
EmbedDB: A High-Performance Time Series Database
for Embedded Systems

Justin Schoenit a, Seth Akins b and Ramon Lawrence c

University of British Columbia, Kelowna, BC, Canada

Keywords: Database, Key-Value Store, Embedded, Arduino, Internet of Things, SQL, Time Series, SQLite.

Abstract: Efficient data processing on embedded devices may reduce network communication and improve battery usage
allowing for longer sensor lifetime. Data processing is challenged by limited CPU and memory hardware.
EmbedDB is a key-value data store supporting time series and relational data on memory-constrained devices.
EmbedDB is competitive with SQLite on more powerful embedded hardware such as the Raspberry Pi and
executes on hardware such as Arduinos that SQLite and other previous systems cannot. Experimental results
evaluating EmbedDB on time series query processing show a speedup of five times compared to SQLite on a
Raspberry Pi on many queries, and the ability to execute data processing on small embedded systems not well
supported by existing databases.

1 INTRODUCTION

Embedded databases are used in a wide variety of
environments from supporting desktop and mobile
applications to use in custom embedded and sensor
systems, including the Internet of Things (IoT). Due
to this diversity of applications and hardware capa-
bilities, there are numerous systems used with dif-
ferent architectural choices and supported features.
Higher performing devices such as cell phones and
the Raspberry Pi have the hardware and operating
system capabilities to run embedded SQL databases
such as SQLite (Gaffney et al., 2022). Embedded and
sensor devices have significantly less hardware re-
sources and operating system support, which restricts
the database systems they are able to run.

For embedded devices, the key goal is high per-
formance despite significant hardware limitations that
result in many systems being unable to execute on
the smallest devices as either they require too much
RAM, code space, or operating system support. Prior
research has produced systems minimizing memory
usage in this environment (Anciaux et al., 2003; Bon-
net et al., 2001; Douglas and Lawrence, 2014).

Our contribution is EmbedDB, an embedded key-
value, time series database with high performance

a https://orcid.org/0009-0000-1791-3437
b https://orcid.org/0009-0001-8346-3590
c https://orcid.org/0000-0002-6779-4461

on embedded devices, that is flash-optimized, has no
code dependencies, does not require an operating sys-
tem, and functions with only 4 KB of RAM. Em-
bedDB is primarily optimized for storing and query-
ing time series data collected by sensor nodes. Ex-
perimental results demonstrate that EmbedDB outper-
forms SQLite on a Raspberry Pi for many queries and
on smaller embedded devices its read and write per-
formance maximizes hardware capabilities.

2 BACKGROUND

2.1 Embedded Systems

There is a wide range of devices performing data pro-
cessing. Cellphones, tablets, and other mobile devices
have significant CPU, memory, and storage capabili-
ties and run an operating system such as iOS or An-
droid. These devices can run relational databases with
the most commonly deployed system being SQLite
(Gaffney et al., 2022). The Raspberry Pi (Raspberry
Pi Foundation, 2023) runs a Linux variant with SD
card flash storage and can execute databases such as
MySQL, PostgreSQL, or SQLite.

Embedded processors may be deployed in many
industrial, environmental, and system sensing and
monitoring applications. These devices trade-off per-
formance to minimize cost and may have a CPU clock

240
Schoenit, J., Akins, S. and Lawrence, R.
EmbedDB: A High-Performance Time Series Database for Embedded Systems.
DOI: 10.5220/0012558100003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 240-249
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

speed from 8 to 256 MHz and between 4 KB to 512
KB SRAM. Given the hardware resources, small de-
vices do not typically run Linux and only the highest
performing run some form of embedded OS (Javed
et al., 2018). SQLite and many other embedded
databases do not run on smaller hardware as they re-
quire more SRAM and support for the Linux I/O API.

Embedded devices have features that affect data
processing. Data storage is typically on flash memory
either raw NOR or NAND chips or an SD card. Flash
memory writes are more time-consuming than reads,
and algorithms perform more reads to avoid writes.
Most flash memory is not byte addressable, so bytes
are organized into pages. Flash memory requires that
a page must be erased before writing, which prevents
modifying data in place. Instead, the page is read
from the device, modified and then written back to
an erased location. Device wear occurs during every
erase/write operation, which may result in failure and
data corruption over time.

SD cards have a page-level abstraction layer. Ref-
erences to logical pages are converted to physical ad-
dresses by a flash translation layer (FTL). This trans-
lation simplifies implementation by ignoring physical
storage characteristics. The FTL handles logical page
overwrites by selecting a new physical page in stor-
age and updating its page translation table. The FTL
ensures pages are written evenly throughout storage.
Without an FTL, the database must handle writes,
erases, and memory management internally.

