
Can a Chatbot Support Exploratory Software Testing?
Preliminary Results

Rubens Copche1, Yohan Duarte2, Vinicius Durelli3, Marcelo Medeiros Eler4

and Andre Takeshi Endo2 a

1Grupo TCM, Assis, Brazil
2Computing Department, Federal University of São Carlos, São Carlos, Brazil

3Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Brazil
4University of Sao Paulo (USP), Sao Paulo, Brazil

Keywords: Software Testing, Bots, Testing Strategies, Human Testers, Bots for Software Engineering.

Abstract: Tests executed by human testers are still widely used in practice and fill the gap left by limitations of automated
approaches. Among the human-centered approaches, exploratory testing is the de facto approach in agile
teams. Although it is focused on the expertise and creativity of the tester, the activity of exploratory testing
may benefit from support provided by an automated agent that interacts with human testers. We set out to
develop a chatbot named BotExpTest, specifically designed to assist testers in conducting exploratory tests of
software applications. We implemented BotExpTest on top of the instant messaging social platform Discord;
this version includes functionalities to report bugs and issues, time management of test sessions, guidelines for
app testing, and presentation of exploratory testing strategies. To assess BotExpTest, we conducted a user study
with six software engineering professionals. They carried out two sessions performing exploratory tests along
with BotExpTest. Participants revealed bugs and found the experience to interact with the chatbot positive.
Our analyses indicate that chatbot-enabled exploratory testing may be as effective as similar approaches and
help testers to uncover different bugs. Bots are shown to be valuable resources for Software Engineering, and
initiatives like BotExpTest may help to improve the effectiveness of testing activities like exploratory testing.

1 INTRODUCTION

Due to their practical use and broad applicability, a
myriad of bots that vary in complexity have been
developed and deployed in widely varying contexts.
Over the last decade, technological advancements
have enabled bots to play an ever increasingly impor-
tant role in many areas, particularly in software devel-
opment. This emerging technology has garnered the
interest of both software development researchers and
practitioners, as bots can serve as human assistants
for a variety of software development-related tasks.
In this particular context, bots that provide support
for specific aspects of software development, such as
keeping project-related dependencies up-to-date, are
referred to as devbots (Erlenhov et al., 2019).

Recent developments in machine learning and nat-
ural language processing have led to the creation
of bots that provide more user-friendly experiences.

a https://orcid.org/0000-0002-8737-1749

Bots that harness natural language processing capa-
bilities to provide more intuitive and user-friendly ex-
periences are commonly referred to as chatbots. As
their name implies, chatbots are software programs
designed to replicate human-like conversations or in-
teractions with users (Shawar and Atwell, 2007).

As mentioned, bots have been utilized to support
various software engineering tasks (Storey and Zagal-
sky, 2016; Paikari et al., 2019; Sharma et al., 2019;
Erlenhov et al., 2020; Okanović et al., 2020). We
set out to examine how chatbots can be leveraged to
assist testers throughout the testing process. Specif-
ically, we posit that chatbots are well-suited for pro-
viding assistance to testers throughout the execution
of Exploratory Testing (ET) tasks. ET is an approach
to software testing that entails carrying out a series
of undocumented testing sessions to uncover faults.
ET leverages the skills and creativity of testers while
they explore the system under test (SUT), and the
knowledge gained during ET sessions is then used to

Copche, R., Duarte, Y., Durelli, V., Eler, M. and Endo, A.
Can a Chatbot Support Exploratory Software Testing? Preliminary Results.
DOI: 10.5220/0012572400003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 2, pages 159-166
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

159



further refine the exploration. Hence, ET is a goal-
focused, streamlined approach to testing that allows
for flexibility in test design and keeps testers engaged
throughout the testing process (Bach, 2003; Kaner
et al., 1993; Souza et al., 2019). Owing to these bene-
fits, ET has been gaining traction as a complement to
fully scripted testing strategies (ISTQB, 2018): when
combined with automated testing, ET has the poten-
tial to increase test coverage and uncover edge cases.
In fact, there is evidence suggesting that ET can be
equally or even more effective than scripted testing in
practical situations (Ghazi et al., 2017).

