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Abstract: The control and prevention of livestock diseases play a crucial role in safeguarding business continuity, 
simulating disease prevention and control measures are vital to mitigate future epidemics. In this sense, 
modelling systems can be an effective tool that allows the simulation of different ways of spreading diseases 
by configuring parameters allowing testing of different prevention measures. This work investigates 
enhancing a system that simulates disease spread processes in animals. The stochastic model system was 
developed in R; however, given a large amount of data and intense processing of stochastic functions that 
simulate spreading and control actions, it required optimization. We focused on translating and modifying it 
to Python using packages focused on data analysis, aiming to speed up the system execution time. We 
conducted experiments comparing high computational cost functions executed in the actual model R with the 
new proposal implemented in Python. The results showed that rewriting the code in Python has advantages 
such as performance in time execution, which in Python is more than four times faster than R, memory usage 
consumption in R uses 460 MB and 315 MB in Python.

1 INTRODUCTION 

With the advancement of technology in the current 
times, the use of data for decision making has become 
increasingly important. This data is generated 
through various digital channels, such as mobile 
devices, the Internet, social media, e-commerce sites, 
among others. Using the data has proven to be of great 
use since its inception, as companies began to realise 
its importance for various business purposes. With 
this amount of data it is possible now, with the 
increase of processing power to develop intelligent 
systems that can help to make decisions, create 
simulation about critical situations. In this sense, 
several applications are using real data to create 
intelligent systems in different areas with different 
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applications, such as healthcare, transportation, and 
sustainable ecosystems that can help to avoid 
economical loss in any kind of business (Omolbanin 
et al.,2017). 

An example of intelligent systems is the control 
and prevention of animal diseases. It is important for 
public health, and may include measures such as 
vaccination of animals, vector control, good hygiene 
and food handling practices, as well as monitoring of 
diseases in animals. In addition, globalization and 
international trade in animals and animals’ products 
have increased the spread of zoonotic disease 
worldwide. It is essential that effective prevention 
and control measures are implemented to minimize 
the risk of epidemics. The dynamics of farms pose 
some risks for the spread of diseases, such as isolation 
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of animal lots, human traffic, truck traffic, the useful 
area of the farm or farm can influence possible 
transmission of diseases (Jason et al.,2022). In this 
area, one intelligent system using real data was 
proposed by Descovi et al,.2022, which uses data 
from farms to simulate the spread of diseases in 
animals (e.g. cattle, swine, and small ruminants). The 
system also allows researchers to test different actions 
to control these diseases. As for livestock, it is 
possible to control and isolate animals with disease, 
so all animal transport is controlled. With this, it is 
possible to develop a system that can simulate the 
impact of a disease that spreads when an infected 
animal is transported and create scenarios about the 
life cycle of the disease and the impact on the farm or 
production of the region (Jason et al,.2022). 
This system was developed in R Language, using real 
data collected from farms in Rio Grande do Sul state 
(Brazil) and used in PDSA-RS platform (Descovi et 
al, 2021, Perlin et al., 2023). It is noteworthy that the 
R language was developed specifically for statistical 
analysis and data visualization, but, when it comes to 
data handling performance, it is important to consider 
factors including: dataset size, data format, hardware 
processing power, and the efficiency of the libraries 
used to read and manipulate data (Ioannis,2020). As 
the volume of input data increases, the existing 
system developed in R faces performance challenges. 
To address this, we decided to reimplement some 
computationally intensive functions into Python. This 
shift enables us to conduct a comparative analysis of 
performance and processing speed between the two 
implementations (R and Python). By migrating to 
Python, we aim to enhance the system’s efficiency 
and efficacy, ensuring it can handle the ever-
expanding data landscape more effectively and 
deliver optimal results. This transition allows us to 
explore the potential benefits of Python performance 
capabilities and adapt our system accordingly.  

The methodology for developing the performance 
improvement initiated by testing Python and R 
functions used in the implementation of the system. 
Firstly, we investigated different libraries to speed up 
reading the dataset. After this, we analyzed the 
different ways to update the dataset cells values, as 
many functions include situations that are necessary 
to change these values based on specific conditions. 
In the second phase of the study, we will improve the 
performance rewriting the code in Python 
programming language, all the functions of the 
model, all the functions work with update in values in 
the data frame, change the information when the day 
moves across the disease spread process, this needs 

for update in values in the data frame has better 
performance in Python.  