2.2 Embedded Data Processing

Time series data sets are commonly collected by em-
bedded devices and consist of records where each
record has a timestamp and one or more data values
collected at that timestamp.

Data processing on embedded systems has been
performed with two general approaches. Research on
developing sensor networks such as TinyDB (Madden
et al., 2005) had each embedded, sensor device oper-
ating as a data source that was managed and queried
by a controller that performed the query optimization
and planning. In this architecture, the focus is on effi-
cient query planning and data routing.

Other prior research developed indexes and data
systems for execution on embedded systems with fo-
cus on improving the time and energy efficiency for
local data processing. The goal is to provide a light-
weight database abstraction layer that is an alternative
to developers building their own data storage code.

Embedded data systems include Antelope (Tsiftes
and Dunkels, 2011) and LittleD (Douglas and
Lawrence, 2014). These systems support some form

of relational query processing and a limited form of
SQL. Challenges include parsing and optimizing SQL
queries given low memory and efficiently executing
relational operators.

Antelope (Tsiftes and Dunkels, 2011) stores
time series data in sorted order and uses a binary
search for record retrieval by timestamp. MicroHash
(Zeinalipour-Yazti et al., 2005) uses binary search
for timestamp queries and range partitioning to in-
dex data values. Bloom filters are used to summarize
and index data in PBFilter (Yin and Pucheral, 2012).
SBITS (Fazackerley et al., 2021) is a sequential in-
dexing structure supporting timestamp queries using
linear interpolation and data queries by using a user-
customizable bitmap index. Experimentation (Ould-
Khessal et al., 2022) showed that SBITS outperforms
MicroHash and other embedded indexing techniques
including B-trees (Ould-Khessal et al., 2021).

Improved time series indexing is achieved by us-
ing multiple linear approximations to predict a record
location based on its timestamp. Applying learned
indexing to embedded time series indexing demon-
strated (Ding et al., 2023) significantly faster record
lookup while only consuming about 1 KB of RAM.
The RAM is used to store the linear approximation
information including the starting point and ending
point of each line. The learned index approach is ef-
fective when the data set is not as regular and can-
not be easily approximated by a single linear func-
tion. Events such as changing the sampling frequency,
power failures, or sensor outages cause the data set to
be less regular and index performance to degrade.

Overall, there is still a need for a data system as
simple as SQLite for small embedded systems.

3 EmbedDB ARCHITECTURE

EmbedDB is a database system that supports both
time series and relational data as key-value records.
The architecture for EmbedDB is in Figure 1 and its
features are:

• Supports small devices with a minimum memory
requirement of 4 KB

• Optimized insert performance for time series data

• Customizable key (Ding et al., 2023) and data in-
dexes (Fazackerley et al., 2021)

• Generic storage support including SD cards and
NOR/NAND chips

• No library or operating system dependencies

• Advanced query API and SQL to C translator for
SQL queries

EmbedDB: A High-Performance Time Series Database for Embedded Systems

241

Figure 1: EmbedDB Architecture.

3.1 Storage

A developer using EmbedDB pre-allocates all mem-
ory used by the system including page buffers, the
key index, and the storage and system state. For the
most basic insert functionality, a minimum of 2 page
buffers are used that buffer the current page in mem-
ory before writing to storage and a page is used for
reads. With physical device pages often being 512
bytes, the minimum page buffer size is 1 KB. The C
struct maintaining the storage and system state occu-
pies 200 bytes. The optional key index has variable
size depending on user requirements but is often be-
low 1 KB. In Figure 1, four page buffers are shown,
which is the common configuration. The other two
page buffers are used for reading and writing the data
index, which is an optional component to speed up
data value searches.

The storage manager supports any storage device
that is page accessible. For SD cards with a file inter-
face, the storage manager interacts using the SDFat
library1 and does not manage the physical memory.
For raw NAND, NOR, and DataFlash memory with-
out an FTL, the developer provides EmbedDB with a
memory address range, and EmbedDB manages the
memory space as a circular queue. There is a current
write location where the next write will be performed.
After that location, the system guarantees that pages
are erased by performing block-level erases. Treat-
ing the storage as a circular queue enables developers
to set bounds on the amount of storage consumed, and
the system will guarantee that the latest data is always
preserved. It also ensures consistent device wear and
inserts are performed sequentially for higher perfor-

1https://github.com/greiman/SdFat

mance. If the storage space is full, the system over-
writes the oldest data automatically or can be config-
ured to generate an error and stop adding new data.

