
GraphVault: A Temporal Graph Persistence Engine

Julian Bichl1,2, Thomas Driessen1, Melanie Langermeier1 and Bernhard Bauer2

1qbilon GmbH, Hermanstraße 5, 86150 Augsburg, Germany
2Software Methodologies for Distributed Systems, University of Augsburg,

Universitatstrasse 6a, 86135 Augsburg, Germany

Keywords: GraphVault, Temporal Graphs, Graph Query Engine, Temporal Graph Persistence, Graph Databases.

Abstract: Graph structures have gained increasing popularity in recent years as they offer comprehensive possibilities for
managing and analyzing high interconnected data. In order to facilitate the orchestration of these data, graph
databases have been developed enabling graphs to be stored as central entity. However, traditional graph
databases and frameworks consider graphs as a inherently valid unit without temporal reference which can
limit their ability to perform advanced analysis. This paper presents GraphVault, a graph persistence engine
that is capable of efficiently storing graphs and reconstructing labeled property graphs over time. We present
our temporal data model, which we mapped to a key-value engine using a purpose-built record design. The
performance of our implementation is then compared to that of a conventional graph database.

1 INTRODUCTION

At the beginning of the 21st century, technical ad-
vancements in Big Data enabled the capturing of
highly interconnected information, in which not only
the individual data record but the interconnectivity
of the data among each other serves as the main
source of knowledge acquirement. While common
data structures like tables are unsuitable for represent-
ing highly interconnected data, graphs consisting of
attributed nodes and edges provide a decisive capa-
bility in structuring and analyzing connected informa-
tion. Current research considers graphs as key enabler
for future advances, e.g. the Gartner Inc. predicts an
80 percent use of graphs and graph technologies in
shaping innovation by 2025 (Rita, 2021).

However, common graph database systems can
only store static graphs. Therefore, observing and an-
alyzing past graph mutations over time is not natively
supported by most systems. This missing informa-
tion represents enormous untapped potential. E.g. Fi-
nancial Fraud Detection uses graph databases to iden-
tify fraud rings through reused telephone numbers or
addresses (Sadowski and Rathle, 2014). Employing
a temporal graph database, such rings could also be
identified over time even if the fraudsters never used
identical data records at the same period of time. An-
other example of graph databases in action are prod-
uct recommendation systems enabling the generation

of targeted recommendations for customers by linking
products to their associated buyers. As customer buy-
ing behavior changes over time, the use of a temporal
graph database could weaken the evaluation quality
of past purchases or could incorporate seasonal events
into the generation of new product recommendations.

These examples demonstrate the potential advan-
tages of incorporating the temporal dimension into
existing graph databases. This paper introduces
GraphVault, a robust temporal graph persistence en-
gine that can efficiently store a graph over time and
rebuild it at any earlier point.

The remaining paper is structured as follows: In
Chapter 2 we give an overview over different exist-
ing approaches that enabled graph tracking over time.
Following this summary, our paper presents our solu-
tion in chapter 3, in which we have mapped a tem-
poral graph model to a key-value engine. Our ap-
proach is further evaluated in Chapter 4, where we
compare the query performance of past graphs to a
general used graph database.

2 RELATED WORK

In recent years, there have been several solutions to
connect temporal dimension with graph databases and
thereby track changes over time. The following chap-
ter provides an overview of the most relevant ap-

224
Bichl, J., Driessen, T., Langermeier, M. and Bauer, B.
GraphVault: A Temporal Graph Persistence Engine.
DOI: 10.5220/0012556500003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 224-231
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

proaches. However, the list does not claim to be ex-
haustive and rather points out approaches that differ
significantly from each other.

