposed
for DASs, there is no up-to-date overview of the approaches, challenges, and trends. This research therefore
presents the results of a systematic literature review to identify the challenges, approaches and trends in testing
dynamically adaptable systems. For this objective, 25 articles between 2020 and 2023 were analyzed to answer
our research questions. As a result, approaches and their characteristics were identified, such as what type of
system they can be applied to, what activity is included in the testing process, and at what level of testing. We
also highlighted challenges that are still being faced and trends in testing dynamically adaptive systems. For
a more in-depth analysis of the results related to the challenges, grounded theory procedures were applied to

organize them and encourage future research that seeks to overcome and mitigate them.

1 INTRODUCTION

Modern information systems are becoming increas-
ingly complex due to the growing use of mobile de-
vices and, consequently, the need for them to work
uninterruptedly in any environment. The software in-
dustry has had to adapt to these demands by using
highly distributed systems to meet this need. These
systems must integrate all available, highly special-
ized, and heterogeneous devices and data flows op-
erating in a constantly changing environment with
fluctuating network availability and resources. De-
veloping, configuring, and maintaining these systems
is challenging, error-prone, and costly. One solution
to this problem is self-adaptation, and a dynamically
adaptive system (DAS) is capable of automatically
modifying itself in response to changes in its oper-
ating environment (Krupitzer et al., 2015).

However, these dynamic adaptations of systems,
while they are already in operation, can lead to unsafe
changes at runtime and can then lead to new risks of
bugs, unexpected interactions, performance degrada-
tion, and unwanted modes of operation (Lahami and
Krichen, 2021). In the context of DASs, traditional

https://orcid.org/0009-0008-5879-7469
@ nhttps://orcid.org/0000-0001-5580-643X
¢ https://orcid.org/0000-0002-0186-2994

Costa, I., Santos, I. and Andrade, R.

Testing on Dynamically Adaptive Systems: Challenges and Trends.
DOI: 10.5220/0012555900003690

Paper published under CC license (CC BY-NC-ND 4.0)

testing approaches are ineffective due to the inher-
ent characteristics of these systems, and therefore, de-
tecting faults effectively is not a trivial task (Siqueira
et al., 2016).

Based on this challenge, various approaches have
already been proposed to solve the most diverse chal-
lenges listed in the literature, as we can find in the
following works (de Sousa Santos et al., 2017), (Mat-
alonga et al., 2022), (Priya and Rajalakshmi, 2022)
and (Lahami and Krichen, 2021). However, there was
a lack of studies presenting an up-to-date overview of
the challenges of testing DASs and their approaches.
To contribute to future research related to testing in
DASs that seeks to solve these challenges, this re-
search proposes a systematic literature review with
the application of Grounded theory procedures. To
this end, two research questions were defined, and 25
articles from the last three years (2020, 2021, 2022,
and early 2023) were analyzed.

The rest of this paper is organized into five sec-
tions: Section 2 describes the methodology adopted
in this research; Section 3 presents the results ob-
tained by the systematic review; Section 4 analyzes
the results obtained and presents the threats to valid-
ity; Section 5 presents the related work; and finally,
Section 6 summarizes the results and indicates future
work.

129

In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 2, pages 129-140

ISBN: 978-989-758-692-7; ISSN: 2184-4992

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

2 METHODOLOGY

2.1 Background

This paper aims to present the challenges of test-
ing adaptive systems and identify current testing ap-
proaches and possible ways of testing DAS through
a systematic literature review. To this purpose, the
guideline of (Kitchenham et al., 2016) for Systematic
Literature Review (SLR) was followed. In addition,
procedures from Grounded Theory (GT) (Strauss and
Corbin, 1990) were applied to part of the data ob-
tained from the synthesis stage of the SLR.

2.2 Research Questions

The research questions were initially defined based on
the objective of this study and are as follows:

* RQ1) What Are the Characteristics of Cur-
rent Approaches to Testing DAS? This research
question aims to present testing approaches for
DASs by categorizing the type of test the approach
performs, the level of testing and type of activity
the approach is inserted in, the type and domain
of the system under test the approach is applied
to, and when the approach is applied.

* RQ2) What Are the Current Challenges Re-
lated to Testing DAS? This research question
presents the challenges of testing DASs by catego-
rizing them using Grounded Theory procedures.

2.2.1 Extraction Questions

The following extraction questions were defined to
obtain the information to answer the research ques-
tions. The correlation with the research questions can
be visualized through the IDs, where questions RQ1.1
to RQ1.3 support the search for the answer to question
RQI1, and RQ2.1 supports the search for the answer to
question RQ2.

* RQI.1) What are the approaches to testing adap-
tive systems?

* RQ1.2) What are the System Under Test (SUT)
types of the approach?

* RQ1.3) Are the testing approaches applied at run-
time or design time?

* RQ2.1) What are the challenges of DAS testing?

2.3 Search Strategy

The strategy used to search for articles was an auto-
mated search. A search string defined by (Siqueira

130

et al., 2021) was used. After all, it was the most up-
to-date systematic review (with papers up to 2019),
which had the characteristic of having a comprehen-
sive string because it used more generic keywords.
The guidelines of (Kitchenham et al., 2016) were fol-
lowed to validate the search strategy, starting with
identifying relevant electronic resources. Then, some
articles found by the string in the IEEE database were
analyzed, and based on the inclusion and exclusion
criteria, it was confirmed that the string was provid-
ing satisfactory results. Finally, an automated search
was performed.