The base data storage format consists of fixed-size
key-value records allocated as a sequential time series
index (Fazackerley et al., 2021). The data records are
key and value byte arrays. The key array may be 4
or 8 bytes. The size of the data value array is limited
by the device page size. Using fixed-size records en-
ables efficient storage supporting the most common
use case of small time series records storing a times-
tamp and one or more numeric data values.

To support larger records and variable-sized fields,
an optional variable data storage is supported, shown
as variable data in Figure 1. Each data record may
link out to the variable-storage memory area. This
enables support for larger text fields and images. The
variable data space is also managed as a circular
memory range that is distinct from the data space.

3.2 Inserts

EmbedDB is optimized for low-overhead, high-
performance inserts. When a record is inserted, it is
stored in the current write page buffer in RAM. When
a page is full, it is written to storage in the data space
at the nextWrite location. If the record has variable
data, a separate page buffer is used for buffering the
variable data before writing to the variable data space.

Data pages are not overwritten in place. All page
writes are performed on the next erased page in se-
quential order. With no overwriting, there is no need
for write-ahead logging to handle failure. On failure,
the system scans the data space to find the last active
page and nextWrite location and proceeds as usual.

3.3 Indexing

The system supports two types of indexes that can be
optionally added to the base record storage. If no in-
dexes are included, key lookup queries are performed
using binary search, and queries examining the data
values require a scan of the entire data file.

3.3.1 Key Index

Key indexing is performed using a spline learned in-
dex (Ding et al., 2023) that uses a small amount of
memory to store a sequence of linear approximations
that map a record key (timestamp) to a page location
in storage. An example is in Figure 2.

Whenever a data page is written to storage, a key
index record is added consisting of the minimum key
on the page and the page number. In Figure 2, each

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

242

Figure 2: Key Index using Linear Approximations.

blue dot represents a data page number and the mini-
mum key (timestamp) record on that page.

The spline method for building linear approxi-
mations starts the first line with the first data point.
Whenever a data point is added, it checks to see if
that point is within the given error, ε, specified by the
user from the current linear approximation. If it is
within the error bound, the point is discarded and no
changes are made. If it is not within the error bound,
the current linear approximation is ended at the previ-
ous point, and this previous point is the start point for
the next linear approximation.

In Figure 2, each color line represents a distinct
approximating line segment (total of 7). For each line
segment, the data stored is the start point of the seg-
ment consisting of key and page number. The end
point is not stored as it is the same as the starting
point of the next line segment. For this example, the
key index occupies (7+1) points * 8 bytes/point = 64
bytes. In general, the memory consumed depends on
the number of keys, the variability of the keys, and the
user specified error rate tolerance, ε.

A developer provides EmbedDB with a pre-
allocated memory area to use, and EmbedDB man-
ages the index to fit in that memory area. When the
memory is full, some spline points are dropped which
lowers query performance for older data ranges.

For queries on a given key, the table storing the
spline points is searched for the segment start point
just below the key value. Then its linear formula is
used to approximate the page location of the key and
provide a search range of (loc− ε, loc+ ε). Figure 2
shows searching for key 610,000.

3.3.2 Data Index

The user may optionally add a data index to speed
up queries on a data value. The data index is imple-
mented using a bitmap filter that is customizable by
the developer. Similar to (Fazackerley et al., 2021),
the data index consists of a bitmap computed for each

page by a user-supplied function. The size of the
bitmap is configurable and typically between 1 and
4 bytes. When a page is written, the bitmap function
is applied for every record in the page and the bitmap
updated. The bitmap is stored in the data page as well
as on a data index page, which is written to storage
when full.

For querying, EmbedDB reads the pages in the
data index sequentially and processes each bitmap
contained within. A user query specifying a partic-
ular data range is converted into a query bitmap. If a
page bitmap overlaps with the query bitmap, the page
is read, otherwise it is skipped. Although EmbedDB
must perform a scan of the data set to process a data
value query, it is able to avoid many I/Os by using
the bitmap to only retrieve pages from storage that
potentially have matching data values. The data in-
dex reduces the amount of data scanned based on the
selectivity of the query and how accurate the bitmap
functions capture the data distribution.