The approach presented by Massri et al. is based
on a columnar database and tries to optimize the cal-
culation time during querying the graph at a given
point in time, while minimizing the amount of storage
used to store graph mutations (Massri et al., 2020). In
their research they defined the Copy Model (complete
graph snapshots are saved despite high redundancy),
the Log Model (only the initial graph and the changes
are saved) and the Copy-on Write Model (only mod-
ified graph elements are copied). To achieve a com-
promise between the need of computational effort for
graph calcuation at a given point in time and neces-
sary storage to persist it, they introduced a new model
called Copy+Log. This model splits the graph history
into time chunks, which themselves are structured
by the Log Model with an initial graph and stored
graph mutations. Further development optimized the
querying time by implementing backwards calculable
graph modifications (Massri et al., 2023). This re-
duced the needed disk space by reducing the initial
graph to an amount of mutations applied on the initial
graph of the previous chunk.

Rost et al extended their distributed graph analy-
sis framework Gradoop in order to support temporal
validity for graph elements (Rost et al., 2019). By
adding two optional intervals to every record in their
columnar database, it was possible to attach the valid
and the transactional time to every node and edge.
On the basis of this additional information, they were
able to define temporal analysis operators executed on
their Apache Flink based processing engine. These
operators made it possible to query graphs at a given
time, to calculate the difference of two time-varying
graphs, to group graph elements with respect to the
temporal dimension and to check for graph patterns
considering temporal constraints.

The authors of ImmortalGraph developed an opti-
mized persistence method for temporal graphs in ad-
dition to a temporal graph processing engine (Miao
et al., 2015). Employing this approach, temporal
graph operators can be classified according to their
degree of temporal and structural complexity. The
graph data is duplicated stored and persisted in a
structure-local and temporal-local data structure.. To
efficiently perform computations on the graph struc-
ture at a certain point in time, the graph elements are
processed and persisted in a structure-local layout. If
one or more graph elements are considered over time,
the temporal-local layout is used to enable more effi-
cient temporal operators.

Debrouvier et al. defined a temporal property

graph model to extend a common graph database by
attaching validity intervals to the graph elements as
properties (Debrouvier et al., 2021). Less data re-
dundancy is achieved by decoupling property keys
and property values and internally representing them
as separated nodes. Their prototype is based on the
commercial graph database Neo4j. They further de-
veloped their graph query language T-GQL that trans-
lates into Cypher queries and were able to query dif-
ferent kinds of shortest paths over time.

3 GraphVault

In this chapter, we present GraphVault, a temporal
database system designed for efficient graph persis-
tence over time and instant graph reconstruction from
any prior time point.

In the following, we use the definition proposed
in (Angles et al., 2017) as it provides the foundational
data structure for our improved temporal graph.

Definition 1.
A directed labeled property graph G is defined as

G = (N,E,L,P,V,ε,λ,σ)

where

• N : {N1, ...,Nn} is a set of nodes representing en-
tities identified by unique numeric IDs.

• E : {E1, ...,En} is a set of directed edges repre-
senting relationships between nodes. Each di-
rected edge is identified by a unique numeric ID.

• L : {L1, ...,Ln} is a set of labels assigned to nodes
and edges denoting the type or nature of the entity
or relationships. Labels are represented by string
values.

• P : {P1, ...,Pn} is a set of properties identified by
a string.

• V : {V1, ...,Vn} is a set of property values of any
datatype.

• ε : (εs ∪ εt) is a set of functions with εs : E → N
and εt : E → N that maps every edge to a source
and target node.

• λ : (N ∪ E) −→ L is a total function that maps a
label to each node and edge.

• σ : (N∪E)×P ↣V is a injective partial function
that maps a node or a node with a property to a
corresponding property value.

■
This definition is frequently used as the funda-

mental data structure for common graph databases

GraphVault: A Temporal Graph Persistence Engine

225

and therefore yield to our data structure for our tem-
poral graph engine. In the academic literature, there
have been a number of different approaches to the
storage of graphs over time.

In their work, Salzberg and Tsotras introduced
the Copy and Log methods for temporal informa-
tion storage in graphs. Copy involves saving com-
plete graph states at each change, leading to redun-
dancy, while Log only records changes, reducing stor-
age but increasing reconstruction computational over-
head (Salzberg and Tsotras, 1999).