The present paper is structured as follows. The 
next section presents the related work on intelligent 
systems applied to disease spread problems, showing 
R and Python performance comparison studies. 
Section 3 describes the disease spread and control 
system, highlighting the functions targeted in this 
work. Section 4 describes our evaluation and results 
comparing the execution time of the original 
functions implemented in R and their version in 
Python. Section 5 outlines the conclusions and 
research opportunities that emerged from this work. 

2 MOTIVATION AND RELATED 
WORK 

This section presents about the digital system, that we 
are working to improve performance and time execu-
tion and some related papers about the programming 
language R and Python, and its primary characteristics. 

2.1 Compartmental Stochastic Model 

Stochastic modelling is a mathematical technique used 
to model systems or processes that involve randomness 
or uncertainty. The term "stochastic" refers to 
randomness, and stochastic modeling involves 
describing the behavior of systems or phenomena in 
probabilistic terms. Common techniques in stochastic 
modeling include stochastic differential equations, 
Markov chains, queuing theory and Monte Carlo. 
These methods provide ways to simulate, analyze, and 
make predictions about complex systems affected by 
randomness (Shah, 2022). 

Infectious diseases are known as one of the most 
critical threats to global health today. Climate change 
and the accelerated growth of population are some 
causes of the disease spread among humans. This 
leads to increased infection at the global level; some 
systems use water waste to control the level of 
infection in some areas, which can be monitored in 
real-time at the community level can help to avoid or 
control some diseases and infections and act to 
prevent the spread of the disease (Nathalie & Barbara, 
2021). Several disease transmission systems were 
developed and used to examine control strategies 
(Rohit et al., 2020). Some systems to control the 
spread were developed based on cell phone location, 
using data from the geolocation of the cell phone to 
understand the movement of the population and study 
the spread of the disease process (Sachi et al., 2021). 
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The system in the scope of this work is a model that 
simulates the spread of disease in animals cultivated 
for human consumption, so controlling the disease 
and the spreading process is important because it can 
have an economic impact in the region. Even if we 
can isolate the animals that are infected, the animal 
transport, circulation of employees in the farm, the 
logistics to deliver product and material can impact 
the spread process. The system created to prevent and 
simulate the disease spread uses a stochastic model 
developed in R, this digital system was created 
considering real data collected for the transporting 
process of the animals between farms located in Rio 
Grande do Sul, Brazil (Manuel et al., 2021).. 

2.2 R and Python Comparison 

As stated before, in this work we implemented in 
Python an intelligent disease spread and control 
system for the spread, originally implemented in R. 
Python and R are programming languages used in 
data analysis, and efforts have been made to support 
our research practices using these two computational 
programming languages. However, an important 
focus has been given to the visualization of 
researchoriented studies and their comparable 
efficiencies in analyzing large fragmented datasets. 
While Python is a general-purpose language with an 
easy-to-understand syntax, R’s functionality was 
designed with statisticians in mind, providing field-
specific advantages such as great data visualization 
capabilities, but R lacks performance and speed 
process (Anupam et al., 2021).  

The R programming language is a free, powerful, 
open-source software package with extensive 
statistical computing and graphics capabilities due to 
its high-level expressiveness and multitude of domain 
specific packages. R prioritizes ease of use and data 
exploration, which can lead to less efficient memory 
management compared to languages like C or Java, 
which prioritize performance and memory efficiency 
(Weijia, et al., 2016). 

The Python language is a general-purpose, open-
source tool for web, internet, and software 
development applications; education and academia; 
and numerical and scientific tasks, among others. In the 
field of data analysis, some of the common packages 
are: Pandas and Polars, ideal for data manipulation; 
Statsmodels, for modelling and testing; scikit-learn, for 
classification and machine learning tasks; NumPy 
(Numerical Python), for numerical operations and 
vectors; and SciPy (Scientific Python), for scientific 
tasks, other libraries like Dask to huge amount of data. 
One big advantage of Python language is that for data 

extraction and data analysis is the possibility to use the 
API Apache Spark and use Pyspark to work with big 
data and with Spark Streaming that is data near real 
time (S Saabith et al., 2021). 