The motivation for a new systematic review rather
than an update of the review by (Siqueira et al., 2021)
was based on the 3PDF checklist (Mendes et al.,
2020) for defining when to update a systematic re-
view. (Mendes et al., 2020) define an update of a sys-
tematic review only when the same methodology as
the previous review is followed. Neither is it possible
to compare the results of reviews that followed differ-
ent protocols. From this definition, differences were
noted compared to this review and the (Siqueira et al.,
2021), such as different databases, this work did not
use snowballing, how the systems were categorized,
different inclusion and exclusion criteria, the previous
review did not use a checklist to assess the quality of
the studies or grounded theory procedures to analyze
the results.

2.3.1 Databases

The databases selected for this work were IEEE!,
ACM?, Scopus® and ScienceDirect*. These databases
were chosen because of their widespread use by the
academic community. In addition, four databases
were chosen to cover a greater diversity of work.

2.3.2 Search String

The following search string was used:

(PTesting”) AND (Padaptive systems” OR
“adaptive system” OR ”context aware” OR
”context-aware” OR ”context awareness” OR
”context-awareness” OR ’adaptive software” OR
*’autonomic’’)

2.3.3 Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria were
used to select the articles:

https://ieeexplore.ieee.org/Xplore/home.jsp
Zhttps://dl.acm.org/
3https://www.scopus.com/
“https://www.sciencedirect.com/

Inclusion Criteria: The article deals with testing
DASs and is a primary work.

Exclusion Criteria: Article in a language different
from English, an article published before 2020, and
an article dealing with network testing

2.4 Study Selection

In the conduction stage, 312 articles were found us-
ing the search string. A filter for possible duplicates
was carried out using the Parsifal > tool, which found
109 duplicates between the databases. The title and
abstract of the articles were then read using the inclu-
sion and exclusion criteria, giving a total of 25 articles
for analysis. The 25 articles are listed in Table 1.

2.5 Quality Assessment

To assess the quality of the 25 articles selected for the
study, they were analyzed according to a checklist for
assessing the quality of studies. This checklist © was
adapted to identify better information relevant to this
research, such as the description of the approach and
how it is presented, based on the checklist and evalu-
ation scale suggested by (Kitchenham et al., 2010).
Following the evaluation scale suggested by
(Kitchenham et al., 2010), ten articles answered “yes”
to all the questions, and 15 articles answered most
questions (but not all) with “yes”. The lowest percent-
age of questions answered with “yes” was 81.25%,
and the closer to 100%, the better the quality of the
work. This percentage was calculated by the number
of questions in the checklist divided by the number
of questions answered with “yes”. Thus, the articles
selected have an acceptable degree of quality.

2.6 Data Extraction

Three researchers were involved in this review, so
the selection activity was distributed between the two
of them, and the review and synthesis of the results
were shared between all those involved. In addition,
alignment meetings were held to ensure that the au-
thors agreed when extracting the information, and the
agreement index was calculated from the Kappa test
(Cohen, 1960) using the Jamovi tool (Jamovi, 2022)
to check whether the reviewers agreed. We obtained
a coefficient of 0.8, which, within the scale of inter-
pretation indicated by (Kitchenham et al., 2010), fits
”Substantial” and is considered a good coefficient of

Shttps://parsif.al/

%The completed checklist can be found at
https://github.com/isabelycosta/Testing-DAS-Challenges-
and-Trends

Testing on Dynamically Adaptive Systems: Challenges and Trends

agreement between authors. The extraction stage was
then carried out using the questions mentioned in the
2.2.1 section.

2.7 Data Synthesis and Aggregation
Strategy

The data collected was synthesized in two forms:
RQI1.1, RQ1.2, and RQI1.3, which were summa-
rized and analyzed to answer research question RQ1.
Meanwhile, the data collected by question RQ2 was
analyzed and synthesized using Grounded Theory
processes described in Section 2.7.1.

2.7.1 Grounded Theory

For the data collected in the extraction stage related to
research question RQ2, Grounded Theory procedures
were applied to consolidate the results obtained and
systematize the analysis of this qualitative data. The
procedures carried out were:

Open Coding: This stage involved defining the codes
and code identifiers, shown in Table 4, and associat-
ing them with the translated citations. The citations
would be excerpts from the article collected in the
phase described in 2.7. The codes were drawn up
from the citations themselves.

Axial Coding: After open coding, the categories and
sub-categories were defined at this stage based on the
previously defined codes. In addition, the categories
and sub-categories were related using propositions of
causes and effects, intervening conditions, and action
strategies. The propositions used were: is associated
with, is the cause of, and is part of the.

Selective Coding: Finally, in this stage, the central
category was defined, and the relationships between
categories and sub-categories were reviewed. A net-
work view was created to improve data visualization.

2.8 Reporting

Finally, in the final stage of presenting the results, the
research and extraction questions were used as a refer-
ence for organizing the sections. At the same time, the
discussion section was structured following the SLR
objective mentioned in Section 2.1.

3 RESULTS

After applying the process described in Section 2, 25
articles were selected to answer the research ques-
tions. These articles are listed in Table 1. In ad-
dition, each paper is accompanied by its reference

131

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

and the type of system dealt with in the paper’s test-
ing approach (i.e., Android, Web, Embedded Soft-
ware, Internet of Things (IoT), Cyber-Physical Sys-
tems (CPS), and Undefined. A discussion of system

types is provided in subsection 3.2.2.

Table 1: Selected papers.

