
Pruning Modes for Deployment Models: From Manual Modeling to
Automated Removal of Elements and Their Implications

Miles Stötzner a, Sandro Speth b and Steffen Becker c

Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany

Keywords: Pruning, Modes, Deployment Models, Variability Management, TOSCA, EDMM, VDMM.

Abstract: The deployment of modern applications, which consist of multiple components distributed across multiple en-
vironments, typically requires a combination of multiple deployment technologies. Besides, applications are
deployed in different variants due to different requirements, such as costs and elasticity. Managing deployment
variability across multiple heterogeneous deployment technologies is complex and error-prone. Therefore,
Variable Deployment Models provide a deployment variability modeling layer independent from the underly-
ing deployment technologies. To ease modeling, elements are pruned, i.e., elements are automatically removed
from the deployment due to consistency issues and semantic aspects. However, this might lead to unexpected
removal of elements and might mask modeling errors. In this work, we investigate the implications of giving
up control when pruning elements and analyze different degrees of pruning. Therefore, we introduce different
Pruning Modes, that define which consistency issues and semantic aspects should be considered while pruning
elements. We evaluate proposed pruning modes by implementing a prototype, conducting a case study, and
experimenting using this prototype.

1 INTRODUCTION

Managing the deployment of applications is error-
prone and complex (Oppenheimer et al., 2003; Op-
penheimer, 2003; Brogi et al., 2018). This espe-
cially applies to modern applications that are typi-
cally distributed across multiple clouds. The deploy-
ment of such applications often requires a combina-
tion of multiple deployment technologies (Wurster
et al., 2021) since these technologies have different
areas of application (Bergmayr et al., 2018). Besides,
applications must be deployed in different variants
due to varying requirements, e.g., costs and elasticity.

Managing such deployment variabilities is com-
plex and error-prone. Therefore, Variable Deploy-
ment Models (Stötzner et al., 2022, 2023a) provide
a method to model deployment variability across het-
erogeneous deployment technologies. In this method,
a modeler, e.g., a software architect or DevOps engi-
neer, creates a Variable Deployment Model of an ap-
plication, which contains all possible elements, i.e.,
components, relations, configurations, and compo-

a https://orcid.org/0000-0003-1538-5516
b https://orcid.org/0000-0002-9790-3702
c https://orcid.org/0000-0002-4532-1460

nent implementations, of any deployment variant of
the application. These elements have conditions as-
signed, which specify the presence of the elements in
the deployment. When variability is resolved under a
given context, elements whose conditions do not hold
are removed, and a deployment model is generated,
which can be executed to deploy the application as de-
sired while using multiple deployment technologies.
Thereby, consistency checks are conducted to ensure
that the generated deployment model complies with
its underlying metamodel.

To reduce the repetitive modeling of conditions
targeting consistency issues and semantic aspects, el-
ements are pruned, i.e., conditions are automatically
generated and assigned to elements (Stötzner et al.,
2023c). For example, a condition assigned to a vir-
tual machine states that it should be automatically re-
moved once it no longer hosts any component.

However, automatically removing inconsistent or
semantically incorrect elements from the deployment
might lead to the unexpected removal of elements
and masked modeling errors since consistency checks
never complain. For example, an application connects
to a database, and a manual modeling error leads to a
required but absent database, as shown in Figure 1.
The derived deployment model consists of the ap-

Stötzner, M., Speth, S. and Becker, S.
Pruning Modes for Deployment Models: From Manual Modeling to Automated Removal of Elements and Their Implications.
DOI: 10.5220/0012568300003711
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Cloud Computing and Services Science (CLOSER 2024), pages 149-158
ISBN: 978-989-758-701-6; ISSN: 2184-5042
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

149



Database

App

False
App

Without Pruning App !

With Pruning

Missing Target

Figure 1: Due to a manual modeling error, the database is
absent, which is masked while pruning.

plication and a database connection without a target.
Consistency checks detect this modeling error when
checking consistency issues and semantic aspects of
the underlying metamodel. However, relations with-
out a target are automatically removed when elements
are pruned. Hence, the modeling error is masked, and
the application is deployed without a database.

In this work, we investigate the implications of
giving up control when pruning elements from the
deployment, e.g., when pruning overrides manually
modeled conditions. Our contributions are as follows:

(i) We define and analyze different Pruning Modes,
which use different degrees of pruning elements.

(ii) We implement a prototype and evaluate our
modes.

The remainder of this work is structured as follows.
In Section 2, we introduce the required fundamentals.
We define and discuss Pruning Modes in Section 3. In
Section 4, we evaluate them by implementing a pro-
totype and conducting experiments and a case study.
Finally, we discuss related work in Section 5 and con-
clude our work in Section 6.

2 FUNDAMENTALS

In the following, we introduce the required fundamen-
tals considering the automated deployment of appli-
cations and managing deployment variability.

2.1 Essential Deployment Models

Deployment technologies, such as Ansible, automate
the deployment of applications. Typically, declara-
tive deployment models (Endres et al., 2017) are used
to describe what should be deployed instead of stating
how. Therefore, deployment technologies automati-
cally derive and execute required deployment tasks.