In practice, before ET sessions, testers engage
with other testers and developers to gather project-
related information. However, due to the complexity
of most software projects, it becomes impractical to
collect all relevant information beforehand. As a re-
sult, interruptions that arise during ET sessions for the
purpose of gathering additional information can dis-
rupt the flow. One potential solution to overcome this
issue is to employ a chatbot that assists testers dur-
ing ET sessions, providing guidance on the selection
of input data for achieving different levels of explo-
ration. Furthermore, the chatbot can encourage criti-
cal thinking and enable testers to make informed de-
cisions. To the best of our knowledge, this research is
the first foray into the potential of a chatbot in maxi-
mizing the effectiveness of ET.

This paper introduces BotExpTest, a chatbot de-
signed to assist testers during ET sessions. BotEx-
pTest was built on top of the Discord platform and in-
cludes features tailored to managing ET sessions and
reporting bugs and issues. Additionally, it incorpo-
rates features aimed at enhancing testers’ ability to
gain insights that can be utilized to delve further into
the exploration of the SUT.1 To evaluate how BotEx-
pTest performs “in the wild”, we conducted a user
study with six practitioners. The results from the user
study would seem to indicate that BotExpTest was
able to help the participants to uncover several bugs.
Moreover, the participants expressed a positive opin-
ion about the experience and held an optimistic view
regarding the potential future adoption of the tool.

2 RELATED WORK

Chatbots are becoming increasingly popular in the
software development domain because they can be

1The development and evaluation of the current version
of BotExpTest took place prior to the release of ChatGPT
and other large language models (LLMs). However, in fu-
ture work, we delve into the potential integration of these
advanced technologies.

very versatile. In this context, bots are frequently
classified based on their capacity of supporting dif-
ferent activities such as code review, tests, bug fix-
ing, verification and deployment (Storey and Zagal-
sky, 2016). Storey et al. (Storey et al., 2020) surveyed
developers and researchers to identify in which situ-
ations they use bots to support software engineering.
Here is what they found: to search and to share infor-
mation, to extract and to analyze data, to detect and
to monitor events, to communicate in social media, to
connect stakeholders and developers, to provide feed-
back, and to recommend individual or collaborative
tasks associated with software development.

Many studies have proposed bots for software de-
velopment activities. Performobot is a chatbot-based
application that helps in planning, executing and re-
porting the results of tasks related to load and perfor-
mance testing (Okanović et al., 2020). Smart Advi-
sor is an intelligence augmentation bot that helps de-
velopers with project specifics by employing domain
and knowledge modeling and in-process analytics to
automatically provide important insights and answer
queries using a conversational and interactive user in-
terface (Sharma et al., 2019). Repairnator is a pro-
gram repair bot that creates software patches and pro-
vides an explanation for each bug fixed using natural
language as a human collaborator would do (Monper-
rus, 2019). Tutorbot uses machine learning to retrieve
relevant content, guiding software engineers in their
learning journey and helping them keep pace with
technology changes (Subramanian et al., 2019).

To the best of our knowledge, there is no specific
chatbot devised to help testers to conduct ET. In fact,
a study conducted in Estonia and Finland found out
that only 25% of the software testing professionals ap-
ply ET with some tool support. Mind mapping tools
are the most frequently used software, but testers also
use text editors, spreadsheets and even actual pen and
paper, in addition to checklists and paper notes (e.g.
post-its) (Pfahl et al., 2014). In this context, Copche
et al. (Copche et al., 2021) introduced a specific kind
of mind map called opportunity map (OM) as a way
to improve the ET of mobile apps. The authors con-
ducted a study that compares OM-based ET with a
traditional session-based approach (baseline).

There are some tools to directly support activities
involved in ET. For instance, Leveau et al. (Leveau
et al., 2020) designed a tool called Test Tracker to pre-
vent testers from running tests that have already been
executed so they can run more diversified test sessions
to further explore the SUT.

There have been some attempts to integrate ET
with automated approaches. For instance, Shah et
al. (Shah et al., 2014) proposed an hybrid approach

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

160



Figure 1: BotExpTest replies its main commands.

that combines the strengths of ET and scripted testing
(ST). Considering the strengths of ET, which includes
the application of domain knowledge and the obser-
vation of the system behavior for rapid feedback, the
hybrid process allows the testers to explore the SUT
freely and to utilize their intuitions and experience in
identifying defects before writing test scripts.