In order to avoid the need to store all snapshots
of the modification of a graph or to compute all
modifications in order to regain the graph at a given
point in time, researchers used an alternative ap-
proach by assigning validity intervals to graph ele-
ments. This method is analogous to the expansion of
the SQL:2011 standard that included temporal func-
tionalities, where temporal intervals are assigned to
relational records (Kulkarni and Michels, 2012). Our
approach implemented in GraphVault is based on the
approach proposed by (Campos et al., 2016) and the
Duration-labeled temporal graph presented in (De-
brouvier et al., 2021), which assigns validity intervals
to nodes, edges, properties and property values.

Formally, our previously defined labeled property
Graph G in Definition 1 is extended to:

Definition 2.
A temporal directed labeled property graph Gtemporal
is defined as

Gtemporal = (N,E,L,P,V, I,ε,λ,σ, ι)

where

• N,E,L,P,V,ε,λ,σ are defined as in Definition 1

• σ : (N ∪E)×P → {v1, ...,vn} ⊆ V is a function
that maps a node or an edge with a property to a
set of corresponding property values.

• I : {(a,b] | a,b ∈N and a < b} As a set of validity
intervals, where a and b symbolize timestamps.
a is the first timestamp where the corresponding
element was valid and b the point in time when
the element got invalid.

• ι : (N ∪E ∪P∪V)→ {i1, ..., in} ⊆ I is a function
that maps graph elements like nodes, edges, prop-
erties and property values to a subset of validity
intervals.

■
We also define some helper functions to better

specify the formal temporal graph model:

1. active : (N ∪E ∪P∪V)×N→Boolean
such that

active(e, i) =

True,
if ∃(a,b] ∈ ι(e) :
i ≥ a∧ i < b

False, else
The function active indicates whether for a graph
element e at any point in time i the element ex-
isted.

These definitions allows us to attach validity in-
tervals to every graph element. There are additional
constraints enforced on the model, so that it remains
consistent and all graph states can be reconstructed at
any time in a valid state:

2. ∀i ∈N,∀e ∈ (N∪E),∀p ∈ P : σ(e, p) = v∧v ̸= /0,
active(i,v)⇒ active(i, p)
This requirement guarantees that if a property
value existed at any point, the corresponding
property must have also been present.

3. ∀i ∈ N,∀e ∈ (N ∪E), p ∈ P : σ(e, p) ̸= /0,
active(i, p)⇒ active(i,e)
The same principle can be applied to nodes and
edges, as these must also be valid whenever an
associated property existed at that point in time.

4. ∀i ∈ N,∀e ∈ E,n ∈ N : ε(e) = n,
active(i,e)⇒ active(i,n)
The remaining constraint ensures that if an edge
existed at some time, the corresponding source
and target nodes must exist at that time.

These requirements ensure graph structure consis-
tency over time. However, additional rules must be
defined to ensure the logical correctness of the graph
through time:

5. ∀e1,e2 ∈ E,
εs(e1) = εs(e2)∧εt(e1) = εt(e2)⇒ λ(e1) ̸= λ(e2)
This principle ensures that if two edges with the
same direction exist between two nodes, their
labels must be different, because otherwise this
edge would have been reused.

6. ∀i ∈ N,∀p ∈ P,
active(p, i) ⇒ |{v | ∀e ∈ (N ∪ E) : v ∈ σ(e, p)∧
active(v, i) = True}|= 1
This constrains an active property to have only
one valid value at any given time.

As defined in definition 1, every node and edge
is identified by a unique numeric ID. We extend this
assignment to also be valid on properties and prop-
erty values. In the following, the notion x.id identifies
the ID from graph element x. For properties, p.name
identifies the name from property p. At property val-
ues v, v.value identifies the value payload from any
datatype. With these notions, further constrains can
be made about the structure of the temporal graph:

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

226

7. ∀n1,n2 ∈ (N ∪E ∪P∪V) : n1.id ̸= n2.id
Ids are completely unique within the temporal
graph.