Deploying modern applications typically requires
the combination of multiple deployment technolo-
gies (Wurster et al., 2021). For example, Terraform
provisions a virtual machine and Ansible installs web

Deployment PhaseModeling Phase Enrichment Phase

Variable 
Deployment 

Model

Conditions-Enriched
Variable Deployment

Model

Variability-Resolved
Deployment 

Model

Application
Instance

?1 2 3 4??

Figure 2: Overview of the method for pruning elements (fig-
ure based on Stötzner et al. (2023c)).

servers or databases on this virtual machine. More-
over, migrating between deployment technologies is
challenging. Therefore, we can use the Essential De-
ployment Metamodel (EDMM) (Wurster et al., 2019)
to model Essential Deployment Models, which can
be (i) mapped to the most popular deployment tech-
nologies (Wurster et al., 2019) and (ii) executed while
using multiple deployment technologies in combina-
tion (Wurster et al., 2021).

2.2 Variable Deployment Models

An integrated deployment variability management
layer is required to manage deployment variability
across combined deployment technologies. There-
fore, we introduced the Variable Deployment Mod-
eling Method (Stötzner et al., 2022, 2023a), which
generates Essential Deployment Models once deploy-
ment variability is resolved. To support modeling,
we introduced the pruning of elements, i.e., the au-
tomated removal of elements due to consistency is-
sues and semantic aspects considering the underly-
ing metamodel (Stötzner et al., 2023c). The resulting
method is shown in Figure 2.

In the modeling phase, the modeler (i) creates
a Variable Deployment Model that contains all ele-
ments of the deployment variants of an application
with conditions assigned specifying their presence
in the deployment. The modeler is not required to
model conditions targeting consistency issues and se-
mantic aspects of the underlying EDMM since they
are automatically addressed in the subsequent en-
richment phase. In the enrichment phase, the soft-
ware component Condition Enricher (ii) generates
conditions targeting consistency issues and seman-
tic aspects and assigns them to the elements. For
example, a condition assigned to a virtual machine
states that it should be automatically removed once
it no longer hosts any component. In the deploy-
ment phase, the operator passes variability inputs to
the software component Variability Resolver, which
(iii) automatically resolves the variability and gener-
ates a Variability-Resolved Deployment Model: The
Variability Resolver evaluates all conditions, removes

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

150



elements whose conditions do not hold, and conducts
consistency checks to ensure that, e.g., every relation
has a source and a target. The generated model (iv) is
then executed to deploy the desired variant.

2.3 Variable Deployment Metamodel

To model deployment variability, the Variable De-
ployment Metamodel (VDMM) (Stötzner et al.,
2023c) extends EDMM by conditional elements. An
EDMM model represents the deployment of an appli-
cation as a topology graph:

• Components represent application components,
e.g., virtual machines and web applications.

• Relations represent relationships between compo-
nents, e.g., hosting relations.

• Properties represent component and relation con-
figurations, e.g., ports and credentials.

• Deployment artifacts represent component imple-
mentations, e.g., Node.js files and binaries.

VDMM extends EDMM as follows:

• Conditional elements are elements, i.e., compo-
nents, relations, properties, and deployment arti-
facts, that can have conditions assigned specifying
their presence in the deployment.

• Variability inputs represent the context under
which the variability is resolved, e.g., a require-
ment for elasticity.

• Variability conditions are conditions over variabil-
ity inputs specifying the presence of an element.

• Manual conditions are variability conditions that
are manually modeled and assigned to elements,
e.g., a condition checking if elasticity is required
according to given variability inputs.

• Pruning Conditions are variability conditions that
are automatically generated and assigned.

2.4 Pruning Conditions

The Condition Enricher automatically generates and
assigns pruning conditions to elements to reduce the
number of repetitive manual conditions addressing
consistency issues and semantic aspects.

Pruning conditions targeting consistency issues
considering EDMM cause the automated removal of
any inconsistent element from the deployment. We
refer to these pruning conditions as consistency prun-
ing conditions and to their generation as consistency
pruning. For example, for relations, a condition is
generated, which checks if the relation source and the
target are present. Also, a condition is generated for

Manual Consistent-
Strict

Consistent-
Loose

Default

Semantic-
Strict

Semantic-
Loose

Decreased Number of Manual Conditions,
Increased Number of Generated Conditions,

Increased Number of Potentially Masked Errors

Less Control

Consistency 
Overriding

Semantic
Overriding

Figure 3: Overview of the Pruning Modes.

properties and deployment artifacts, which checks if
the container is present.

Pruning conditions targeting semantic aspects
considering EDMM cause the automated removal of
any semantically incorrect element from the deploy-
ment. We refer to these pruning conditions as seman-
tic pruning conditions and to their generation as se-
mantic pruning. For example, for components with
at least one incoming relation, a condition is gener-
ated, which checks if any incoming relation is present.
Also, for components with at least one deployment
artifact, a condition is generated, which checks if any
deployment artifact is present.

3 PRUNING MODES

For analyzing different degrees of pruning, we de-
fine Pruning Modes, which generate different kinds of
conditions depending on the modeler’s requirements.

3.1 Overview

In total, we define six Pruning Modes. They range
from not generating any conditions and having full
control to generating the most possible conditions
while giving up control. We define the modes in an
incremental order, in which a mode includes its previ-
ous mode considering generated conditions. For ex-
ample, a Pruning Mode, which generates and assigns
consistency pruning conditions to elements without
manual conditions, is followed by a Pruning Mode,
which generates and assigns consistency pruning con-

Pruning Modes for Deployment Models: From Manual Modeling to Automated Removal of Elements and Their Implications

151



Manual VDM

Private Cloud
(OpenStack)

Virtual Machine
(OpenStack VM)

Static?