For example, consider a case where the data val-
ues have only 8 possible values. An 8-bit bitmap can
be used to indicate the presence of each value in a
page. The number of pages read will depend on how
the data values are present in the pages. In the best
case, only one data value is present in any given page.
In that case, only 1/8 of the data pages are read when
searching for any particular data value as the bitmap
will indicate the pages that contain the queried data
value. In the worst case, all data values appear on
every page, and every page will be read.

In practice, the number of data values are much
larger than the number of bitmap bits, so each bit will
represent a range of data values. The bitmap index is
highly effective for sensor data as data values tend to
be clustered based on the sensor measurements taken.
An advantage is that no random writes are performed
during record insert, and no random reads are per-
formed during queries.

3.4 Query Processing

Figure 3 contains a code example on how EmbedDB
is used to insert records and then perform a query on
a given key and/or data range. Records are inserted
as key-value byte arrays, and are retrieved using the
iterator. The example shows a query with key range
100 to 1000 and for data values >= 50. If the user
supplies a key value or range, then the key index is
used to retrieve the first record and then iterate records
sequentially. If a data range is also specified, the data
filter is applied by the iterator before returning records
to the user. For queries involving a key, the data index
is not used. For queries involving only a data range,

EmbedDB: A High-Performance Time Series Database for Embedded Systems

243

the data index is used (if available) to only read pages
that potentially may have values in the data range as
indicated by the bitmap index.

Single key lookups are often performed with just
one I/O using the key index. The performance of key
and data range queries depends on the selectivity of
the query and the number of pages scanned.

3.5 Advanced Query API

Often data analysis requires more than key or range
lookup. EmbedDB implements an advanced query
API allowing support for queries typically done using
SQL. The advanced query API builds upon the query
iterators to support common relational operators such
as grouping, aggregation, filtering, and projection. A
developer supplies a function to the core operators to
perform. Operators may be connected together in it-
erator form in complex execution trees. Users can use
the exec() function to execute arbitrary code over top
of an iterator. Example queries supported by the API
are in Table 3. The code and functions are not shown
due to space limitations.

3.6 SQL Pre-Compilation

Many users like the convenience of SQL for specify-
ing queries and the optimization performed by SQL
databases. Prior work has tried to implement a lim-
ited SQL interface for embedded systems (Douglas
and Lawrence, 2014; Tsiftes and Dunkels, 2011), but
there were issues in the amount of SQL that can be
supported and the associated overhead. The challenge
is that parsing a string SQL statement and performing
optimization requires a significant amount of mem-
ory that the devices do not have. Further, most em-
bedded systems have very well-defined data process-
ing requirements such that it would be extremely rare
to have dynamic, user-specified queries that are un-
known to the system before development. This is sig-
nificantly different than databases on servers.

Given these domain constraints, EmbedDB sup-
ports SQL using a pre-compilation tool. The devel-
oper specifies the structure of their key-value store
using a SQL CREATE TABLE statement as well as
CREATE INDEX statements if there is an index on
any data column. The developer then provides the
SQL query that they want to support. The SQL pre-
compiler takes this information and generates C code
that uses the EmbedDB query API to execute the
query. The developer then copies the code into their
project for use.

The advantage is that the expensive parsing and
optimization is performed offline. This allows much

higher performance during query execution as the
SQL is translated into C code and then compiled.

To perform pre-compilation, an external database
engine is used to parse the query. SQLite would have
been a good choice given that its source code is in C,
but it does not compile the query into a logical query
tree. The database selected was HyperSQL2 that fully
supports the SQL standard and parses the query into
a logical query tree suitable for conversion to C code.

The converter systematically checks for parts of
the query that it can support as well as those that
it cannot support. There is currently support for
WHERE clauses involving columns and arithmetic
expressions as well as several common functions such
as floor(), abs(), and round(). Aggregate expres-
sions are also supported along with the use of GROUP
BY. HAVING filters are handled by applying addi-
tional filtering after the aggregation is computed. In
general, the SQL converter supports everything Em-
bedDB’s query API supports, except for joins.

4 EXPERIMENTAL EVALUATION

EmbedDB was evaluated on multiple hardware plat-
forms, listed in Table 1, that cover a range of capabil-
ities and are representative of typical embedded sen-
sor devices. The largest device, a Raspberry Pi, runs
Linux and is capable of supporting SQLite. The other
hardware is too small for SQLite. The devices using a
SD card for storage support a file API and isolate the
database from raw flash storage. The DataFlash stor-
age is raw memory without a flash translation layer.
Using raw memory has higher read performance but
requires the database to manage all aspects of flash
storage including page placement and erasing. The
DataFlash memory is unique as it has a considerably
higher read-to-write ratio compared to SD cards. Sys-
tems such as Antelope and LittleD were unable to be
ported to the hardware for evaluation.