Python is favoured for data science, AI and 
machine learning due to its concise code, enabling 
easy testing and focusing on actual programming. It 
uses significantly less code compared to other 
languages, Python ranks second after Ruby in lines of 
code required for projects, making it a top choice for 
ML and AI. It boasts simplicity, fewer keywords, and 
a clear syntax, making it accessible for students and 
newcomers. Python prioritizes readability, fostering 
collaboration and rapid open-source project 
development (Abhinav et al., 2019). 

One library used in this proposal of a new model 
in this digital system is Pandas, that is used for data 
extraction and analysis, which in the current version 
2.0, has implementations such as the use of PyArrow, 
which in turn is possible to accelerate the process and 
make operations more efficient in terms of memory, 
using the C++ implementation of Arrow. Arrow 
allows sharing data between processes without the 
need to copy them, which improves performance and 
reduces memory consumption. In this sense, 
PyArrow is a library that provides a bridge between 
Python and Apache Arrow, offering resources to 
work with data in a columnar format in an efficient 
way and interoperable with other programming 
languages (Pantelis et al., 2019). For the R language, 
the two libraries we use in the tests are data.table and 
tidyverse, the tidyverse package is a collection of R 
packages that were developed to facilitate the 
manipulation, analysis and visualization of data. 
Within it we will use dplyr which is one of the 
packages used in tidyverse, offering a consistent and 
intuitive syntax to perform data manipulation 
operations. The dply package also has the advantage of 
having a more readable and intuitive syntax, and its 
philosophy is based on “data manipulation grammar”, 
this package is used a lot in data analysis and 
exploration in conjunction with ggplot. In the model 
the data manipulation and data visualization process 
are created using the tidyverse package. The data.table, 
that is used for data reading in the digital system, is 
known for its efficiency and speed in processing large 
data sets, it is fast in process of filtering, grouping, 
modifying data, there are several reasons why 
data.table is fast, but one of the main ones is that, unlike 
many other tools, it allows you to modify the 
information in your table by reference, i.e. it changes 
in place rather than requiring the object to be recreated 
with the modifications. This means that when using 
data.table you need to use the <- operator less often. 

Speeding Up the Simulation Animals Diseases Spread: A Study Case on R and Python Performance in PDSA-RS Platform

653



Python at the moment is the first choice of even 
the topmost companies in the world such as Amazon, 
Facebook, Spotify and Instagram, that have the 
challenge to deal with enormous amounts of data, for 
their needs, and for their clients’ needs, for data 
processing and data analysis (Sebastiaan et al., 2021). 

3 DISEASES SPREAD AND 
CONTROL SYSTEM 

The digital system proposed by the author 
(CARDENAS et al., 2022). It was designed to 
demonstrate the potential for the spread of infectious 
animals, considering transmission through animal 
movements. The system also implements the 
simulation of control actions. These control actions 
can, for example, prevent farms from receiving or 
shipping infected animals such as culling, isolation of 
animals, increased hygiene measures, or vaccination.  

As the present work aims at improving the most 
computational intensive functions, they will be 
detailed in the next subsections. For a comprehensive 
understanding of the system, please refer to the 
original paper (CARDENAS et al., 2022). 

3.1 Animal Movement Representation 

The system uses Social Network Analysis (SNA) 
methods to characterize animal trade patterns, and the 
between-farm total of animals moved is represented 
in the system as a directed graph, where each farm is 
represented as a “node” and the movements among 
farms are represented as “edges”. Each edge connects 
a specific node origin to a specific node destination, 
maintaining also the type and number of animals that 
are being moved. The system maintains an event 
dataset with data on origin, destination, type, and 
number of animals, used to construct the movement 
graph. The between-farm movements among farms of 
different species, therefore considering a real multi-
host contact network of movement data collected 
from (CARDENAS et al., 2022). 

3.2 Disease Spread Dynamics 

The system applies a stochastic simulation algorithm 
(SSA) to simulate the disease spreading, as well as, 
vital dynamics (birth and deaths) of animals inside 
each farm. The system incorporates within farm and 
between farm dynamics through a susceptible 
infectious model using the temporal animal 
movement data explicitly with a higher effective 

contact rate to ensure an efficient disease 
transmission over the simulations.  