Static?

Conditions-Enriched VDM

Private Cloud
(OpenStack)

Virtual Machine
(OpenStack VM)

Static?

Static?

Static?Static?

ConnectsTo

Manual Condition

PropertyComponent (Type) HostedOn

Generated ConditionConjunction&

Figure 4: The example of the Manual Pruning Mode. On
the left, the Manual Variable Deployment Model (VDM)
is given as created by the modeler. On the right, the
Conditions-Enriched Variable Deployment Model is given
as generated by the Condition Enricher.

ditions not only to elements without manual condi-
tions but also to elements with manual conditions.

A graphical overview of the Pruning Modes is
given in Figure 3. Pruning Modes, which are on the
right side, require fewer manual conditions to be mod-
eled: They generate more conditions considering the
modes that are left of them. The increased number
of generated conditions implies a higher risk of po-
tentially masked errors, and the risk of unexpected re-
moval of elements rises. Moreover, the modeler gives
up more control: Pruning Modes on the top override
more manual conditions than those on the bottom.

The structure of the describing the Pruning Modes
is inspired by the structure of component hosting pat-
terns presented by Yussupov et al. (2021). Each Prun-
ing mode contains an example based on the original
pruning paper (Stötzner et al., 2023c). The corre-
sponding example models are open-source and avail-
able on Zenodo1 and GitHub2.

3.2 Manual Pruning Mode

Problem: How to model deployment variability while
obtaining full control over consistency issues and se-
mantic aspects?

Solution: The Condition Enricher does not generate
and assign any pruning condition and, therefore, di-
rectly returns the given Variable Deployment Model
without any modifications. Therefore, only manual
conditions are considered by the Variability Resolver.

Example: On the left of Figure 4, the deployment of a
virtual machine is given. This virtual machine is only
required for a static deployment, i.e., if no elasticity
is required. Hosted components are not shown for the
sake of brevity.

1https://doi.org/10.5281/zenodo.10363694
2https://github.com/opentosca/opentosca-vintner

Manual VDM

Private Cloud
(OpenStack)

Virtual Machine
(OpenStack VM)

Static?

Static?

Conditions-Enriched VDM

Private Cloud
(OpenStack)

Virtual Machine
(OpenStack VM)

Static?

Static?

Static?VM? PC?&

Figure 5: The example of the Consistent-Strict Pruning
Mode. “VM” is short for “Virtual Machine” and “PC” for
“Private Cloud”.

When applying the Manual Pruning Mode, no
conditions are generated by the Condition Enricher.
Thus, all conditions must be modeled by hand, e.g.,
the virtual machine has a condition assigned check-
ing if a static deployment is required. Hence,
the manually modeled Variable Deployment Model
matches the Conditions-Enriched Variable Deploy-
ment Model, as shown on the right of Figure 4.

Result: Since no conditions are generated, all condi-
tions must be modeled by hand. Thus, the modeler
must consider consistency issues and semantic as-
pects when creating the Variable Deployment Model.
Also, no modeling errors are masked since no condi-
tions are generated.

3.3 Consistent-Strict Pruning Mode

Problem: How to model deployment variability with-
out considering consistency issues for elements with-
out manual conditions while obtaining full control
over them?

Solution: Before variability is resolved, the Condi-
tion Enricher iterates over every element of the given
Variable Deployment Model. Thereby, the Condition
Enricher generates and assigns consistency pruning
conditions to elements that have no manual conditions
assigned. Semantic pruning conditions are not gen-
erated. Also, elements that have manual conditions
assigned are not touched.

Example: On the left of Figure 5, the deployment of a
virtual machine is given. This virtual machine is only
required for a static deployment. Hosted components
are not shown for the sake of brevity.

When applying the Consistent-Strict Pruning
Mode, consistency pruning conditions are generated
and assigned to elements without manual conditions.
For example, the conditions checking for the presence
of the relation source and relation target are gener-
ated and assigned to the hosting relation of the vir-
tual machine and OpenStack. However, it is required
to model the remaining conditions by hand, e.g., the

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

152



Large

Virtual Machine
(OpenStack VM)

Incoming 
Relations?

Medium

VM? L?

VM? !L?
Ubuntu

VM?

&

&

Manual VDM Conditions-Enriched VDM

Virtual Machine
(OpenStack VM)

Incoming 
Relations?

L?

!L?

Large

Medium

Ubuntu

Figure 6: The example of the Consistent-Loose Pruning
Mode. “L” is short for “Large”.

condition assigned to the virtual machine checking if
a static deployment is required.

Result: Since consistency pruning conditions are
generated, the modeler must not model them. In-
consistent elements are automatically removed. Also,
since these conditions are only assigned to elements
without manual conditions, the modeler obtains full
control. However, modeling errors are masked since
inconsistent elements are automatically removed.

3.4 Consistent-Loose Pruning Mode

Problem: How to model deployment variability with-
out considering consistency issues?

Solution: Before variability is resolved, the Condi-
tion Enricher iterates over every element of the given
Variable Deployment Model. Thereby, the Condition
Enricher generates and assigns consistency pruning
conditions to every element, including elements with
manual conditions. Semantic pruning conditions are
not generated.