The storage performance for sequential and ran-
dom writes was measured by writing a large file of
10,000 pages either sequentially or randomly. Ran-
dom and sequential read performance was measured
by reading 10,000 pages and inspecting each byte on
the page. These metrics are the maximum possible
I/O performance on the hardware. The high sequen-
tial read performance on the Raspberry Pi may be im-
pacted by operating system buffering.

Multiple data sets were used for the experimenta-
tion as given in Table 2. These data sets include envi-
ronmental monitoring data (uwa), smartwatch X/Y/Z

2https://hsqldb.org/

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

244

// Create EmbedDB state
embedDBState* state = (embedDBState*) malloc(sizeof(embedDBState));
state ->keySize = 4; state ->dataSize = 12;

// Insert records
uint32_t key = 47; int32_t data[] = {23, 32, -90};
embedDBPut(state , (void*) &key, (void*) data);

// Query for single key
int success = embedDBGet(state , (void*) &key, (void*) data);

// Query for key and data range
embedDBIterator it;
uint32_t itKey; int32_t itData[3];
uint32_t minKey = 100, maxKey = 1000; int32_t minData=50;
it.minKey = &minKey; it.maxKey = &maxKey;
it.minData = &minData; it.maxData = NULL;
embedDBInitIterator(state , &it);
while (embedDBNext(state , &it, (void*) &itKey , (void*) itData)) {

/* Process record */
}
embedDBCloseIterator(&it);

Figure 3: Query Processing Example.

Table 1: Hardware Performance Characteristics.

Reads (KB/s) Writes (KB/s)
Device Storage Seq Random Seq Random R/W Ratio
Raspberry Pi 3 Model B (4-core
1.2GHz, 1 GB RAM)

SD Card 167075 36208 25600 25559 1.42

ARM Cortex M0+ SAMD21
(48MHz, 32KB RAM)

SD Card 483 414 435 326 1.27

ARM Cortex M0+ SAMD21
(48MHz, 32KB RAM)

DataFlash 495 491 36 37 13.63

Arduino Due (32-bit 84 MHz,
96KB RAM)

SD Card 980 1011 589 579 1.75

Arduino Mega 2560 (8-bit
16MHz, 8KB RAM)

SD Card 409 381 330 379 1.00

gyroscope data (watch), and ethylene concentrations
over time (ethylene). The time series data points are
16 bytes consisting of a 4 byte integer timestamp and
three 4 byte integers of sensor data. The experiments
measure insert throughput, query performance, num-
ber of I/Os, and memory consumption. The metrics
are the average of three runs.

SQLite was configured to use an INTEGER
PRIMARY KEY for the timestamp value and a sec-
ondary index on the data value. If there were multi-
ple data values in the timestamp record, only the data
value attribute involved in queries was indexed. All
inserts were performed in a single batch transaction
for highest performance with the use of WAL logging
and synchronous setting turned off.

4.1 Insert Performance

Insert performance was measured by inserting
100,000 records from the data sets. The performance
is compared with the theoretical maximum perfor-
mance of the device given its sequential write capa-
bility. The maximum performance is not achievable in
practice as it does not consider any overheads related
to CPU time or additional I/Os required for maintain-
ing the data sets and associated indexes. However, it
gives a metric for comparison in the absence of com-
parable systems capable of running on these devices.
The maximum performance is independent of the data
set and is shown as a black diamond in the graphs.

EmbedDB is compared with SQLite on the Rasp-
berry Pi running Linux, which is the only test device
capable of running SQLite. The results are in Figure
4 for the Raspberry Pi and Figure 5 for the other hard-

EmbedDB: A High-Performance Time Series Database for Embedded Systems

245

Table 2: Experimental Data Sets.

Name Points Sensor Data
uwa (Zeinalipour-Yazti et al., 2005) 500,000 temp, humidity, wind, pressure

ethylene (Fonollosa et al., 2015) 4,085,589 ethylene concentration
watch (Stisen et al., 2015) 2,865,713 smartwatch X/Y/Z gyroscope

ware platforms. The throughput is measured in inserts
per second with higher numbers being preferred.

Figure 4: Insert Performance on Raspberry Pi.

Figure 5: Inserts with EmbedDB on Smaller Devices.