The within-farm dynamics is represented by a 
state machine composed of four states. Transition 
from susceptible (S), to exposed (E), to infected (I), 
to recovered (R). Every state is represented as 
compartments for each farm, at a rate proportional to 
a frequency dependent transmission parameter (𝛽).  

3.3 Control Action Zones 

After an initial silent spread where animals on some 
farms became infected, control and containment of 
the disease agent is essential for eradication and 
recovery. Quarantine and movement control are 
examples of actions to protect animal health, helping 
to prevent the disease from being transmitted to non-
infected populations (James, 2007). These actions are 
applied to specified control zones, which are defined 
through specific user parameters. 

This function defines control action zones in 
geographic locations, classified or designated 
according to specific disease or disease-free status 
criteria. These designations help to associate specific 
response activities with specific locations. 

 
Figure 1: Control zone representation. 

Figure 1 shows the control action zones defined as 
outbreaks for farms containing infected animals, the 
infected zone containing farms within a 3 km area 
around the outbreak, the buffer comprising farms in a 
region considering 7 km, and the surveillance zone 
was defined as 15 km from the outbreak. 

3.4 Vaccination 

This function simulates the animal vaccination 
process. The process occurs during the disease spread 
where vaccinated animals are moved from SEIR 
compartments to a V (vaccinated) compartment, 
according to the vaccination efficacy and specific rate 
conversion day by day, specified by the user when 
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defining the control actions. This implies changing 
values in the dataset row by row, which can be a 
problem in R when the model grows in size. 

4 EVALUATION AND 
DISCUSSION 

This section reports the experiments carried out, 
showing the comparison time between the different 
tested approaches and discussing the results obtained. 
It is divided in two subsections, where the first shows 
functions implemented in the languages libraries and 
the function call itself while the second presents the 
execution time of complex functions developed to 
simulate different aspects of the disease spreading. 
All results presented through this section were 
measured in seconds.  

The tests were performed on a computer with the 
following specifications. CPU Intel(R) Core(TM) i7-
8650U, 8 cores, 1.90GHz, 16Gb RAM, Linux Debian 
5.10.162-1 (2023-01-21) x86_64 operating system. 
There are some functions that were developed in the 
digital system. One is to create a simulation about 
movement of animals from one farm to another farm, 
that is a root of some disease spread process, this 
process occurs during 15 days. The data reading of 
events is using data.table, we will compare with 
Pandas and Polars in Python. Using two csv files, one 
with 65Mb and other with 225MB, the reading 
process will test 100 times and we will use the mean. 

4.1 Reading Datasets and Function 
Calling 

The first test was performed for reading two datasets 
with sizes 65MB and 225MB. For Python, we tested 
two different libraries (Pandas and Polars), while 
Tidyverse and data.table were used to read the same 
datasets in R. The test was repeated 100 times and the 
average execution times are shown in Table 1. 

Figure 2 and Figure 3 show the distribution, 
through boxplots, of the time for reading the datasets. 
We can see some outliers in the boxplot distribution, 
but in this case, we will consider them as special 
cases, and they do not change our test results. 

Table 1: Mean time for reading process. 

Dataset Pandas Polars Tidyverse Data.table

65MB 0.526396 0.257375 1.093194 0.20933
225MB 4.377422 0.480025 15.98519 2.59795

 
Figure 2: Boxplot graph distribution times for reading for 
65 MB dataset. 

 
Figure 3: Box plot graph distribution times for reading the 
225 MB dataset. 

It is possible to observe that in the process of reading 
the small dataset, the Polars library in Python and the 
Data.table in R have equivalent reading speeds, with 
a slight advantage for Data.table, plus increasing the 
size of the dataset to Polars stands out and becomes 
the fastest in the reading process, in our case is good, 
because the system can grow with more data and 
bigger datasets, Polars is around 5 times faster than 
Data.table, mainly due to its construction in Rust, 
which is a low-level language that in turn is more 
efficient, and in Polars it is possible to work in 
parallel and scale the system and maintain the 
performance, if the digital system grow (Ruizhu et 
al.,2018).  