Example: In Figure 6, the deployment of a virtual
machine is given. The virtual machine is configured
to use Ubuntu and either a medium or a large tier. If
the virtual machine does not host anything, it should
be removed from the deployment.

When applying the Consistent-Loose Pruning
Mode, only the conditions checking for the tier and
any hosted component must be modeled, as shown on
the left of Figure 6. Consistency pruning conditions,
e.g., the conditions checking for the presence of the
virtual machine at every property, are automatically
generated and assigned to elements without and with
manual conditions, as shown on the right of Figure 6.

Result: Since consistency pruning conditions are
generated, the modeler must not model them. Hence,
inconsistent elements are automatically removed,
which masks modeling errors. Besides, since pruning
conditions are assigned to every element, the modeler
loses control and cannot override this behavior.

Virtual Machine
(OpenStack VM)

Incoming 
Relations?

VM? L?

VM? !L?

VM?

&

&

Manual VDM Conditions-Enriched VDM

Large

Virtual Machine
(OpenStack VM)

Medium

VM? L?

VM? !L?
Ubuntu

&

&

Large

Medium

Ubuntu

Figure 7: The example of the Default Pruning Mode.

3.5 Default Pruning Mode

Problem: How to model deployment variability with-
out considering consistency issues and semantic as-
pects for elements without manual conditions while
obtaining full control over them?

Solution: Before variability is resolved, the Condi-
tion Enricher iterates over every element of the given
Variable Deployment Model. Thereby, the Condi-
tion Enricher generates and assigns consistency and
semantic pruning conditions to the elements, which
have no manual conditions assigned. Elements that
have manual conditions assigned are not touched.

Example: In Figure 7, the deployment of a virtual
machine is given. The virtual machine is configured
to use Ubuntu and either a medium or a large tier. If
the virtual machine does not host anything, it should
be removed from the deployment.

When applying the Default Pruning Mode, consis-
tency and semantic pruning conditions are only gen-
erated and assigned to elements without conditions.
Thus, the conditions checking for the presence of the
container at the tier properties must be modeled, as
shown on the left of Figure 6. Meanwhile, the con-
dition checking for incoming relations is generated
and assigned to the virtual machine, and a condition
checking for the presence of the virtual machine to
the image property, as shown on the right of Figure 6.

Result: Since consistency and semantic pruning con-
ditions are generated, the modeler must not model
them. As a result, inconsistent elements are automat-
ically removed, which also masks modeling errors.
However, this only applies to elements without man-
ual conditions. Thus, the modeler can override this
behavior and obtain control.

3.6 Semantic-Strict Pruning Mode

Problem: How to model deployment variability with-
out considering (i) consistency issues for any ele-
ments and (ii) semantic aspects for elements with-
out manual conditions while obtaining control over
them?

Pruning Modes for Deployment Models: From Manual Modeling to Automated Removal of Elements and Their Implications

153



Virtual Machine
(OpenStack VM)

Incoming 
Relations?

VM? L?

VM? !L?

VM?

&

&

Manual VDM Conditions-Enriched VDM

Large

Medium

Ubuntu

Virtual Machine
(OpenStack VM)

L?

!L?

Large

Medium

Ubuntu

Figure 8: The example of the Semantic-Strict Pruning
Mode.

Solution: Before variability is resolved, the Condi-
tion Enricher iterates over every element of the given
Variable Deployment Model. Thereby, the Condi-
tion Enricher generates and assigns consistency prun-
ing conditions to every element and semantic pruning
conditions to elements without manual conditions.

Example: In Figure 8, the deployment of a virtual
machine is given. The virtual machine is configured
to use Ubuntu and either a medium or a large tier. If
the virtual machine does not host anything, it should
be removed from the deployment.

When applying the Semantic-Strict Pruning
Mode, only the conditions checking for the expected
static workload must be manually assigned, as given
on the left of Figure 8. The remaining conditions are
automatically generated, as given on the right of Fig-
ure 8. For example, the semantic condition checking
for incoming relations is generated and assigned to
the virtual machine. Also, the condition checking for
the presence of the virtual machine is generated and
assigned to each property to ensure consistency.

Result: Since consistency and semantic pruning con-
ditions are generated, the modeler must not model
them. As a result, inconsistent and semantically in-
correct elements are automatically removed, which
also masks modeling errors. However, semantic prun-
ing conditions are not assigned to elements with man-
ual conditions. Thus, the modeler can override this
behavior and obtain control.

3.7 Semantic-Loose Pruning Mode

Problem: How to model deployment variability with-
out considering consistency issues and semantic as-
pects?

Solution: Before variability is resolved, the Condi-
tion Enricher iterates over every element of the given
Variable Deployment Model. Thereby, the Condition
Enricher generates and assigns consistency and se-
mantic pruning conditions to every element. This is
described in more detail in the original pruning publi-
cation (Stötzner et al., 2023c).

Incoming 
Relations? & GDPR?GDPR? Virtual Machine

(OpenStack VM)

VM? L?

VM? !L?

VM?

&

&

Manual VDM Conditions-Enriched VDM

Large

Virtual Machine
(OpenStack VM)

Medium

L?