8. ∀p1, p2 ∈ P : p1.id ̸= p2.id,n ∈ (N ∪E),
σ(n, p1) ̸= /0 ∧ σ(n, p2) ̸= /0 ⇒ p1.name ̸=
p2.name
This constraint implies that every property must
be unique in its name at a given node or edge,
otherwise the already existing property would
have been reused.

9. ∀v1,v2 ∈V : v1.id ̸= v2.id,n ∈ (N ∪E), p ∈ P,
v1 ∈ σ(n, p)∧v2 ∈ σ(n, p)⇒ v1.value ̸= v2.value
This rule ensures that each property value mapped
to a property is unique based on its payload.

Given these constraints, a temporal graph that is
able to reconstruct the valid graph at any point in time
can be defined. However, one restriction concerns the
labels of nodes and edges. According to the current
formal definition, nodes and edges cannot alter their
labels over time. This restriction is acceptable since a
node or edge typically maintains the same type over
time. However, if the demand for time-varying la-
bels arises, the limitation of our data model can be
straightforwardly overcome by using a synthetic la-
bel attribute at node or edge level as these are time-
varying.

Our proposed approach can be categorized as Log
based, since we only store the changes in our temporal
graph model. However, our proposed solution shows
that an efficient use of the persistence engine of stor-
ing the historical changes reduces the computational
complexity to a minimum, providing a graph recon-
struction performance comparable to a log approach.
This requires implementing data structures and algo-
rithms that enable an efficient search and traversal of
the graph in both temporal and structural dimensions.

3.1 Persistence Engine

When examining current graph databases based on
available source code or published architecture, the
persistence engines can be distinct in either self-
written persistence engines or those relying on exist-
ing engines. Popular representatives like Memgraph1

or ArangoDB2 rely on key-value engines that allow
them to store their graph structures efficiently using
binary key-value pairs. In addition, established graph
databases show that existing key-value engines have
proven themselves in the graph database world. As a
result, we opted to build our temporal graph analytics
engine on top of an existing key-value engine.

1https://memgraph.com/
2https://arangodb.com/

Investigating existing key-value engines, two dif-
ferent data structures can be distinguished for storing
key-value records. In several engines, the pairs are
stored in the form of an Log-structured (LSM) tree.
Well-known representatives of this engine type are
RocksDB3 and WiredTiger4. For instance, the graph
database ArangoDB leverage RocksDB engine to en-
able efficient and high-performance insertion of large
graphs. Beside LSM trees, binary trees have demon-
strated their effectiveness as a data structure for stor-
ing key-value pairs. While this data structure may
have slower insertion times due to its sorting process,
it has a performance advantage for reading and iterat-
ing on the data as dictated by its underlying structure.
A example of a well-known representative of this data
structure is the Lightning Memory-Mapped Database
(LMDB)5.

The aim of our graph engine is to analyze graphs
over time. It is important that the underlying persis-
tence engine can iterate over a large amount of data in
a performant manner, since multiple temporal modifi-
cations of the graph can result in a significant amount
of data, especially when new graph elements are cre-
ated or their properties change with each new graph
inserted. Since key-value engines that are based on
binary trees provides more efficient iteration and data
read performance, LMDB as a B+ tree-based engine
is chosen as the basis for GraphVault as its sorted
data structure allows for fast search and retrieval of
records. This decision is supported by the fact that
LMDB has already been used successfully in the im-
plementation of (temporal) graph databases. (Nation-
alSecurityAgency, 2016; Vijitbenjaronk et al., 2017)

3.2 LMDB

LMDB, or Lightning Memory-Mapped Database, is
a high performance, embedded key-value store de-
signed for efficient data retrieval. It was originally
implemented as the back-end serving database for the
OpenLDAP software developed by Symas Corpora-
tion. LMDB uses a B+ tree structure to optimize
the storage of keys and values, which allows for fast
search and retrieval processes, resulting in high per-
formance data management. Data access speed is im-
proved by using memory-mapped files, which provide
direct access to the virtual memory of the operating
system. (Howard, 2015)

Inside LMDB, binary key-value pairs are stored
in an append-only B+ tree. Using the default config-
uration, the records based on binary key-value pairs

3https://rocksdb.org/
4https://source.wiredtiger.com/
5https://symas.com/lmdb

GraphVault: A Temporal Graph Persistence Engine

227

are sorted in ascending order. Therefore, it is recom-
mended to define the binary key structure in such a
way that information that has to be queried together in
one query is located next to or close to each other in
the binary tree. This enables the loading of an amount
of data from LMDB with just one logarithmic search.