Ref Title SUT
(Michaels Data Driven Testing | Android
etal., 2022) | for Context Aware
Apps
(Dadeau Online Testing of | Undefined
etal., 2022) | Dynamic Recon-
figurations W.I.L.
Adaptation Policies
(Fanitabasi A self-integration IoT
et al., 2020) testbed for decentral-
ized socio-technical
systems
(dos Santos | Runtime testing of | Android
etal., 2021) | context-aware vari-
ability in adaptive
systems
(Piparia Combinatorial Test- | Android
etal., 2021) | ing of Context
Aware Android
Applications
(DeVries Analysis and Mon- CPS
etal.,2021) | itoring of Cyber-
Physical Systems
via Environmental
Domain Knowledge
& Modeling
(Chen et al., | Context-Aware Web
2021b) Regression Test
Selection
(Mandrioli Testing Self- | Undefined
and Maggio, | Adaptive Software
2022) With Probabilis-
tic Guarantees on
Performance Met-
rics: Extended and
Comparative Results
(Shafiei and | A Test Case Design | Android
Rafsanjani, Method for Context
2020) Aware Android Ap-
plications
(Mirza et al., | ContextDrive: To- | Undefined
2021) wards a Functional
Scenario-Based
Testing Framework
for Context-Aware
Applications

(Yigitbas, Model-Driven Engi- | Undefined
2020) neering and Usability
Evaluation of Self-
Adaptive User Inter-
faces
(Mandrioli Testing Self- | Undefined
and Maggio, | Adaptive Software
2020) with Probabilis-
tic Guarantees on
Performance Metrics
(de Almeida | Context-Aware An- | Android
etal.,2020a) | droid Applications
Testing
(de Almeida | ENVIAR: ENVIron- | Android
et al., | ment DAta Simula-
2020b) toR
(Chen et al., | Simulated or Phys- CPS
2021a) ical? An Empirical
Study on Input
Validation for
Context-Aware Sys-
tems in Different
Environments
(Doreste and | CATS: A Testing | Undefined
Travassos, Technique to Support
2023) the Specification
of Test Cases for
Context-Aware
Software Systems
(Usman TEGDroid: Test case | Android
etal., 2020) | generation approach
for android apps con-
sidering context and
GUI events
(Doreste and | Towards supporting | Undefined
Travassos, the specification
2020) of context-aware
software system test
cases
(Yi et al, | Improving the Ex- | Android
2022) ploration Strategy of
an Automated An-
droid GUI Testing
Tool based on the Q-
Learning Algorithm
by Selecting Poten-
tial Actions
(Dadeau Testing adaptation CPS
etal., 2020) | policies for software
components

132

Table 1: Selected papers (cont.).

(Dadeau
et al., 2021)

Automated Gen- | Undefined
eration of Initial
Configurations for
Testing Component

Systems

(Maurio Agile services and CPS
et al., 2021) analysis framework
for autonomous and
autonomic critical
infrastructure

(Silva, 2020) | Adaptation oriented | Undefined
test data generation

for Adaptive Systems

(Chen et al.,
2022)

Simulation Might CPS
Change Your Results:
A Comparison of
Context-Aware Sys-
tem Input Validation
in Simulated and
Physical Environ-
ments

(Wang et al., Embedded

2023)

Design and imple-
mentation of a testing
platform for ship con-
trol: A case study on
the optimal switching
controller for ship
motion

3.1 Overview

A filter of articles found by year of publication was
carried out to analyze the number of papers related
to testing approaches in DASs in the last four years.
The highest number of publications was 2020 (10 arti-
cles), followed by 2021 (8 articles), 2022 (5 articles),
and the lowest number 2023 (2 articles). The low
number of articles in 2023 is expected because the
database search was carried out until the beginning of
2023, on March 16, 2023.

The selected papers were also categorized by
database, nine publications were identified in Sco-
pus[(Usman et al., 2020), (Doreste and Travassos,
2020),(Dadeau et al., 2020), (Dadeau et al., 2021),
(Yi et al., 2022), (Chen et al.,, 2022), (Dadeau
et al., 2022), (Michaels et al., 2022), (Maurio et al.,
2021)], 7 in IEEE Xplorer[(Piparia et al., 2021),
(DeVries et al., 2021), (Chen et al., 2021b), (Man-
drioli and Maggio, 2022), (Shafiei and Rafsanjani,
2020), (Mirza et al., 2021), (Silva, 2020)], 6 in ACM
[(Yigitbas, 2020), (Mandrioli and Maggio, 2020),
(de Almeida et al., 2020a), (Chen et al., 2021a),
(Doreste and Travassos, 2023), (de Almeida et al.,
2020b)], and 3 in ScienceDirect[(Fanitabasi et al.,

Testing on Dynamically Adaptive Systems: Challenges and Trends

2020), (dos Santos et al., 2021), (Wang et al., 2023)].

3.2 RQ1) What Are the Characteristics
of Current Approaches to Testing
DAS?

In this Section, the results obtained from the extrac-
tion questions RQ1.1, RQ1.2 and RQ1.3 that con-
tribute to answering the research question RQ1 are
presented.

3.2.1 Characteristics of the Approaches

The types and levels of testing from Pierre and
Richard (Pierre Bourque, 2014) and the definitions of
testing activities from Garousi et al. (Garousi et al.,
2020) were used to categorize the approaches. Thus,
the approaches are listed in Table 2 by type of test
(e.g., Performance test), by the level of the test (e.g.,
Unit), and finally by type of activity (e.g., Test-case
design(criteria-based)). It is important to note that
the testing activity indicated in the table is related to
the final product of the approach, which means that
even though the approach helps with other activities,
only the final product was considered, considering
this is the objective of the approach. In addition, the
acronyms “I” and “S” were used to indicate Integra-
tion and System levels in the testing level column, re-
spectively. These definitions are presented below:
Type of test (Pierre Bourque, 2014):

Acceptance testing determines whether a system
satisfies its acceptance criteria, usually by checking
desired system behaviors against the customer’s
requirements;

Regression testing is the selective retesting of a
system or component to verify that modifications
have not caused unintended effects and that the
system or component still complies with its specified
requirements;

Performance testing verifies that the software meets
the specified performance requirements and assesses
performance characteristics—for instance, capacity
and response time.