There are two insights from these results. First,
EmbedDB significantly outperforms SQLite for inser-
tion performance. Even when SQLite is configured to
batch all inserts, it is still about 10 times slower than
EmbedDB. SQLite performance can be improved by a
factor of two by removing an index on the data value,
but that results in a major reduction for data queries.
EmbedDB is highly efficient for inserts with no over-
head in parsing or during execution. Although Em-
bedDB is not specifically designed for more powerful
hardware, it has very good performance.

On the Arduino and custom hardware with lower
memory between 8 to 32 KB RAM, EmbedDB’s
insert throughput is between 24% to 83% of the
theoretical maximum write performance. SQLite
achieves 3% of theoretical maximum performance on
the Raspberry Pi while EmbedDB achieves 37%.

The difference between the actual performance
and theoretical maximum performance depends on
hardware characteristics. For slow write DataFlash,

the system is I/O bound so EmbedDB is able to max-
imize its relative performance compared to the the-
oretical maximum. When using the faster SD card,
CPU and other processing time is now a significant
factor which reduces the relative percentage. On the
Arduino Mega with a very slow processor, the CPU is
the bottleneck and writing is slower.

4.2 Query Performance

Query performance is tested for three query types:

• Retrieving one record by key (timestamp)

• Retrieving a range of records by key (timestamp)

• Retrieving records that have data values in a given
range

For all query experiments, 100,000 records were
inserted, then the queries were executed.

4.2.1 Record Retrieval by Key (Timestamp)

Record retrieval by key was measured by performing
100,000 random key lookups on the data set created
by inserting 100,000 records in the previous insert
test. The results are in Figures 6 and 7. The theoreti-
cal maximum performance displayed on the charts is
the expected throughput if the system performs one
random I/O on the storage device and has no CPU
overhead. This ideal case is not achievable.

Figure 6: Record Retrieval by Key on Raspberry Pi.

EmbedDB has a factor of two speedup compared
to SQLite achieving 86 to 92% of the theoretical max-
imum performance. There is a significant difference
between the two systems on how the key lookup is
performed. SQLite uses a B+-tree while EmbedDB
uses a learned index (Ding et al., 2023). EmbedDB

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

246

Figure 7: Record Retrieval by Key.

uses 1.25 I/Os on average to retrieve a record. Its im-
proved performance is also due to its low overhead
query API that is efficient in returning the data record
to the client application.

EmbedDB achieves between 40 to 70% of the
maximum theoretical performance on the smaller
hardware devices. In these systems, the slower CPU
is a factor besides just performing the random I/O to
retrieve the page containing the record. Once the page
is retrieved, the system must search the page for the
record, and extract it from the page to return to the
client program. One outlier is the watch data set on
the Arduino Mega. Due to the high variability in this
data set, the space required for the learned index was
over 2 KB, which was too large to maintain in the 8
KB RAM. EmbedDB adapted by using binary search
in this case. The query performance is consistent and
stable with 1% variance between runs. This is espe-
cially important for embedded and real-time applica-
tions where consistent performance is critical.

4.2.2 Key Range Retrieval

Performance on retrieving a range of keys is impor-
tant for timestamp queries requiring a window of
records between a start and end time. Key range per-
formance was measured by a query requesting 5% of
the data set starting at a given key (timestamp). The
performance of a key range query is impacted by how
rapidly the system can find the starting key value us-
ing its index and then its scan performance to read
the rest of the keys in the range. Since the keys are
inserted in sorted order, sequential I/O should be per-
formed once the starting key is found.

For comparison, the theoretical maximum is cal-
culated as the time to scan 5% of the data set ignoring
the cost to find the first key value and any CPU pro-
cessing required. Due to the query requiring both se-
quential and random I/O, the average of the sequential
and random I/O speeds were used for the read speed.
As in previous experiments, the theoretical maximum
is an unachievable baseline used only for comparison.
The results are in Figures 8 and Figure 9.

Figure 8: Key Range Retrieval on Raspberry Pi.

Figure 9: Key Range Retrieval.

EmbedDB excels in the key range retrieval task
achieving 40% of the theoretical maximum perfor-
mance with a five times speedup compared to SQLite.
The efficiency of record scanning is the primary factor
in performance for this test. SQLite has dynamic typ-
ing of columns resulting in overheads in record stor-
age and data type conversion. EmbedDB is a key-
value data store storing user-defined byte arrays. This
enables optimized record storage in pages and mini-
mal overhead in returning data to the client applica-
tion. EmbedDB is also five times faster for scanning
the entire data set.