For the R language, data.table proves to be very 
efficient due primarily to being built in C, the 
data.table package is more performant than the 
Tidyverse package, which includes the Dplyr 
package, the data.table in several operations does not 
copy it, filters and selects in the object itself, which 
saves memory and time in the process and can 
improve the performance of the model, but in some 
situations it is necessary and practical using the 
tidyverse package (Matt & Joshua, 2016).  As the 
datasets are passed as arguments to the functions, we 
compare the time just for calling the previous 
function in both languages. On average, the time in 
Python was 0.000001533 seconds, while calling a 
function in R took 0.2811756256 seconds. In terms of 
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function calls, Python code is converted to the 
machine code before being executed, while R code is 
interpreted line by line, thus making it more 
performative in this process. When the function 
grows with more parameters, the difference in 
performance in both languages also grows (Yi Lin et 
al., 2016). 

4.2 Spreading and Control Functions 
for the Digital System 

This section compares the digital system's most 
computationally intensive functions model 
implemented in R and Python. This study uses the 
three most complex computational performance 
functions to improve the performance. 

4.2.1 Animal Movements 

The first function simulates the animal movement 
across the farms. It uses an event dataset containing 
farm-to-farm animal movements and number of 
animals being moved. We defined 15 days for moving 
animals from the dataset of 65Mb, which contains 
337.600 farms. This simulation creates the disease 
spread situation in the moving process. 

 
Figure 4: Distribution for function simulating animal's 
movements for 15 days. 

As we can see in Figure 4, Python is around eight 
times faster than R for this function. This can be 
explained as the Python version using an index on the 
farm’s IDs, speeding up the search procedure for 
modifying the dataset's number of animals. 

4.2.2 Disease Spread Dynamics  

The function simulates the spatial disease spread 
driven by the geographic distance between farms. It 
uses statistical methods based on the initial 
parameters to update the number of infected animals 
near infected farms. In this simulation, there were 52 

infected farms and during the execution, 48.530 farms 
had their status modified from this function. The 
execution times for this update process in both 
languages are presented in Figure 5. 

 
Figure 5: Graph distribution for the local transmission 
dynamics. 

4.3 Control Zones 

In this section we will study and improve the 
performance and time execution from the functions 
that simulate the vaccination process and control zone 
simulation, that is control and isolate farms that 
the disease is already vaccinated or isolated in the 
process to control the infection, this function receives 
data from the vaccination function and inserts and 
updates the data in the data frame. The results are 
presented in Figure 6. 

 
Figure 6: Graph distribution for function simulating the 
update and data in the function that controls the infected 
zone. 

4.3.1 Vaccination  

The next function simulates the animal vaccination 
process. The results shown in Figure 7 represent a 
vaccination occurring between 6 and 14 days after the 
disease spreads. 
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Figure 7: Graph distribution for function simulating the 
vaccination process from day six until day 14. 

In the system, when the animal is vaccinated, the 
dataset is updated row by row, updating the 
vaccination status of each animal. This explains why 
using Python language is four times faster than R in 
this application. Finally, Table 2 summarizes the 
function's average results previously seen in this 
section. 

Table 2: Average execution time of computationally 
intensive functions. 

 

Move 
Function 

Animal 
Vaccination 

Control 
Infected 
Farms 

Spread 
disease

Python 10.12597 14.34065 0.320912143.046755
R 83.05695 60.686126 6.425306464.128237

In terms of memory usage, the process of the 
digital system using the R language is 460 MB, and 
the Python language with the same application has 
315 MB of memory usage. Python has a feature called 
function memorization, where you can cache the 
results of a function for specific inputs, improving 
performance for expensive computations, which 
helps to control memory usage (Xing Cai et al., 
2005). As an overview, the Python implementation 
exhibited remarkable performance and significantly 
faster processing speeds, presenting a promising 
avenue for enhancing the overall system, aiming to 
achieve responsiveness and reducing the execution 
time. 