However, compared to other graph databases,
our engine choice LMDB has the disadvantage of
comparatively slower inserting performance when it
comes to storing larger graphs because of the required
key comparison and rebalancing of the tree. Addi-
tionally, LMDB utilizes a shadow paging technique
which employs a copy-on-write process to prevent in-
place page updates, but restricts the number of writing
threads to one. (Howard, 2015, 6).

3.3 Record Design

GraphVault is built around LMDB by reusing its
transactional functionality and serializable isolation.
It converts given directed labeled property graphs to
key-value records. In this chapter, we introduce the
record schema used for this mapping.

3.3.1 Requirements

Our temporal storage graph engine must support two
key functionalities: first, the ability to incorporate
real-time graph changes into the system; and second,
the capability to query and analyze graphs effectively
over time. This paper primarily concentrates on the
engine’s ability to query the complete graph at any
previous moment in time. However, as we are cur-
rently working on powerful analytical features, our
engine must provide the capability to perform flexible
analyses that support structural properties of nodes
and edges, as well as properties related to the tem-
poral dimension. Therefore, our goal for the tempo-
ral graph engine is to store all properties of a tem-
poral graph in an optimal manner, facilitating their
retrieval within a minimal amount of time. This is
accomplished through a record design optimized for
queries that provides access to structure information
and property values in minimal time.

3.3.2 General Design

In the following we define key-value mapping for
LMDB to ensure an uniform mapping of the tem-
poral graph’s structure through a designated record
schema. An entity is defined as a node, edge, prop-
erty or property value. It serves as the primary ele-
ment that is used to describe the key-value records in
LMDB. Each entity has a unique numeric random ID.
Each entity can be associated with either a primitive

attribute or a property value. Entities can associate
with primitive attributes or property values denoting
type or value.

Furthermore, a reference is defined as a named, di-
rected connection between two entities. For instance,
an edge has two references, source and target, which
describe the connection to the nodes. The ID of the
target entity specifies the reference’s target.

In the same manner as the attribute and reference
records, the validity intervals of the referenced enti-
ties are stored as a separate record type. The interval
values are saved by concatenating the start and end
values.

3.3.3 Data Records

Our proposed temporal graph model of Definition 2
can be described in four different kinds of record
types visualized in table 1.

Entity Records. This record type stores all entities
and their associated IDs. Therefore, all records for a
given entity type are in contiguous records. Thus, all
IDs of a given type can be retrieved with a range query
using LMDB. As the value part of the LMDB record
isn’t required but non-optional, it stores an empty fill
bit.

Attribute Records. This record type is used to store
primitive attributes from entities. Each entity can
have several attributes, but only one of a type unified
by its name. Our schema stores all attributes of an en-
tity side-by-side in LMDB’s binary tree. The name of
the attribute is stored as UTF-8 binary encoded value.
The attribute’s value is binary serialized and stored in
the value section of the LMDB record.

By using this record schema, it is possible to query
the type of an edge within a range query, as well as the
IDs of the source and target. In our temporal graph,
attribute records are used to store node and edge la-
bels, edge source and destination IDs, property labels
and property values.

Reference Records. Reference records are used to
store relational data between records. These reference
records are identified by a name in text format (UTF-
8 binary encoded) and directed between two entities.
Unlike a property record, a reference record may have
multiple references with the same name, with differ-
ent target entity. After the binary reference name, the
ID of the reference target entity is stored binary. The
value part of the LMDB record stores an empty fill
bit.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

228

Table 1: The Record Design of GraphVault in LMDB.