3 BotExpTest

This section presents the design and main features of a
chatbot we developed to support ET. We set out by in-
vestigating existing work about ET, its core practices
and envisioned how a chatbot would help the tester to
conduct more effective ET sessions. To validate these
ideas, we implemented BotExpTest. Figure 1 shows
the example of an interaction with BotExpTest: tester
Beth types ?commands and then BotExpTest shows
all commands accepted.

3.1 Implementation

As instant messaging platforms are widely adopted
and are today an essential part of software projects,
we opted to develop BotExpTest on top of them. For
this first release, we settled on using the Discord plat-
form. Discord provides an open source platform with
highly configurable features for users and bots. Bot-
ExpTest is implemented as a Node.js project; it has 22
classes and around 1.3K lines of JavaScript code. It
takes advantage of the Discord API to capture inter-
actions from testers in the chat, as well as to generate
its own messages. To make the ET process auditable,
all messages exchanged between the chatbot and the
testers are recorded in a MongoDB database. BotEx-
pTest is available as an open source project at:

https://github.com/andreendo/botexptest

Figure 2 presents an overview of the BotExpTest
architecture. The interaction starts with the tester
writing a message (command) to BotExpTest via Dis-

cord (step 1). The message passes through the Dis-
cord Developer Portal, which is then accessible by
means of an API (steps 2-3). Up to this point, BotEx-
pTest interprets the message typed by the tester and
reacts by sending a reply (steps 4-5). Finally, the Bot-
ExpTest’s response is shown to the tester and new in-
teractions may occur. BotExpTest may also be the one
that starts the interaction.

Figure 2: Architecture of BotExpTest.

3.2 Main Features

During the first interaction between tester and BotEx-
pTest, the first reaction of the chatbot is to present
itself, giving some pieces of information about how
to perform the next steps in the ET session. As a
convention, testers begin an interaction with BotEx-
pTest using a message that starts with ’?’. Adhering
to this convention can be beneficial in scenarios where
several testers are communicating with each other in
a chat, as it indicates when testers intend to engage
with the bot. For this version, the features imple-
mented by BotExpTest were elicited, prioritized and
implemented; they are described next.
Description of the Test Procedure. Using command
?manual, BotExpTest shows a step-by-step descrip-
tion about how the test sessions are organized and
should be conducted, as well as the main features pro-
vided to tester by the chatbot.
Charters. In ET, charters are used to organize the
tests and represent the goals that are supposed to be
achieved in a test session. BotExpTest provides an
interface to set up the test charters and are available
to testers by using the message ?charter. Besides the
charter name, app name, and the goals description, it
is also possible to attach images and other files related
to the charter.
Time Management of Testing Sessions. In ET,
testing sessions are conducted within a limited time
frame; usually, testers need to keep track of time. As
the tester is constantly interacting in the chat, Bot-
ExpTest reminds her about the remaining time in the

Can a Chatbot Support Exploratory Software Testing? Preliminary Results

161



Figure 3: Time alerts and suggestions.

session, from time to time. To signal the start of a
session, the tester should type the command ?start.
BotExpTest then asks the time limit and starts to mon-
itor the time elapsed in the session. During the time
range of the session, BotExpTest keeps track of all in-
teractions that occurred. Figure 3 shows how the time
alerts are presented to the tester.
Bug and Issue Reporting. The identification of bugs
and issues are the main outcomes of a test session.
To avoid using other tools for this task, BotExpTest
registers occurrences of bugs or issues. To do so, the
tester types command ?report; this task is exempli-
fied in Figure 4. The tester interacts with BotExpTest
so that the charter, type (bug or issue), a detailed de-
scription and potential attachments (e.g., screenshots
of the bug) are provided. The current version only
stores the bug report, but it is possible in future to inte-
grate it with external tools like GitHub, Jira or Azure
DevOps.
Curated Knowledge About Exploratory Testing.
The idea of this feature is for BotExpTest to have a cu-
rated list of resources about the use of ET techniques.
In future, BotExpTest could be fine-tuned for specific
projects so that testers are better equipped to conduct
exploratory tests. By typing one of the options pre-
sented after command ?help, BotExpTest shows a de-
tailed explanation about the concept and how to ap-
ply it during the tests. For some options, the chatbot
replies with questions. We anticipate that this feature
may help the testers to gain more insights and execute
more effective tests.