!L?
Ubuntu

Large

Medium

Ubuntu

Figure 9: The example of the Semantic-Loose Pruning
Mode. “GDPR” is short for “General Data Protection
Regluation”.

Example: In Figure 6, the deployment of a virtual
machine is given, which is only required when the
General Data Protection Regulation (GDPR) holds.
The virtual machine is configured to use Ubuntu and
either a medium or a large tier. If the virtual machine
does not host anything, it should be absent.

When applying the Semantic-Loose Pruning
Mode, only the conditions checking for GDPR and
the expected static workload must be manually as-
signed, as given on the left of Figure 9. The remain-
ing conditions are automatically generated, as given
on the right of Figure 9. For example, the semantic
condition checking for incoming relations is gener-
ated and assigned to the virtual machine. Also, the
condition checking for the presence of the virtual ma-
chine is generated and assigned to each property to
ensure consistency.

Result: Since consistency and semantic pruning con-
ditions are generated, the modeler must not model
them. As a result, inconsistent and semantically in-
correct elements are automatically removed. Thus,
the number of conditions that must be manually mod-
eled is significantly reduced. However, this also
masks modeling errors. Also, since pruning condi-
tions are assigned to every element, the modeler loses
control and cannot override this behavior.

4 EVALUATION

To evaluate our Pruning Modes, we implement a pro-
totype. We use our prototype for experiments, in
which we model the examples of each Pruning Mode
and ensure that they are correctly resolved. Moreover,
we conduct a case study using our prototype, in which
we model and analyze the motivating scenario of the
original pruning paper (Stötzner et al., 2023c) using
different Pruning Modes. The prototype, the models,
and the step-by-step guide are open-source and pub-
licly available on Zenodo1 and GitHub2.

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

154



4.1 Prototype

Our prototype is based on the open-source TOSCA
preprocessing and management layer OpenTOSCA
Vintner (Stötzner et al., 2022). TOSCA (OASIS,
2020) is an open standard for deploying and man-
aging cloud applications in a vendor-neutral and
technology-independent manner. To conform with
EDMM during our evaluation, we only use features
from TOSCA Light (Wurster et al., 2020), an EDMM-
conform subset of TOSCA. OpenTOSCA Vintner
supports Variability4TOSCA (Stötzner et al., 2022,
2023c,a,b), which extends TOSCA by conditional
elements and their pruning, and thus, implements
VDMM. OpenTOSCA Vintner instructs TOSCA or-
chestrators to execute generated TOSCA models.

We extend Variability4TOSCA and OpenTOSCA
Vintner to support Pruning Modes. Therefore, we ex-
tend Variability4TOSCA by the possibility of mod-
eling the Pruning Mode and OpenTOSCA Vintner to
generate and assign pruning conditions as specified
by the modeled Pruning Mode.

4.2 Experiments

We conduct experiments to show the technical feasi-
bility of the examples of our modes: We enrich a Vari-
ability4TOSCA model for each Pruning Mode exam-
ple using OpenTOSCA Vintner and ensure that the
generated Variability4TOSCA model is as expected.
For each Pruning Mode, we proceed as follows.

1. Manually model the Manual Variability4TOSCA
model of the Pruning Mode example.

2. Manually model the Conditions-Enriched Vari-
ability4TOSCA model of the mode example.

3. Enrich the Manual Variability4TOSCA model
using OpenTOSCA Vintner, i.e., generate the
Conditions-Enriched Variability4TOSCA model.

4. Assert that the manually modeled Conditions-
Enriched Variability4TOSCA model matches
the generated Conditions-Enriched Variabil-
ity4TOSCA model.

4.3 Case Study

We further conduct a case study to evaluate our Prun-
ing Modes. In contrast to the experiments, we focus
not on the enriching phase but on the end-to-end vari-
ability resolving with subsequent deployment.

For this case study, we use the webshop appli-
cation that served as the motivating scenario for the
original pruning paper (Stötzner et al., 2023c). We
model the application using different Pruning Modes,

Shop

Medium-Sized

SQLite

VM

Shop SQLite

VM

Shop MySQL

GCP

Large-Sized Elastic

Figure 10: The different deployment variants of the case
study (based on Stötzner et al. (2023c)).

analyze the different models, and deploy the applica-
tion. Our case study shows the technical feasibility
of our Pruning Modes and that our extensions to the
prototype are sufficient to implement Pruning Modes.

4.3.1 Scenario

In our case study, we manage the deployment vari-
ability of a webshop application, which can be either
deployed medium-sized on-premise, large-sized on-
premise, or elastic in the cloud. The webshop consists
of a shop component, which connects to a database.
For simplicity, we chose this scenario, which already
considers various deployment variabilities. Other sce-
narios might include multiple clouds.

In the static on-premise deployment variants, the
shop component and an SQLite database are both de-
ployed on the same virtual machine on a local Open-
Stack (OS) instance, as shown on the left and in the
middle of Figure 10. To serve different static work-
loads, the virtual machine can be either of medium or
large size. Thus, this deployment is only suitable if
the workload is static and known upfront.

However, to serve unpredictable workloads, elas-
ticity is required. Therefore, in the elastic cloud
deployment variant, the webshop application is de-
ployed on the public cloud Google Cloud Plat-
form (GCP), as shown on the right of Figure 10. The
shop component is deployed with auto-scaling en-
abled on GCP AppEngine, and the database is de-
ployed on GCP CloudSQL with high availability en-
abled. Also, the shop component is configured to use
the MySQL database dialect since a MySQL database
is used in this variant.