ID of entity type Record Type Record Body Value
1 (Node),
2 (Edge),

3 (Property),
4 (Property Value)

0 (Entity)

ID

- - -
1 (Attribute) Attribute - Value
2 (Reference) Reference Reference target ID -
3 (Interval) Interval - -

Table 2: The Index Record Design of GraphVault in LMDB.

ID of entity type Record Type Record Body Value
1 (Node),
2 (Edge),

3 (Property),
4 (Property Value)

4 (Attribute Index) Attribute Value

ID

-
5 (Reference Index) Reference Reference target ID -
6 (Interval Index) Interval - -

7 (IntervalR Index) IntervalR - -

By using this schema, all reference records are
stored next to each other in the binary tree. Thus it
is possible to load all references of an entity at once.
In GraphVault, we store in LMDB the edge’s source
and destination information, the association between
properties and their corresponding nodes or edges as
well as their corresponding property values via refer-
ence records.

Interval Records. Interval records define the tem-
poral validity of different entities in the key-value
database. They use binary concatenation to combine
the start and end numerical timestamp values to deter-
mine the interval’s value. An entity can be assigned
multiple validity intervals, but it must always have at
least one. Identical intervals cannot be assigned to an
entity more than once, and only disjunctive time in-
tervals per entity are permitted.

3.3.4 Index Records

GraphVault is designed as a temporal graph per-
sistence engine with a query-optimized principle in
mind. I.e. any inserted data can be found efficiently
and quickly, even if no explicit in-memory index has
been created on the property. This query optimiza-
tion involves the structures of nodes and edges as well
as property information and their respective property
values. As a result, it is possible to efficiently query
any graph data at any time without having to consider
indices in advance.

To achieve this, index records are created for all
properties, references and intervals with the last part
of the record referring to the entity ID to which the
record applies. This index record schema is outlined
in table 2. Consequently, all entities that possess the
same property or reference are located next to each
other in the binary tree.

Unlike the normal interval record (record type 3)
and its index record (record type 6), the interval in-

dex record works with the end value first, followed by
the start value. This allows interval records that end
before or after a certain time to be efficiently located
within the binary tree.

3.4 Temporal Record Optimization

To ensure a efficient reconstructing of historical data,
the rapid identification of entities that are valid at a
given point in time is required, since an associated in-
terval record covers that point in time. However, sim-
ply concatenating the binary start and end values of
an interval would result in sorting the records by the
start value followed by the end value. This requires
considering all records in the binary tree with an iden-
tical start value consecutively to confirm no other in-
terval record exists at the end, which is large enough
to include the given time point. Therefore the idea is
to insert the interval record with the longest duration
for a given start value at the top of the tree, creating a
sequence of intervals sorted first by the smallest start
value and then by the largest end value.

This sort behavior has been achieved by inverting
the end value of interval in binary form. By taking
the binary big-endian representation of the numerical
end value of the interval and inverting it, every 0 turns
into a 1 and vice versa. As a result, the exact reversal
of the order yields the representable number range,
transforming the smallest number into the largest, the
second smallest into the second largest, and so on.

By organizing the interval index records in this or-
der, the first record for a start value can be used as a
break point in the iteration, since the record with the
longest range for a given start value is examined first
to determine if a valid interval can exist for that start
value at all. If not, all subsequent records with this
starting value can be disregarded, and the iteration can
continue with the subsequent larger starting value.

The use of this sorting of intervals in combina-

GraphVault: A Temporal Graph Persistence Engine

229

tion with a binary search across all entries of intervals
makes it possible to efficiently and specifically obtain
all valid entities at a point in time and thus to recon-
struct the graph at a previous state.

4 EVALUATION

In order to evaluate our implementation, we compare
GraphVault with the modern database ArangoDB.
ArangoDB is selected as a comparison partner be-
cause it is a multi-model database that provides a
graph database, but also allows flexible structuring of
the data it stores by defining JSON objects as nodes
and edges (Belgundi et al., 2023). This allows an easy
and straightforward migration of our data structures
to ArangoDB, accomplished by assigning validity in-
tervals to nodes and edges as well as their respective
properties and property values.