Key range scan is highly efficient on all hard-
ware platforms. Except for the Arduino Mega, per-
formance is between 63 and 75% of theoretical maxi-
mum and is consistent across all data sets. The CPU-
limited Arduino Mega has slower performance.

4.2.3 Data Range Retrieval

For sensor applications, the time series data may mea-
sure environment information like temperature, hu-
midity, air pressure, or sensor data such as X/Y/Z ac-
celeration. These queries often search for outliers or
points of interest in the time series, such as tempera-
tures that are significantly different than normal.

Data range retrieval is evaluated by providing a
selective range of data values to retrieve. The range
is chosen to return about 0.01% of the data set. The
selectivity determines the number of records retrieved
and the performance of the approach.

EmbedDB: A High-Performance Time Series Database for Embedded Systems

247

Table 3: SQL Query Results.

Query
1 Min, max, avg daily temperatures

SELECT key/86400, min(temp), max(temp),
avg(temp)
FROM uwa
GROUP BY key / 86400

2 Avg. temp on days with wind speed > 15 mph
SELECT key/86400, avg(temp), max(wind)
FROM uwa
GROUP BY key/86400
HAVING max(wind) > 15

3 Records with ethylene concentration > 0
SELECT COUNT(*)
FROM ethylene WHERE conc > 0

4 Compare temperatures at two weather stations
in different years
SELECT u.key, s.temp as TempSEA, u.temp
as TempUWA
FROM sea s JOIN (SELECT key + 473385600
as key, temp FROM uwa) u ON s.key=u.key
WHERE s.key >= 1420099200
AND s.key < 1451635200

5 Records with X motion above 500,000,000
SELECT key/706000 as Bucket, COUNT(*)
FROM watch
WHERE x > 500000000
GROUP BY key/706000

The benchmark is the expected time to complete
a scan of the data set. Unlike the previous theoretical
benchmarks, this is not a theoretical maximum that
is unachievable. Instead, the database should be able
to improve upon using a full table scan to answer the
query by using indexing on the data values.

Figure 10: Data Range Query Performance on Raspberry
Pi.

The data range results are in Figures 10 and 11.
EmbedDB uses a bitmap index to reduce the num-
ber of pages read. The bitmap index allows it to only
identify pages to read that potentially may have a data
value in the range. The bitmap index nicely adapts to
different data selectivities. When the data range cov-

Figure 11: Data Range Query Performance.

ers most of the data set, most of the pages are read.
When the data range covers only a small amount of
the data set, there is a significant reduction in pages
read. The data set distribution affects the data range
query performance for EmbedDB. Using the bitmap
index, EmbedDB reads between 6 to 20% of the data
set, which results in a performance improvement of a
factor between 3 and 15 compared to sequential scan.

Of the data sets, the uwa temperature data set is
fairly regular as temperature follows a pattern. The
ethylene data set is even more regular and slowly
changing as it monitors a chemical reaction over time.
The bitmap data filter is especially efficient in only
reading pages that may contain the queried data val-
ues. The watch data set is highly variable as the
X/Y/Z gyroscope data changes frequently in both sign
and direction. This results in lower performance as
more data pages must be scanned to answer the query.

When configured with a B+-tree secondary index
on the data value, SQLite has superior performance
compared to EmbedDB. The very high selectivity of
0.01% in the experiment favors the B+-tree index.
As a larger percentage of records are returned, Em-
bedDB’s bitmap index that performs sequential I/Os
has higher performance than SQLite’s B-tree index.
This tradeoff of secondary indexes versus scans is
well-known. Implementing a secondary B-tree in-
dex that performs significant random I/Os has perfor-
mance issues for small embedded devices.

4.2.4 Memory Usage

The memory used by EmbedDB was 2308 bytes: 200
bytes for state management, 20 bytes for file interface,
4 page buffers totaling 2048 bytes, and the key index
of 40 bytes for the uwa data. Only the size of the key
index is data set dependent. For ethylene it was 72
bytes, and watch was 2432 bytes.

4.3 SQL Query Performance

EmbedDB’s advanced query API supports SQL op-
erations such as filtering, grouping, and aggregation.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

248

Figure 12 shows SQLite performance versus Em-
bedDB for the SQL queries in Table 3 where the query
execution code was either developer produced or au-
tomatically generated by the translation tool.

Figure 12: SQL Query Performance.

EmbedDB has faster scan performance than
SQLite that translates into a speedup factor for SQL
queries involving key filtering of about six times.
SQLite outperforms for queries dominated by sec-
ondary data lookup with high selectivity (queries 3
and 5), but EmbedDB remains competitive while con-
suming less memory. There is no performance differ-
ence between developer created versus automatically
generated SQL execution code. Query 4 with a join is
not currently supported by the translator.