4.3.2 Modeling

We are interested in the number of manual condi-
tions and the number of generated conditions when
using different Pruning Modes. Therefore, we manu-
ally model the Variability4TOSCA model of the web-
shop application for each Pruning Mode. To en-
sure that variability is correctly resolved, we gener-

Pruning Modes for Deployment Models: From Manual Modeling to Automated Removal of Elements and Their Implications

155



Table 1: The different numbers of manual and gener-
ated conditions when modeling the case study using differ-
ent modes.

Pruning Mode Manual Generated
Conditions Conditions

Manual 52 0
Consistent-Strict 19 47
Consistent-Loose 17 61
Default 12 54
Semantic-Strict 10 68
Semantic-Loose 10 68

ate all possible TOSCA models and assert that they
are as expected by comparing them to already ex-
isting TOSCA models of the original pruning pa-
per (Stötzner et al., 2023c). The Variability4TOSCA
model of the Consistent-Loose Pruning Mode is al-
ready available as part of the original pruning paper.

4.3.3 Analysis

In the previous step, we modeled the Variabil-
ity4TOSCA models and ensured they all generated
the same TOSCA models. An overview of the mod-
els and their conditions is given in Table 1. When
modeling the webshop application using the Manual
Pruning Mode, no conditions are generated. Thus, 52
manual conditions are required. For example, the vir-
tual machine has a condition assigned to check if a
static deployment is required. Moreover, since the
models are executable, they also have properties, e.g.,
credentials for GCP or OpenStack.

When using the Consistent-Strict Pruning Mode,
the number of manual conditions significantly de-
clines from 52 to 19. This is mainly due to condi-
tional elements with many properties, e.g., the DBMS
hosted on GCP CloudSQL. The modeler must no
longer manually ensure that these properties are only
present when their container is present. In total, 47
pruning conditions are generated.

We can observe the monotonic order of the Prun-
ing Modes in Table 1. The number of manual condi-
tions reduces further when using the Default Pruning
Mode, Semantic-Strict Pruning Mode, and Semantic-
Loose Pruning Mode. This order is not strictly mono-
tonic, as we can see in our case study, since the
Semantic-Strict and Semantic Loose Pruning Mode
both generate the same Conditions-Enriched Variabil-
ity4TOSCA model.

The Default Pruning Mode is a special case that
can not be directly placed into order. It generates
more conditions than the Consistent-Strict Pruning
Mode and fewer conditions than the Semantic-Strict
Pruning Mode. However, no general assumption ex-
ists on how it behaves considering the Consistent-

Loose Pruning Mode. In our case study, it requires
fewer manual conditions than the Consistent-Loose
Pruning Mode but also generates fewer conditions.
The reason is that the Default Pruning Mode does not
generate all the conditions that the Consistent-Loose
Pruning Mode generates. However, the Semantic-
Strict Pruning Mode does generate all the conditions
that the Default Pruning Mode generates.

It is also noteworthy that the numbers of manual
and generated conditions do not add up to the same
value. This is because the Condition Enricher might
generate redundant conditions, e.g., a condition at the
deployment artifact of the shop component checking
for the presence of the shop component, which, how-
ever, is always present.

Considering generalization, the numbers in Ta-
ble 1 are specific to the webshop application. How-
ever, in general, our analysis of the modes holds since
the Condition Enricher generates pruning conditions
based on rules considering the underlying EDMM
and, therefore, are generic (Stötzner et al., 2023c).

4.3.4 Deployment

The Variability4TOSCA models of our case study can
be executed to deploy the desired variant of the web-
shop. Since they all generate the same TOSCA mod-
els, we can choose any of them. We already described
the elastic deployment of this webshop on GCP us-
ing the Semantic-Loose Pruning Mode in the original
pruning paper (Stötzner et al., 2023c). We comple-
ment this work and deploy the static variant using the
Consistent-Loose Pruning Mode. Since we now take
the operator role, the chosen mode does not affect us.

First, we import the Variability4TOSCA model
into Vintner. Then, we specify that a medium-sized
static deployment is required. Vintner then generates
a TOSCA model and executes it using the TOSCA
orchestrator xOpera. As a result, the webshop is de-
ployed on OpenStack as desired.

5 RELATED WORK

In the following, we discuss related works in the do-
main of variability management with a focus on struc-
tural models. To summarize, they propose different
concepts to manage variability, addressing their spe-
cific problems. However, none of them propose dif-
ferent modes of resolving variability to address differ-
ent requirements of the modeler, considering aspects
such as loss of control and masked errors.

Product line engineering is a concept for manag-
ing the variability of software (Pohl et al., 2005; Pohl

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

156



and Metzger, 2018) that is also used for structural
models (Groher and Voelter, 2007; Voelter and Gro-
her, 2007). In this concept, a customer makes a fea-
ture configuration, which is then used as input for a
generator to derive a customer-tailored product by re-
moving elements from the product whose conditions
do not hold. Overall, the Variable Deployment Mod-
eling Method uses product line engineering concepts,
e.g., assigning conditions to elements, and, there-
fore, provides a product line for Essential Deployment
Models while focusing on modeling reusable assets.