Currently, BotExpTest provides resources related
to three main groups. Group (i) brings well-known
testing criteria that may help the tester to design
black-box tests. For example, classical criteria like
equivalence partition and boundary-value analysis are
presented. Group (ii) is composed of strategies for ET

Figure 4: Reporting a bug.

that are well-known and have been adopted in the lit-
erature (Micallef et al., 2016; Whittaker, 2009). For
example, Bad Neighborhood Tour instructs the tester
to revisit buggy parts of software since bugs tend to
cluster together. Finally, Group (iii) contains guide-
lines for mobile app testing. For example, there are
several test scenarios related to specific characteris-
tics of mobile apps like network connections, geolo-
cation, Bluetooth, camera, and UI events (scrolling,
swipe, etc).
Active Suggestions. During a test session, Bot-
ExpTest can actively start an interaction with the
tester. The chatbot can present some piece of informa-
tion obtained from the curated knowledge about ex-
ploratory testing. We believe that actively interacting
with the tester would increase the engagement with
the tests. For the current version, the decision about
the timing and the information provided is made ran-
domly. In future, we expect that BotExpTest could be
evolved to make a more informed decision about the
interaction needed at a specific point of time.

4 USER STUDY

This section describes an empirical study conducted
with the aim to provide an initial evaluation of BotEx-
pTest. To this end, we posed the following research
questions (RQs):

• RQ1: How is the interaction with BotExpTest dur-
ing the exploratory testing?

• RQ2: How do the participants perform with re-
spect to the detection of bugs?

• RQ3: How do the participants perceive BotEx-
pTest?

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

162



To answer these questions, we conducted a user
study with six participants that were asked to use Bo-
tExpTest to support the ET of a mobile app named
Reminders. All participants work in the industry and
have experience with software development and test-
ing. We adopted the app and related charters that were
openly available from Copche et al. (Copche et al.,
2021); the rationale here is to make some analyses
concerning similar approaches. We used the same
app version, charters and length of test sessions. To
collect the needed data and observe the participants,
we set up a computer with screen recording, and mir-
roring the mobile device running the app under test.
Each participant was invited to use this computer in
order to perform the tasks of the study. Figure 5 il-
lustrates the testing environment used by the partici-
pants; the app is shown on the left, while the Discord
UI (along with BotExpTest) is presented on the right.

We provided the participants with detailed instruc-
tions about how to perform the testing tasks. They
were instructed to strictly follow the charter, report
any bug or issue identified, and the time manage-
ment of the session was supported by BotExpTest. All
test sessions were recorded and the participants could
think aloud about the tasks being carried out. After
the introduction, the study was divided into two parts:
Training. this session lasted approximately 15 min-
utes and served as an introduction to the usage of
the chatbot. This allowed participants to become
acquainted with BotExpTest and Discord, allowing
them to experiment with possible interactions and ex-
plore the supported commands.
Test Sessions. this iteration took approximately half
an hour, in which two test sessions with 15 minutes
each occurred. Over the course of these two test ses-
sions, the chatbot-enabled ET took place.

All data was then retrieved and analyzed. To an-
swer RQ1, we looked at the interactions that occurred
(messages exchanged) between the participant and
BotExpTest. We called Active Interactions the ones
started by BotExpTest, while Reactive Interactions are
responses to the tester’s inquiries.

As for RQ2, we analyzed and cataloged the bugs
reported by participants. In particular, we cross-
checked the bugs herein reported with the ones un-
covered in Copche et al. (Copche et al., 2021). As
an initial analysis, we intended to assess whether a
chatbot-enabled ET can detect a different set of bugs
with respect to similar approaches like baseline and
OM (see Section 2).