Security testing is focused on the verification that
the software is protected from external attacks. In
particular, security testing verifies the confidentiality,
integrity, and availability of the systems and its data;
Interface testing aims at verifying whether the
components interface correctly to provide the correct
exchange of data and control information.

Testing level (Pierre Bourque, 2014):
Integration testing is the process of verifying the
interactions among software components;

133

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

System testing is concerned with testing the behavior
of an entire system

Testing activity (Garousi et al., 2020):

Test-case design (criteria-based):Designing test
suites (set of test cases) or test requirements to sat-
isfy coverage criteria;

Test execution: Running test cases on the software
under test (SUT) and recording the results.

Table 2: Categorization of approaches by type, level and
testing activity.

Ref Testing type | Testing | Testing
level activity

(Fanitabasi | Performance | I Test

et al., execution

2020)

(dos San- | Acceptance | S Test

tos et al., execution

2021)

(Piparia Acceptance | S Test

et al., execution

2021)

(DeVries Acceptance | S Test

et al., execution

2021)

(Chen Regression | S Test

et al., execution

2021b)

(Mandrioli | Performance | S Test

and Mag- execution

gio, 2022)

(Shafiei Acceptance | S Test-case

and Raf- design

sanjani, (criteria-

2020) based)

(Mirza Acceptance | S Test

et al., execution

2021)

(Yigitbas, Interface S Test

2020) execution

(Mandrioli | Performance | S Test

and Mag- execution

gio, 2020)

(de Almeida Acceptance | S Test

et al., execution

2020a)

(Chen Acceptance | S Test

et al., execution

2021a)

(Doreste Acceptance | S Test-case

and design

Travassos, (criteria-

2023) based)

134

(Usman Acceptance | S Test

et al., execution
2020)

(Doreste Acceptance | S Test-case
and design
Travassos, (criteria-
2020) based)
(Dadeau Acceptance | S Test

et al., execution
2020)

(Dadeau Acceptance | S Test

et al., execution
2021)

(Yi et al., | Acceptance | S Test
2022) execution
(Chen Acceptance | S Test

et al., execution
2022)

(Dadeau Acceptance | S Test

et al., execution
2022)

(Michaels | Acceptance | S Test

et al., execution
2022)

(Wang Acceptance | S Test

et al., execution
2023)

(Silva, Acceptance | S Test
2020) execution
(de Almeida Acceptance | S Test

et al., execution
2020b)

(Maurio Security S Test

et al., execution
2021)

Based on the categorization of Table 2 and fol-
lowing Pierre and Richard (Pierre Bourque, 2014)
definition, the percentage of functional and non-
functional testing approaches was analyzed. As a
result, we obtained 20 functional approaches (dos
Santos et al., 2021) (Piparia et al., 2021) (DeVries
et al., 2021) (Chen et al., 2021b) (Shafiei and Raf-
sanjani, 2020) (Mirza et al., 2021) (de Almeida et al.,
2020a) (Chen et al., 2021a) (Doreste and Travassos,
2023) (Usman et al., 2020) (Doreste and Travassos,
2020) (Dadeau et al., 2020) (Dadeau et al., 2021)
(Yi et al., 2022) (Chen et al., 2022) (Dadeau et al.,
2022) (Michaels et al., 2022) (Wang et al., 2023)
(Silva, 2020) (de Almeida et al., 2020b), includ-
ing Acceptance Testing and Regression Testing, and
five (Fanitabasi et al., 2020) (Mandrioli and Maggio,
2022) (Yigitbas, 2020) (Mandrioli and Maggio, 2020)

(Maurio et al., 2021) non-functional approaches, di-
vided into Security Testing, Interface Testing, and
Performance Testing. The results are shown in Fig-
ure 1.

@ runctional @ Non-functional

Figure 1: Percentage of functional and non-functional ap-
proaches.

3.2.2 Types of SUT Covered by the Approaches

Obtained from RQ1.2, this subsection presents the
number of articles for each type of system addressed
in the test approaches.

As shown in Table 1, it was unclear in most pa-
pers (9 papers) what type of SUT the approach is
aimed. However, the main types identified were An-
droid (8 papers), Cyber-physical systems (CPS) (5 pa-
pers), and Web, IoT, and Embedded with one paper
each. Figure 2 shows the percentage of target system
types per publication.

@ Android

CPS @ Web

IoT @ Embedded @ Undefined

Figure 2: Percentage of target system types per publication.

Testing on Dynamically Adaptive Systems: Challenges and Trends

3.2.3 Characteristics of the Execution
Approaches

From RQ1.3, we obtained the characteristics related
to when the testing approaches are applied, whether
at runtime or design-time.

In most of the publications analyzed (10 articles),
it was not possible to identify whether the approach
presented by the author was applied at runtime or
design-time since the distinction between the two
types of execution is the environment in which the
approach will be executed. The articles do not ex-
plicitly state the focus. Then there are eight runtime
approaches, 5 in design-time and two that can be exe-
cuted at runtime and design-time. Table 3 relates the
runtime of the approach presented in the article to the
publication reference.

Table 3: Type of execution per article.

Types of
execution
Undefined

Papers

(Mirza et al.,, 2021), (Chen et al.,
2021a), (Doreste and Travassos,
2023), (Doreste and Travassos,
2020), (Dadeau et al., 2021), (Yi
et al., 2022), (Chen et al., 2022),
(Dadeau et al., 2022), (Wang et al.,
2023), (Silva, 2020)

(dos Santos et al., 2021), (Yigitbas,
2020), (de Almeida et al., 2020a),
(Usman et al., 2020), (Dadeau et al.,
2020), (Michaels et al., 2022),
(de Almeida et al., 2020b), (Maurio
et al., 2021)

Design- (Fanitabasi et al., 2020), (Piparia
time et al., 2021), (DeVries et al., 2021),
(Chen et al.,, 2021b), (Shafiei and
Rafsanjani, 2020)

Both (Mandrioli and Maggio,
(Mandrioli and Maggio, 2020)

Runtime

2022),

3.2.4 Other Results

By analyzing the articles using RQ1, it was also pos-
sible to obtain data related to approaches that used op-
timization mechanisms in their structure. This result
is essential for understanding some of the challenges
addressed in Section 3.3.