There exists a lot of research in the domain of us-
ing product line engineering and UML (Ziadi et al.,
2004; Clauß and Jena, 2001; Junior et al., 2010; Ko-
rherr and List, 2007; Dobrica and Niemelä, 2008,
2007; Sun et al., 2010). Typically, UML stereotypes
are used to model variability in UML models while
UML OCL constraints are used to restrict further al-
lowed variants. Such UML OCL constraints can be
used to define pruning conditions. However, these
works do not propose different modes of resolving
variability to address different requirements.

Czarnecki and Antkiewicz (2005) propose an ap-
proach for managing the variability of models based
on manual and default conditions. They do not dis-
cuss different modes of resolving variability but pro-
pose post-processing the model to patch or simplify
it after evaluating conditions, e.g., to close the flow
between two UML activities. In contrast, pruning
pre-processes models before conditions are evaluated
and assigns additional conditions to elements. Wę-
sowski (2004) also discuss post-processing derived
models, e.g., to remove unused state machines of a
state chart. Such post-processing methods for deploy-
ment models (Harzenetter et al., 2020; Soldani et al.,
2022; Knape, 2015; Soldani et al., 2015; Hirmer et al.,
2014) can be combined with our method.

6 CONCLUSION

Automatically removing any inconsistent or seman-
tically incorrect element from the deployment might
lead to the unexpected removal of elements and might
mask modeling errors. To understand the trade-off
between manual modeling and pruning, we defined
Pruning Modes. These modes systematically describe
different degrees of pruning and the implications of
giving up control to increase the number of generated
conditions. Hence, we provide guidelines for practi-
tioners on when to use which degree of pruning.

With an increased number of generated condi-
tions, the risk of unexpected removal of elements and,
therefore, masked modeling errors rises. Depending

on the requirements or experience of the modeler, dif-
ferent Pruning Modes are appropriate. In our opin-
ion, the risk of unexpected removal of elements due
to consistency issues is low. Therefore, we gener-
ally recommend using the Consistent-Loose Pruning
Mode instead of the Manual Pruning Mode due to the
expected high reduction of manual conditions. How-
ever, if correctly used, the Semantic-Loose Pruning
Mode is the most effective Pruning Mode.

In future work, we plan to develop a testing frame-
work in which a modeler can define test cases to vali-
date that a Variable Deployment Model is resolved as
expected. We also plan a user study to evaluate the
cognitive load when using different Pruning Modes.

ACKNOWLEDGEMENTS

This publication was partially funded by the German
Federal Ministry for Economic Affairs and Climate
Action (BMWK) as part of the Software-Defined
Car (SofDCar) project (19S21002).

REFERENCES

Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A.,
Solberg, A., Wimmer, M., Kappel, G., and Leymann,
F. (2018). A Systematic Review of Cloud Model-
ing Languages. ACM Computing Surveys (CSUR),
51(1):1–38.

Brogi, A., Canciani, A., and Soldani, J. (2018). Fault-aware
management protocols for multi-component applica-
tions. Journal of Systems and Software, 139:189–210.

Clauß, M. and Jena, I. (2001). Modeling variability with
UML. In GCSE 2001 Young Researchers Workshop.
Springer.

Czarnecki, K. and Antkiewicz, M. (2005). Mapping Fea-
tures to Models: A Template Approach Based on Su-
perimposed Variants. In Generative Programming and
Component Engineering, pages 422–437, Berlin, Hei-
delberg. Springer.

Dobrica, L. and Niemelä, E. (2007). Modeling Variabil-
ity in the Software Product Line Architecture of Dis-
tributed Services. In Proceedings of the 2007 Interna-
tional Conference on Software Engineering Research
& Practice, SERP, pages 269–275. CSREA Press.

Dobrica, L. and Niemelä, E. (2008). A UML-Based
Variability Specification For Product Line Architec-
ture Views. In Proceedings of the Third Interna-
tional Conference on Software and Data Technolo-
gies. SciTePress.

Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O.,
Leymann, F., and Wettinger, J. (2017). Declarative vs.
Imperative: Two Modeling Patterns for the Automated
Deployment of Applications. In Proceedings of the 9th

International Conference on Pervasive Patterns and

Pruning Modes for Deployment Models: From Manual Modeling to Automated Removal of Elements and Their Implications

157



Applications (PATTERNS 2017), pages 22–27. Xpert
Publishing Services.

Groher, I. and Voelter, M. (2007). Expressing Feature-
Based Variability in Structural Models. In Workshop
on Managing Variability for Software Product Lines.

Harzenetter, L., Breitenbücher, U., Falkenthal, M., Guth, J.,
and Leymann, F. (2020). Pattern-based Deployment
Models Revisited: Automated Pattern-driven Deploy-
ment Configuration. In Proceedings of the Twelfth
International Conference on Pervasive Patterns and
Applications (PATTERNS 2020), pages 40–49. Xpert
Publishing Services.

Hirmer, P., Breitenbücher, U., Binz, T., and Leymann, F.
(2014). Automatic Topology Completion of TOSCA-
based Cloud Applications. In Proceedings des Cloud-
Cycle14 Workshops auf der 44. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), volume 232 of
LNI, pages 247–258, Bonn. Gesellschaft für Infor-
matik e.V. (GI).