4.1 Setup and Dataset

The comparison is carried out on an Intel i7-1165G7
processor with 4 cores at 2.8GHz and 16 GB of RAM.
The temporal graph datasets are generated by multiple
iterations of instantiating a given graph metamodel
that describes nodes, edges, properties and their val-
ues using a set of probability functions. Addition-
ally, nodes and edges are randomly removed after
each graph generation to further enhance variability
between temporal graphs. For each temporal itera-
tion, these graphs are then inserted into GraphVault.
In the case of ArangoDB, the entire resulting temporal
graph is first computed and then finally inserted into
the database. For performance evaluation, five dif-
ferent graph sizes ranging from 10 to 105 nodes and
three times as many edges are generated, as outlined
in Table 3. In the following evaluation, each graph is
created with up to three distinct properties and vary-
ing property values. After each iteration of graph gen-
eration, random nodes and edges are removed with a
30% probability.

4.2 Results and Interpretation

The focus of the performance evaluation is on the
speed of the recovery of the entire graph to a previous
point in time. Therefore, we compare the mean query
times for different graph sizes and mutation iterations.
The consideration of hard disk space is not taken into
account during the design of GraphVault as its archi-
tecture allows for efficient querying of flexible queries
over time with replicated data entries, which results

101 102 103 104 105
100

101

102

103

104

105

Nodes

M
ill

is
ec

on
ds

GraphVault - 10 iter.
GraphVault - 30 iter.
GraphVault - 50 iter.
ArangoDB - 10 iter.
ArangoDB - 30 iter.
ArangoDB - 50 iter.

Figure 1: Comparison of execution times for GraphVault
and ArangoDB with different iteration counts.

in higher memory consumption compared to similar
graph databases.

Since ArangoDB currently does not allow indexes
on numeric values within lists, no in-memory indexes
are set on the time intervals in either system. The
graphs are then generated and inserted 10, 30 and
50 times, respectively. After persisting the tempo-
ral graphs in both systems, all historical graphs are
queried over all temporal iterations and the average
query time is calculated. The mean query times of the
comparison are shown in Figure 1 and Table 3.

Our benchmark results demonstrate that Graph-
Vault yields a significantly faster query speed (40%-
60%) for graphs as compared to ArangoDB. Graph-
Vault’s efficient ordering of the interval record no-
tably enhances query performance, particularly for
larger graphs. However, our comparison also reveals
that GraphVault’s query speed diminishes with an in-
creasing number of iterations. This is because the vast
number of possible edge combinations results in an
increased generation of new edges, associated prop-
erties and property values with each graph iteration.
These new values must be considered when conduct-
ing a temporal query.

To verify this assumption, a second experiment is
conducted using GraphVault and ArangoDB with 105

nodes and 3× 105 edges, and a 30% removal proba-
bility. However, the graph is generated only once be-
fore the experiment, and graph elements are dropped
with the given probability per iteration before inser-

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

230

Table 3: Mean execution times for GraphVault and ArangoDB with constantly new values.

Nodes Edges GraphVault
10 iter. (ms)

ArangoDB
10 iter. (ms)

GraphVault
30 iter. (ms)

ArangoDB
30 iter. (ms)

GraphVault
50 iter. (ms)

ArangoDB
50 iter. (ms)

101 3×101 1.70 3.53 2.47 4.40 1.68 5.543
102 3×102 6.00 15.57 9.87 25.00 10.56 35.102
103 3×103 41.10 105.723 55.47 251.90 77.80 389.754
104 3×104 447.20 1035.00 604.73 2545.00 848.60 4089.00
105 3×105 6111.30 10255.00 10423.27 25698.00 14646.28 41401.00

Table 4: Execution times for GraphVault and ArangoDB
without new values consistently getting 105 nodes and 3×
105 edges inserted.