Most articles do not use optimization in their
testing approaches (20 papers). Only five arti-
cles use optimization mechanisms to solve chal-
lenges related to DAS testing within the definition
of Search-Based Software Engineering (SBSE) (Si-
mons, 2013). The following paragraphs describe the

135

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

mechanisms applied in these five articles (Fanitabasi
et al., 2020),(Mandrioli and Maggio, 2022), (Dadeau
et al., 2021), (Silva, 2020), (Maurio et al., 2021).

The optimization mechanism used in article
(Fanitabasi et al., 2020) was the [-EPOS system
(Pournaras et al., 2018), which performs a fully de-
centralized, self-organizing, and privacy-preserving
combinatorial optimization. I-EPOS optimizes an ob-
jective for the entire system, measured by a global
cost function. (Mandrioli and Maggio, 2022) test
problem was finding the limits for an adaptive sys-
tem’s performance parameter. To solve this prob-
lem, they defined the following optimization prob-
lem: maximize the performance that can always be
guaranteed under the constraint that it cannot ex-
ceed what is experienced in the tests carried out.
In addition, the authors used classic statistical tools
such as Monte Carlo Simulations (Robert and Casella,
2005) and Extreme Value Theory (Haan and Ferreira,
2010). (Dadeau et al., 2021), in turn, present a ded-
icated combinatorial algorithm that is used to enu-
merate all possible non-symmetric solutions of the
CSP (Constraint Satisfaction Problem) defined by the
component model in order to produce initial config-
urations. This algorithm integrates symmetry elim-
ination patterns that reduce the combinations to be
considered. Finally, (Maurio et al., 2021) use a
genetic algorithm-based constraint programming ap-
proach for their scheduler/allocator to produce an ini-
tial configuration containing the start times and loca-
tions for all microservices. It is also worth mention-
ing that (Silva, 2020) claims to use an optimization
mechanism in his testing approach, but from the arti-
cle’s analysis, it was impossible to identify what this
mechanism might be and how it was used to support
the testing activity.

3.3 RQ2) What Are the Current
Challenges Related to Testing DAS?

In this Section, the results obtained from the extrac-
tion question RQ2.1 that contribute to answering the
research question RQ2 are presented.

3.3.1 Testing Challenges in DASs

Among the 25 papers analyzed, 18 articles (Fanitabasi
et al., 2020), (dos Santos et al., 2021), (Piparia et al.,
2021), (DeVries et al., 2021), (Mandrioli and Mag-
gio, 2022), (Mirza et al., 2021), (Yigitbas, 2020),
(Mandrioli and Maggio, 2020), (de Almeida et al.,
2020a), (Chen et al., 2021a), (Usman et al., 2020),
(Doreste and Travassos, 2020), (Dadeau et al., 2020),
(Yi et al., 2022), (Silva, 2020), (Dadeau et al., 2022),

136

(de Almeida et al., 2020b), (Maurio et al., 2021) men-
tioned challenges of testing DASs and only in 7 ar-
ticles (Chen et al., 2021b), (Shafiei and Rafsanjani,
2020), (Doreste and Travassos, 2023), (Dadeau et al.,
2021), (Chen et al., 2022), (Michaels et al., 2022),
(Wang et al., 2023) no mention of challenges was
identified.

Following the Grounded Theory procedures de-
scribed in Section 2, there was initially open cod-
ing where quotes related to the challenges of testing
DASs were identified, and codes associated with these
quotes were defined. The codes in Table 4 were de-
fined according to the reading of the selected quotes.
IDs were defined for each code for better organization
and maintenance of the codes.

Table 4: Codes.

ID Codes

CODO1 | The adaptation layer that reacts explic-
itly to uncertainty

CODO2 | Difficulty in detecting incorrect config-
urations at runtime

CODO03 | How to identify an application’s context
events

CODO04 | Complexity of the testing activity
CODOS | High cost of test maintenance

CODO06 | Inconsistent and inaccurate context data
CODO7 | Dependence on dynamic context moni-
toring at runtime for validation and ver-
ification

CODO8 | Different execution scenarios that can
be difficult to reproduce manually
CODO09 | Fragmented ecosystem

CODI10 | Explosion of scenario combinations
COD11 | Lack of runtime approaches

COD12 | Context heterogeneity

COD13 | Uncertainties in change that affect va-
lidity

COD14 | Limited validation and verification tech-
niques

COD15 | Limited methodologies that do not con-
sider context

COD16| Limited methodologies that do not con-
sider adaptation

COD17| Continuous change and adaptation
CODI18 | Need for an adaptation modeling lan-
guage

CODI19 | Need for a context modeling language
COD20 | Limited testing platforms

COD21 | Large number of GUI and context
events

COD22 | Costly time to test many combinations
COD23 | Costly to test many combinations

Table 5 refers to a part of the open coding stage’
containing the association of the articles, with the ex-
tracted citation and the code related to the citation.

In the axial coding stage, the categories were
defined based on the previously defined codes:
The adaptation layer that explicitly reacts to uncer-
tainty (CODO1), Complexity of the testing activity
(COD04), and Limitation of validation and verifica-
tion techniques (COD14)’.