5 CONCLUSIONS AND FUTURE
WORK

EmbedDB is a key-value, time series database sup-
porting embedded and sensor devices, especially de-
vices with hardware resources too small to execute
other systems. Its database API consumes minimal
resources and enables high performance data opera-
tions with limited coding by developers. Experimen-
tal results demonstrate its high performance on small
devices, and competitive performance with SQLite
for time series analysis on the Raspberry Pi.

Ongoing work is improving EmbedDB’s perfor-
mance with specific focus on adding data com-
pression and further improving the efficiency of
SQL query processing. EmbedDB is available
as open source for researchers and developers at
https://github.com/ubco-db/EmbedDB.

REFERENCES

Anciaux, N., Bouganim, L., and Pucheral, P. (2003). Mem-
ory Requirements for Query Execution in Highly Con-

strained Devices. In VLDB, pages 694–705.
Bonnet, P., Gehrke, J., and Seshadri, P. (2001). Towards

Sensor Database Systems. MDM ’01, pages 3–14,
London, UK, UK. Springer-Verlag.

Ding, D., Carvalho, I., and Lawrence, R. (2023). Using
learned indexes to improve time series indexing per-
formance on embedded sensor devices. In SENSOR-
NETS 2023, pages 23–31. SCITEPRESS.

Douglas, G. and Lawrence, R. (2014). LittleD: a SQL
database for sensor nodes and embedded applications.
In Symposium on Applied Computing, pages 827–832.

Fazackerley, S., Ould-Khessal, N., and Lawrence, R.
(2021). Efficient flash indexing for time series data
on memory-constrained embedded sensor devices. In
SENSORNETS 2021, pages 92–99. SCITEPRESS.

Fonollosa, J., Sheik, S., Huerta, R., and Marco, S. (2015).
Reservoir computing compensates slow response of
chemosensor arrays exposed to fast varying gas con-
centrations in continuous monitoring. Sensors and Ac-
tuators B: Chemical, 215:618–629.

Gaffney, K. P., Prammer, M., Brasfield, L. C., Hipp, D. R.,
Kennedy, D. R., and Patel, J. M. (2022). SQLite: Past,
Present, and Future. VLDB, 15(12):3535–3547.

Javed, F., Afzal, M. K., Sharif, M., and Kim, B.-S.
(2018). Internet of Things (IoT) operating systems
support, networking technologies, applications, and
challenges: A comparative review. IEEE Communi-
cations Surveys & Tutorials, 20(3):2062–2100.

Madden, S. R., Franklin, M. J., Hellerstein, J. M., and
Hong, W. (2005). TinyDB: An Acquisitional Query
Processing System for Sensor Networks. ACM Trans.
Database Syst., 30(1):122–173.

Ould-Khessal, N., Fazackerley, S., and Lawrence, R.
(2021). B-tree Implementation for Memory-
Constrained Embedded Systems. In 19th Int’l Conf
on Embedded Systems, Cyber-physical Systems, and
Applications (ESCS). CSREA Press.

Ould-Khessal, N., Fazackerley, S., and Lawrence, R.
(2022). Performance Evaluation of Embedded Time
Series Indexes Using Bitmaps, Partitioning, and
Trees. In Invited papers of SENSORNETS 2021, vol-
ume 1674 of Sensor Networks, pages 125–151.

Raspberry Pi Foundation (2023). Raspberry Pi. https:
//www.raspberrypi.org/.

Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S.,
Kjærgaard, M. B., Dey, A., Sonne, T., and Jensen,
M. M. (2015). Smart devices are different: Assess-
ing and mitigating mobile sensing heterogeneities for
activity recognition. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’15, page 127–140, New York, USA. ACM.

Tsiftes, N. and Dunkels, A. (2011). A Database in Every
Sensor. SenSys ’11, pages 316–332, New York, NY,
USA. ACM.

Yin, S. and Pucheral, P. (2012). PBFilter: A flash-based
indexing scheme for embedded systems. Information
Systems, 37(7):634 – 653.

Zeinalipour-Yazti, D., Lin, S., Kalogeraki, V., Gunopulos,
D., and Najjar, W. (Dec 13, 2005). MicroHash: An
Efficient Index Structure for Flash-Based Sensor De-
vices. volume 4 of FAST’05, pages 31–44. USENIX.

EmbedDB: A High-Performance Time Series Database for Embedded Systems

249