5 CONCLUSIONS 

Based on the tests carried out, it is possible to verify 
that in a model with many functions and a lot of data 
processing, data reading, and update in dataset, the 
optimized solution would be Python, because of the 

advantage in functions (time execution and speed 
process) and the use of Polars for data analysis. The 
implementation in Python proved to be more efficient 
than in R, mainly due to its constructive 
characteristics and objectives, with some great 
advantages in performance, speed process and 
memory usage. In terms of reading speed of large 
datasets, Polars is more efficient in reading than 
Pandas using the Python language. Polars is built in 
Rust which guarantees more speed than Pandas, the 
great advantage of Polars is that it works in parallel, 
so even with an increase in data volume it maintains 
its performance, in addition Polars is considered a 
library that has Lazy operation, that is, only perform 
the function, when necessary, that is, it saves 
memory, Polars can work in parallel, which can 
improve speed process. Even though Python is slower 
in runtime and has some design restrictions as 
compared to compiled languages like C or C++. 
Python is preferred by scientists and developers in the 
field of data analytics, numerical computations and 
almost all technical domains, like AI and Deep 
Learning. The best approach for work in the model, 
according with the test, is to rewrite in Python, using 
Polars in data reading (files .csv) and data 
manipulation files, mainly because some digital 
system grow and the question about memory usage in 
Python, in R all objects are stored in memory and 
when the system grows, we can have a problem. 
Polars, have the lay attribute to save memory and if 
necessary, in long term work in parallel, which can be 
an advantage in this model, because it’s possible to to 
speed up the simulation work with more simulation in 
parallel. 

For future work it could be important to try to 
implement Rust, as Rust is compiled directly to the 
machine code, has high performance, works in 
parallel and has better memory control management, 
which is for some authors the next step in data 
analysis (Bugden & Alahmar, 2022). 

ACKNOWLEDGEMENTS 

This research is supported by FUNDESA, project 
“Application of Machine Learning Techniques to 
Predict the Prevalence of Diseases in the Processes 
of Certified Swine Breeding Fars and Monthly Pige 
Epidemiological Sheet” (UFSM/057438). The 
research by Vinícius Maran is partially supported by 
CNPq grant 306356/2020-1 (DT-2).  

Speeding Up the Simulation Animals Diseases Spread: A Study Case on R and Python Performance in PDSA-RS Platform

657



REFERENCES 

Anupam Baliyan, Kuldeep Singh Kaswan, and Jagjit Singh 
Dhatterwal. An Empirical Analysis of Python 
Programming for Advance Computing. In 2022 2nd 
International Conference on Advance Computing and 
Innovative Technologies in Engineering (ICACITE). 
IEEE, 1482–1486 

Xing Cai, Hans Petter Langtangen, and Halvard Moe. 2005. 
On the performance of the Python programming 
language for serial and parallel scientific computations. 
Scientific Programming 13, 1 (2005), 31–56. 

Ioannis Charalampopoulos. The R language as a tool for 
biometeorological research. Atmosphere (2020). 

Jason A Galvis, Cesar A Corzo, Joaquín M Prada, and 
Gustavo Machado. 2022. Modeling between-farm 
transmission dynamics of porcine epidemic diarrhea 
virus: characterizing the dominant transmission routes. 
Preventive Veterinary Medicine 208 (2022), 105759. 

Jason A Galvis, Chris M Jones, Joaquin M Prada, Cesar A 
Corzo, and Gustavo Machado. 2022. The between-farm 
transmission dynamics of porcine epidemic diarrhoea 
virus: A short-term forecast modelling comparison and 
the effectiveness of control strategies. Transboundary 
and Emerging Diseases 69, 2 (2022). 

Ruizhu Huang, Weijia Xu, Silvia Liverani, Dave Hiltbrand, 
and Ann E Stapleton. 2018. A case study of r 
performance analysis and optimization. In Proceedings 
of the Practice and Experience on Advanced Research 
Computing. 1–6. 

 Manuel Jara, Rocio Crespo, David L Roberts, Ashlyn 
Chapman, Alejandro Banda, and Gustavo Machado. 
2021. Development of a Dissemination Platform for 
Spatiotemporal and Phylogenetic Analysis of Avian 
Infectious Bronchitis Virus. Frontiers in Veterinary 
Science 8 (2021), 624233. 