Table 5: Part of the open coding table.

Ref. Quote Code ID
(dos San- | “Among the main chal- | CODO02
tos et al., | lenges, the detection of
2021) incorrect configurations

at runtime in the pres-
ence of context changes
can be highlighted.

Finally, in the selective coding stage, the cen-
tral category was “Testing challenges in adaptive sys-
tems”. Figure 3 shows the final result of the GT, with
the central category, sub-categories, and their rela-
tionships presented by a network view.

4 DISCUSSION

This section discusses the results presented in Section
3, which are organized according to the SLR’s objec-
tive of presenting challenges and trends. The “Chal-
lenges” subsection presents the challenges in testing
DASs that are cited in the papers. The “Trends” sub-
section presents data indicating research opportunities
in testing DASs.

4.1 Challenges

In order to identify the current challenges, the data
collected in Section 3.3 was analyzed to see how
many times the codes in Table 4 were cited in the
25 articles in this research. The most cited challenge
among the articles was Continuous change and adap-
tation (cited eight times), followed by Complexity of
the testing activity and Explosion of scenario com-
binations, both cited seven times. Other challenges
involve Uncertainties in change that affect validity
(cited six times), and finally, Limited methodologies
that do not consider context (cited four times).
Category 1 (The adaptation layer that reacts ex-
plicitly to uncertainty) and 3 (Limited validation and

"More information is available at
https://github.com/isabelycosta/Testing-DAS-Challenges-
and-Trends

Testing on Dynamically Adaptive Systems: Challenges and Trends

verification techniques) have the most subcategories,
eight respectively. It can be seen that the significant
challenges in testing DASs are the adaptation layer
related to:

* High cost of test maintenance

¢ Different execution scenarios that can be difficult
to reproduce manually

» Context heterogeneity

* Uncertainties in change that affect validity
* Continuous change and adaptation

» Large number of GUI and context events
 Costly time to test many combinations

* Costly to test many combinations

Furthermore, the limitation of techniques to help
validate and verify these systems, which are associ-
ated with:

* Difficulty in detecting incorrect configurations at
runtime

e Dependence on dynamic context monitoring at
runtime for validation and verification

 Lack of runtime approaches

* Limited methodologies that do not consider con-
text

 Limited methodologies that do not consider adap-
tation

* Need for an adaptation modeling language
* Need for a context modeling language
* Limited testing platforms

In addition, Category 2 (Complexity of the testing
activity) is also significant, with four subcategories,
as it can also be seen that several factors make testing
these systems complex (How to identify an applica-
tion’s context events, Inconsistent and inaccurate con-
text data, and Explosion of scenario combinations).

4.2 Trends

Based on the subsection 3.2.1 results, there are few
approaches to non-functional testing; only five arti-
cles deal with this type of testing. In addition, only
the non-functional Performance, Interface, and Secu-
rity tests are covered. Furthermore, most of the ap-
proaches focus more on the activity of executing tests
on DASs and system-level testing. In this way, ap-
proaches to non-functional testing that focus on other
activities and levels of testing are an opportunity for
study.

137

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

is part of the

cop11,

Testing challenges in

adaptive systems copo4
is part of the.

Complexity of the testing activity

Lack of runtime approaches

o016, [Uncert;

Limited methodologies that do
not consider adaptation

ociated with a

cop18,
(Need for an adaptation modeling
language

Difficulty in detecting incor
configurations at rt

Need for a context modeling
language

Limited testing platforms.

Figure 3: Network view of categories and sub-categories.

Based on the results presented in Subsection 3.2.2,
there has been a lack of approaches focused on Em-
bedded, Web, and IoT systems in recent years. There-
fore, presenting new approaches for DAS aimed at
these systems could be an interesting topic for further
research.

In Subsection 3.2.3, it can be seen that most of the
studies that indicate the type of execution of the test-
ing approach are aimed at runtime testing, and only
two studies present approaches that can be both run-
time and design-time. Proposing testing approaches
for flexible DASs that can be executed at runtime and
design-time could also be an opportunity for further
research.

Work-related to optimization approaches is
scarce. As presented in Section 3.2.4, only five
articles in 4 years address optimization mechanisms
within testing approaches in DASs. It is noteworthy
that the use of optimization mechanisms in testing
approaches for DAS may be promising due to the
benefits already observed from using Search-Based
Software Testing in other domains (McMinn, 2011).

4.3 Threats to Validity

The main threat related to the process of this sys-
tematic review is selection bias. To mitigate this,
a strict research protocol was followed, with string
testing and discussions about the results between the
researchers at all stages of the review. In addition,
relevant Software Engineering databases were used,
which are the most frequently used in work in this
area. A second threat identified concerns the data ex-
traction process due to inaccuracy in extraction and
bias in data synthesis. The research protocol was
strictly followed to mitigate this threat, and the re-
searchers frequently reviewed the data collected.

138

5 RELATED WORKS

There are already papers in the literature that ad-
dress testing challenges and approaches in dynami-
cally adaptive systems. However, we have identified
a gap concerning an up-to-date overview of the chal-
lenges and characterization of testing approaches in
DAS. The following is a summary of the main related
works found in the literature so that it is possible to
see the differences to our work, whose main contribu-
tion is to provide an up-to-date overview (2020-2023)
of testing in DASs, seeking to identify its character-
istics, associated challenges and trends in the area of
testing in DASs.