Junior, E. A. O., de Souza Gimenes, I. M., and Maldonado,
J. C. (2010). Systematic Management of Variability
in UML-based Software Product Lines. J. Univers.
Comput. Sci., 16(17):2374–2393.

Knape, S. (2015). Dynamic Automated Selection and De-
ployment of Software Components within a Heteroge-
neous Multi-Platform Environment. Master’s thesis,
Utrecht University.

Korherr, B. and List, B. (2007). A UML 2 Profile for Vari-
ability Models and their Dependency to Business Pro-
cesses. In 18th International Workshop on Database
and Expert Systems Applications (DEXA 2007), pages
829–834.

OASIS (2020). TOSCA Simple Profile in YAML Version
1.3. Organization for the Advancement of Structured
Information Standards (OASIS).

Oppenheimer, D. (2003). The importance of understanding
distributed system configuration. In Proceedings of
the 2003 Conference on Human Factors in Computer
Systems workshop.

Oppenheimer, D., Ganapathi, A., and Patterson, D. A.
(2003). Why do internet services fail, and what can
be done about it? In 4th Usenix Symposium on Inter-
net Technologies and Systems (USITS 03).

Pohl, K., Böckle, G., and van der Linden, F. (2005). Soft-
ware Product Line Engineering. Springer Berlin Hei-
delberg.

Pohl, K. and Metzger, A. (2018). Software Product Lines,
pages 185–201. Springer International Publishing,
Cham.

Soldani, J., Binz, T., Breitenbücher, U., Leymann, F., and
Brogi, A. (2015). ToscaMart: A method for adapting
and reusing cloud applications. Journal of Systems
and Software, 113:395–406.

Soldani, J., Breitenbücher, U., Brogi, A., Frioli, L.,
Leymann, F., and Wurster, M. (2022). Tailor-
ing Technology-Agnostic Deployment Models to
Production-Ready Deployment Technologies. In
Cloud Computing and Services Science. Springer.

Stötzner, M., Becker, S., Breitenbücher, U., Kálmán, K.,
and Leymann, F. (2022). Modeling Different De-

ployment Variants of a Composite Application in a
Single Declarative Deployment Model. Algorithms,
15(10):1–25.

Stötzner, M., Breitenbücher, U., Pesl, R. D., and Becker,
S. (2023a). Managing the Variability of Component
Implementations and Their Deployment Configura-
tions Across Heterogeneous Deployment Technolo-
gies. In Cooperative Information Systems, pages 61–
78, Cham. Springer Nature Switzerland.

Stötzner, M., Breitenbücher, U., Pesl, R. D., and Becker, S.
(2023b). Using Variability4TOSCA and OpenTOSCA
Vintner for Holistically Managing Deployment Vari-
ability. In Proceedings of the Demonstration Track at
International Conference on Cooperative Information
Systems 2023, volume 3552 of CEUR Workshop Pro-
ceedings, pages 36–40. CEUR-WS.org.

Stötzner, M., Klinaku, F., Pesl, R. D., and Becker, S.
(2023c). Enhancing Deployment Variability Manage-
ment by Pruning Elements in Deployment Models. In
Proceedings of the 16th International Conference on
Utility and Cloud Computing (UCC 2023). ACM.

Sun, C., Rossing, R., Sinnema, M., Bulanov, P., and Aiello,
M. (2010). Modeling and managing the variability of
Web service-based systems. Journal of Systems and
Software, 83(3):502–516.

Voelter, M. and Groher, I. (2007). Product Line Implemen-
tation using Aspect-Oriented and Model-Driven Soft-
ware Development. In 11th International Software
Product Line Conference (SPLC 2007), pages 233–
242. IEEE.

Węsowski, A. (2004). Automatic Generation of Program
Families by Model Restrictions. In Software Product
Lines, pages 73–89. Springer.

Wurster, M., Breitenbücher, U., Brogi, A., Diez, F., Ley-
mann, F., Soldani, J., and Wild, K. (2021). Automat-
ing the Deployment of Distributed Applications by
Combining Multiple Deployment Technologies. In
Proceedings of the 11th International Conference on
Cloud Computing and Services Science. SciTePress.

Wurster, M., Breitenbücher, U., Falkenthal, M., Krieger, C.,
Leymann, F., Saatkamp, K., and Soldani, J. (2019).
The Essential Deployment Metamodel: A System-
atic Review of Deployment Automation Technolo-
gies. SICS Software-Intensive Cyber-Physical Sys-
tems, 35:63–75.

Wurster, M., Breitenbücher, U., Harzenetter, L., Leymann,
F., Soldani, J., and Yussupov, V. (2020). TOSCA
Light: Bridging the Gap between the TOSCA Speci-
fication and Production-ready Deployment Technolo-
gies. In Proceedings of the 10th International Con-
ference on Cloud Computing and Services Science
(CLOSER 2020), pages 216–226. SciTePress.

Yussupov, V., Soldani, J., Breitenbücher, U., Brogi, A.,
and Leymann, F. (2021). From Serverful to Server-
less: A Spectrum of Patterns for Hosting Application
Components. In Proceedings of the 11th International
Conference on Cloud Computing and Services Science
(CLOSER 2021), pages 268–279. SciTePress.

Ziadi, T., Hélouët, L., and Jézéquel, J.-M. (2004). Towards
a UML Profile for Software Product Lines. In Soft-
ware Product-Family Engineering. Springer.

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

158