 Rohit C Khanna, Maria Vittoria Cicinelli, Suzanne S 
Gilbert, Santosh G Honavar, and Gudlavalleti VS 
Murthy. 2020. COVID-19 pandemic: Lessons learned 
and future directions. Indian journal of ophthalmology 
68, 5 (2020), 703. 

Yi Lin, Stephen M Blackburn, Antony L Hosking, and 
Michael Norrish. 2016. Rust as a language for high 
performance GC implementation. ACM SIGPLAN 
Notices 51, 11 (2016), 89–98. 

Sachi Nandan Mohanty, Shailendra K Saxena, Suneeta 
Satpathy, and Jyotir Moy Chatterjee. 2021. 
Applications of artificial intelligence in covid-19. 
Springer. 

Abhinav Nagpal and Goldie Gabrani. 2019. Python for data 
analytics, scientific and technical applications. In 2019 
Amity international conference on artificial intelligence 
(AICAI). IEEE, 140–145. 

Sebastiaan Alvarez Rodriguez, Jayjeet Chackrabroty, 
Aaron Chu, Ivo Jimenez, Jeff LeFevre, Carlos 
Maltzahn, and Alexandru Uta. 2021. Zero-cost, arrow-
enabled data interface for apache spark. In 2021 IEEE 
International Conference on Big Data (Big Data). IEEE. 

James A Roth. 2007. Animal Disease Information and 
Prevention Materials Developed by the Center for Food 

Security and Public Health. Iowa State University 
Animal Industry Report 4, 1 (2007). 

S Saabith, T Vinothraj, and M Fareez. 2021. A review on 
Python libraries and Ides for Data Science. Int. J. Res. 
Eng. Sci 9, 11 (2021), 36–53. 

Nathalie Sims and Barbara Kasprzyk-Hordern. 2020. 
Future perspectives of wastewater-based epidemiology: 
monitoring infectious disease spread and resistance to 
the community level. Environment international. 2020. 

Pantelis Sopasakis, Emil Fresk, and Panagiotis Patrinos. 
2020. OpEn: Code generation for embedded nonconvex 
optimization. IFAC-PapersOnLine 53, 2 (2020), 6548–
6554. 

Matt Wiley and Joshua F Wiley. 2016. Advanced R: Data 
Programming and the Cloud. Springer. 

Weijia Xu, Ruizhu Huang, Hui Zhang, Yaakoub El-
Khamra, and David Walling. 2016. Empowering R with 
high performance computing resources for big data 
analytics. Conquering Big Data with High Performance 
Computing (2016), 191–217. 

Omolbanin Yazdanbakhsh, Yu Zhou, and Scott Dick. 2017. 
An intelligent system for livestock disease surveillance. 
Information Sciences 378 (2017), 26–47. 

Bugden W, Alahmar A. Rust: The programming language 
for safety and performance. arXiv preprint 
arXiv:2206.05503. 2022 Jun 11. 

Shah Hussain, Elissa Nadia Madi, Hasib Khan, Haseena 
Gulzar, Sina Etemad, Shahram Rezapour, Mohammed 
K. A. Kaabar, "On the Stochastic Modeling of COVID-
19 under the Environmental White Noise", Journal of 
Function Spaces, vol. 2022. 

Descovi, G.; Maran, V.; Ebling, D. and Machado, A. 
(2021). Towards a Blockchain Architecture for Animal 
Sanitary Control. In Proceedings of the 23rd 
International Conference on Enterprise Information 
Systems - Volume 1: ICEIS; ISBN 978-989-758-509-8 

Cardenas, Nicolas C.; Lopes, Francisco PN; Machado, 
Gustavo. Modeling foot-and-mouth disease 
dissemination in Brazil and evaluating the effectiveness 
of control measures. bioRxiv, p. 2022.06. 14.496159, 
2022. 

R. Perlin, D. Ebling, V. Maran, G. Descovi and A. 
Machado, "An Approach to Follow Microservices 
Principles in Frontend," 2023 IEEE 17th International 
Conference on Application of Information and 
Communication Technologies (AICT), Baku, 
Azerbaijan, 2023, pp. 1-6, doi: 10.1109/AICT59525.2 
023.10313208. 

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

658