(de Sousa Santos et al., 2017) present a quasi-
systematic review of the literature on test case design
techniques for CASS (Context Aware Software Sys-
tems) about quality characteristics evaluated, cover-
age criteria used, type of test and testing techniques.
The quick review by (Matalonga et al., 2022) presents
how researchers deal with context variation when test-
ing CASS (Context-Aware Software Systems) devel-
oped in non-academic environments. (Priya and Ra-
jalakshmi, 2022) provides an overview of the vari-
ous CAA (Context Aware Applications) testing tech-
niques available in the literature, research challenges
in testing such applications, and what can help re-
searchers in this field. Finally, (Lahami and Krichen,
2021) present a review of the literature focused on
studies related to runtime testing in DAS, as well as
approaches, frameworks, and test isolation techniques
for these systems.

6 CONCLUSION

Through the systematic review presented in this ar-
ticle, we can get an overview of the context of test-
ing DASs over the last three years and envision chal-
lenges and opportunities. We were also able to iden-
tify a need for approaches focused on Embedded,
Web, and IoT systems and that only two approaches
are flexible in terms of the type of execution, being
possible to execute them at runtime and design-time.
In addition, there is a lack of approaches aimed at
non-functional testing that support various testing lev-
els and activities. Furthermore, of the 25 articles se-
lected, only five applied optimization mechanisms in
their testing approaches.

Finally, we realized several challenges related to
testing DASs, mainly linked to the adaptation layer,
the limited number of testing techniques, and the
complexity of testing these systems. Our results can
help future research on testing dynamically adap-
tive systems and encourage scientific production that
seeks to mitigate the challenges identified.

ACKNOWLEDGMENTS

The authors would like to thank CNPQ, which
provided the Industrial Technological Development
Scholarship of Isabely do Nascimento Costa DTI-B
(N° 384087 / 2023-0) and the Productivity Scholar-
ship in Technological Development and Innovative
Extension of Rossana M. C. Andrade 1D (V° 306362
/ 2021-0). Furthermore, to Funcap/Iplanfor for their
financial support in executing the “Big Data Fort-
aleza” project.

REFERENCES

Chen, J., Qin, Y., Wang, H., and Xu, C. (2021a). Simulated
or physical? an empirical study on input validation for
context-aware systems in different environments. In-
ternetware 20, page 146155, New York, NY, USA.
Association for Computing Machinery.

Chen, J.-C., Qin, Y., Wang, H.-Y., and Xu, C. (2022).
Simulation might change your results: a comparison
of context-aware system input validation in simulated
and physical environments. Journal of Computer Sci-
ence and Technology, 37(1):83-105.

Chen, Y., Chaudhari, N., and Chen, M.-H. (2021b).
Context-aware regression test selection. In 2021
28th Asia-Pacific Software Engineering Conference
(APSEC), pages 431-440. IEEE.

Cohen, J. (1960). A coefficient of agreement for nominal

scales. Educational and psychological measurement,
20(1):37-46.

Testing on Dynamically Adaptive Systems: Challenges and Trends

Dadeau, E., Gros, J.-P., and Kouchnarenko, O. (2020). Test-
ing adaptation policies for software components. Soft-
ware Quality Journal, 28:1347-1378.

Dadeau, F., Gros, J.-P., and Kouchnarenko, O. (2021). Au-
tomated generation of initial configurations for testing
component systems. In Formal Aspects of Component
Software: 17th International Conference, FACS 2021,
Virtual Event, October 28-29, 2021, Proceedings 17,
pages 134-152. Springer.

Dadeau, F., Gros, J.-P., and Kouchnarenko, O. (2022). On-
line testing of dynamic reconfigurations wrt adapta-
tion policies. Automatic Control and Computer Sci-
ences, 56(7):606—622.

de Almeida, D. R., Machado, P. D., and Andrade, W. L.
(2020a). Context-aware android applications testing.
In Proceedings of the XXXIV Brazilian Symposium on
Software Engineering, pages 283-292.

de Almeida, D. R., Machado, P. D. L., and Andrade, W. L.
(2020b). Enviar: Environment data simulator. SBES
’20, New York, NY, USA. Association for Computing
Machinery.

de Sousa Santos, I., de Castro Andrade, R. M., Rocha,
L. S., Matalonga, S., de Oliveira, K. M., and Travas-
sos, G. H. (2017). Test case design for context-aware
applications: Are we there yet? Information and Soft-
ware Technology, 88:1-16.

DeVries, B., Fredericks, E. M., and Cheng, B. H. (2021).
Analysis and monitoring of cyber-physical systems
via environmental domain knowledge & modeling.
In 2021 International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems
(SEAMS), pages 11-17. IEEE.

Doreste, A. C. d. S. and Travassos, G. H. (2020). Towards
supporting the specification of context-aware software
system test cases. In CIbSE, pages 356-363.

Doreste, A. C. D. S. and Travassos, G. H. (2023). Cats:
A testing technique to support the specification of test
cases for context-aware software systems. SBQS ’22,
New York, NY, USA. Association for Computing Ma-
chinery.

dos Santos, E. B., Andrade, R. M., and de Sousa Santos, 1.
(2021). Runtime testing of context-aware variability
in adaptive systems. Information and Software Tech-
nology, 131:106482.

Fanitabasi, F., Gaere, E., and Pournaras, E. (2020). A self-
integration testbed for decentralized socio-technical
systems. Future Generation Computer Systems,
113:541-555.

Garousi, V., Felderer, M., Kuhrmann, M., Herkiloglu, K.,
and Eldh, S. (2020). Exploring the industry’s chal-
lenges in software testing: An empirical study. Jour-
nal of Software: Evolution and Process, 32(8):¢2251.

Haan, L. and Ferreira, A. (2010). Extreme value theory: an
introduction. Springer.

Jamovi (2022). The jamovi project.

Kitchenham, B., Sjgberg, D. 1., Brereton, O. P., Budgen, D.,
Dyba, T., Host, M., Pfahl, D., and Runeson, P. (2010).
Can we evaluate the quality of software engineering
experiments? In Proceedings of the 2010 ACM-IEEE

139

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

International Symposium on Empirical Software En-
gineering and Measurement, pages 1-8.