Iterations GraphVault (ms) ArangoDB (ms)
10 3294.60 8139.00
30 3160.80 10622.00
50 3329.64 13114.00

tion. Therefore, the graph is constantly changing, but
all its components are eventually identified and can be
reused in GraphVault. The average query times shown
in Table 4 confirm that GraphVault requires a constant
and consistent query time to restructure the graph over
multiple iterations, the increased query times in Ta-
ble 3 are therefore due to the growth of graph data
through time.

5 CONCLUSION AND FURTHER
WORK

Graphs are an excellent data structure for managing
and analyzing a wide variety of data. In this paper
we introduced GraphVault, a graph persistence en-
gine that is capable of storing graph evolutions over
time. We presented our extended labeled property
graph data structure and explained our approach in
mapping it to the key-value engine LMDB through
a specific record design. Then we concluded by com-
paring the query speed over time between GraphVault
and ArangoDB.

The next step in advancing GraphVault is the im-
plementation of a query engine. The record design is
defined with flexible queries in mind and as such, we
plan to extend a common graph query language with
temporal features and integrate it on top of Graph-
Vault. The objective is to provide high performance
query results that will allow us to effectively ana-
lyze graphs over time in the future. We will evaluate
this feature on both generated and real-world datasets,
demonstrating the potential of temporal graph analy-
sis in practical applications.

REFERENCES
Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.,

and Vrgoč, D. (2017). Foundations of modern query
languages for graph databases. ACM Comput. Surv.,
50(5).

Belgundi, R., Kulkarni, Y., and Jagdale, B. (2023). Analy-
sis of Native Multi-model Database Using ArangoDB,
pages 923–935.

Campos, A., Mozzino, J., and Vaisman, A. (2016). Towards
temporal graph databases.

Debrouvier, A., Perazzo, M., Parodi, E., Soliani, V., and
Vaisman, A. (2021). A model and query language for
temporal graph databases. The VLDB Journal, 30.

Howard, C. (2015). MDB: A Memory-Mapped Database
and Backend for OpenLDAP.

Kulkarni, K. and Michels, J.-E. (2012). Temporal features
in sql:2011. SIGMOD Rec., 41(3):34–43.

Massri, M., Miklos, Z., Raipin Parvedy, P., and Meye, P.
(2023). Clock-G: Temporal Graph Management Sys-
tem, pages 1–40.

Massri, M., Raipin Parvedy, P., and Meye, P. (2020).
Gdbalive: a temporal graph database built on top of
a columnar data store. Journal of Advances in Infor-
mation Technology, 12.

Miao, Y., Han, W., Li, K., Wu, M., Yang, F., Zhou, L., Prab-
hakaran, V., Chen, E., and Chen, W. (2015). Immortal-
graph: A system for storage and analysis of temporal
graphs. ACM Trans. Storage, 11(3).

NationalSecurityAgency (2016). Lemongraph: Log-based
transactional graph engine — github.com. [Accessed
20-10-2023].

Rita, S. (2021). Graph as The Foundation For Data, Ana-
lytics and AI. Graph + AI Summit, October 5, 2021.

Rost, C., Thor, A., and Rahm, E. (2019). Temporal graph
analysis using gradoop. In Meyer, H., Ritter, N.,
Thor, A., Nicklas, D., Heuer, A., and Klettke, M.,
editors, BTW 2019 – Workshopband, pages 109–118.
Gesellschaft für Informatik, Bonn.

Sadowski, G. and Rathle, P. (2014). Fraud detection: Dis-
covering connections with graph databases. White
Paper-Neo Technology-Graphs are Everywhere, 13.

Salzberg, B. and Tsotras, V. J. (1999). Comparison of ac-
cess methods for time-evolving data. ACM Computing
Surveys, 31(2):158–221.

Vijitbenjaronk, W., Lee, J., Suzumura, T., and Tanase, G.
(2017). Scalable time-versioning support for property
graph databases. pages 1580–1589.

GraphVault: A Temporal Graph Persistence Engine

231