Kitchenham, B. A., Budgen, D., and Brereton, P. (2016).
Evidence-based software engineering and systematic
reviews. CRC press.

Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G.,
and Becker, C. (2015). A survey on engineering ap-
proaches for self-adaptive systems. Pervasive and Mo-
bile Computing, 17:184-206.

Lahami, M. and Krichen, M. (2021). A survey on runtime
testing of dynamically adaptable and distributed sys-
tems. Software Quality Journal, 29(2):555-593.

Mandrioli, C. and Maggio, M. (2020). Testing self-adaptive
software with probabilistic guarantees on performance
metrics. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference
and Symposium on the Foundations of Software En-
gineering, pages 1002-1014.

Mandrioli, C. and Maggio, M. (2022). Testing self-adaptive
software with probabilistic guarantees on performance
metrics: Extended and comparative results. I[EEE
Transactions on Software Engineering, 48(9):3554—
3572.

Matalonga, S., Amalfitano, D., Doreste, A., Fasolino, A. R.,
and Travassos, G. H. (2022). Alternatives for testing
of context-aware software systems in non-academic
settings: results from a rapid review. Information and
Software Technology, 149:106937.

Maurio, J., Wood, P, Zanlongo, S., Silbermann, J.,
Sookoor, T., Lorenzo, A., Sleight, R., Rogers, J.,
Muller, D., Armiger, N., et al. (2021). Agile ser-
vices and analysis framework for autonomous and au-
tonomic critical infrastructure. Innovations in Systems
and Software Engineering, pages 1-12.

McMinn, P. (2011). Search-based software testing: Past,
present and future. In 2011 IEEE Fourth International
Conference on Software Testing, Verification and Val-
idation Workshops, pages 153-163. IEEE.

Mendes, E., Wohlin, C., Felizardo, K., and Kalinowski, M.
(2020). When to update systematic literature reviews
in software engineering. Journal of Systems and Soft-
ware, 167:110607.

Michaels, R., Piparia, S., Adamo, D., and Bryce, R. (2022).
Data driven testing for context aware apps. page 206
-211.

Mirza, A. M., Khan, M. N. A., Wagan, R. A., Laghari,
M. B., Ashraf, M., Akram, M., and Bilal, M.
(2021). Contextdrive: Towards a functional scenario-
based testing framework for context-aware applica-
tions. IEEE Access, 9:80478-80490.

Pierre Bourque, R. E. F. (2014). Guide to the Software En-
gineering Body of Knowledge (SWEBOK(r)): Version
3.0. IEEE Computer Society Press, 3rd edition.

Piparia, S., Adamo, D., Bryce, R., Do, H., and Bryant,
B. (2021). Combinatorial testing of context aware
android applications. In 2021 16th Conference on
Computer Science and Intelligence Systems (FedC-
SIS), pages 17-26. IEEE.

Pournaras, E., Pilgerstorfer, P., and Asikis, T. (2018). De-
centralized collective learning for self-managed shar-

140

ing economies. ACM Transactions on Autonomous
and Adaptive Systems (TAAS), 13(2):1-33.

Priya, S. S. and Rajalakshmi, B. (2022). Testing context
aware application and its research challenges. In 2022
International Conference on Smart Technologies and
Systems for Next Generation Computing (ICSTSN),
pages 1-7. IEEE.

Robert, C. P. and Casella, G. (2005). Monte Carlo statistical
methods. Springer.

Shafiei, Z. and Rafsanjani, A. J. (2020). A test case de-
sign method for context aware android applications. In
2020 25th International Computer Conference, Com-
puter Society of Iran (CSICC), pages 1-8. IEEE.

Silva, D. N. A. d. (2020). Adaptation oriented test data
generation for adaptive systems. In 2020 15th Iberian
Conference on Information Systems and Technologies
(CISTI), pages 1-7.

Simons, C. L. (2013). Whither (away) software engineers in
sbse? In 2013 Ist International Workshop on Combin-
ing Modelling and Search-Based Software Engineer-
ing (CMSBSE), pages 49-50. IEEE.

Siqueira, B. R., Ferrari, F. C., Serikawa, M. A., Menotti,
R., and de Camargo, V. V. (2016). Characterisation of
challenges for testing of adaptive systems. In Proceed-
ings of the 1st Brazilian Symposium on Systematic and
Automated Software Testing, pages 1-10.

Siqueira, B. R., Ferrari, F. C., Souza, K. E., Camargo,
V. V., and de Lemos, R. (2021). Testing of adap-
tive and context-aware systems: approaches and chal-
lenges. Software Testing, Verification and Reliability,
31(7):el772.

Strauss, A. and Corbin, J. (1990). Basics of qualitative re-
search. Sage publications.

Usman, A., Ibrahim, N., and Salihu, I. A. (2020). Tegdroid:
Test case generation approach for android apps con-
sidering context and gui events. International Journal
on Advanced Science, Engineering and Information
Technology, 10(1):16.

Wang, L., Li, S, Liu, J., Hu, Y., and Wu, Q. (2023). Design
and implementation of a testing platform for ship con-
trol: A case study on the optimal switching controller
for ship motion. Advances in Engineering Software,
178:103427.

Yi, G. K., Baharom, S. B., and Din, J. (2022). Improv-
ing the exploration strategy of an automated android
gui testing tool based on the g-learning algorithm by
selecting potential actions. Journal of Computer Sci-
ence, 18(2):90 — 102.

Yigitbas, E. (2020). Model-driven engineering and usabil-
ity evaluation of self-adaptive user interfaces. ACM
SIGWEB Newsletter, (Autumn):1-4.