We answered RQ3 with a Likert-scale survey that
intends to understand the perception of participants.
The questions are divided into (i) how easy is to inter-
act and use BotExpTest, (ii) whether the user interface

is adequate for the proposed functionalities, and (iii)
understanding the participants’ perception about the
effectiveness of chatbot-enabled ET. There is also an
open question for comments and suggestions.
Threats to Validity. The study contained a limited
number of participants. We recognize that the results
do not generalize and further studies with more partic-
ipants and profile diversity are required. We opted for
a limited group of experienced professionals to ob-
tain the initial feedback from potential end users of
BotExpTest. The study was based on an app, and the
comparison with similar approaches was not direct in
the same controlled experiment.

5 ANALYSIS OF RESULTS

RQ1: Interactions with BotExpTest. Table 1
shows the number of active and reactive interactions
of both the chatbot and the participants; the values
are also divided between training and test sessions.
Overall, BotExpTest produced 581 interactions (121
in training and 460 in the test sessions), while the six
participants had 496 interactions (144 in training and
352 in the test sessions).

Table 1: Number of interactions (int.).

TRAINING TEST SESSIONS
BotExpTest BotExpTest

Reactive int. 107 Reactive int. 340
Active int. 14 Active int. 120
Total 121 Total 460

Participants Participants
Reactive int. 37 Reactive int. 262
Active int. (acpt) 100 Active int. (acpt) 90
Active int. (inv) 7 Active int. (inv) 0
Total 144 Total 352

During training, BotExpTest was proportionally
more reactive (reactive/active – 107/14) and the par-
ticipants were more active (37/100); they also typed 7
invalid commands. The most typed commands were
related to the chatbot usage (?charter, ?commands,
?help, ?manual) and software testing resources. We
observed that the participants were more active in the
interactions because they were focused on figuring
out how to use BotExpTest.

As for test sessions, BotExpTest was still more re-
active (340/120) but proportionally had more active
interactions. This occurred due to the reporting of
bugs and issues (it asks actively for more pieces of in-
formation). This fact also impacted the participants’
interactions: they were more reactive (262/90) and
did not type any invalid command. The most typed
commands were related to bug and issue reporting

Can a Chatbot Support Exploratory Software Testing? Preliminary Results

163



Figure 5: Setup used by the participants.

(e.g., ?report) and management of the test sessions
(e.g., ?start, ?charter). We also observed that partic-
ipants were focused on testing the app and this also
limited the interactions with the chatbot.

Answer to RQ1: We observed reasonable interactions be-
tween the participants and BotExpTest. As the participants
were exploring the chatbot in training, they had more active
interactions. On the other hand, the interactions were more
reactive and limited in the test sessions due to the time spent
with exploratory testing of the app itself and reporting bugs
and issues.

RQ2: Bugs. The six participants reported 31 bugs.
The most effective participant uncovered nine bugs,
while one of them reported three bugs. On average,
the participants detected 5.2 bugs (median: 5). The
distribution of bugs detected per participant can be
seen in Figure 6, the boxplot/violin in the middle.

Figure 6 also shows the results for the baseline
and OM approaches (Copche et al., 2021). Observe
that the average and median values of BotExpTest are
slightly greater than baseline (avg: 2.7, median: 3)
and OM (avg: 4.3, median: 4). The range of values is
also smaller, so BotExpTest produced a more uniform
performance of participants. Due to the differences
of samples and participants’ experience, these results
may not be generalized. One may argue that the bug
detection capability of BotExpTest is at least compara-
ble to approaches without any support (i.e., baseline)
or that adopted some supporting artifact (i.e., OM).

Figure 7 shows a Venn diagram with the unique
bugs detected by the approaches, numbers between
parentheses are bugs tracked to specific suggestions

Figure 6: Number of bugs detected by the participants.

of the approach. Out of 31 bugs reported by the partic-
ipants using BotExpTest, 21 were unique since some
reported the same bug. Eight bugs have been uncov-
ered in the Copche et al. study (1 by baseline, 3 by
OM and 4 by both), but 13 yet-unknown bugs were
detected in this study. We were able to map three out
of these 13 bugs to specific insights provided by the
chatbot.

Answer to RQ2: The participants were capable of uncovering
an average of 5.2 bugs using BotExpTest. Their performance
is comparable to similar approaches evaluated in the litera-
ture. Furthermore, BotExpTest supported the participants in
detecting 13 previously unknown bugs.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

164



Figure 7: Unique bugs.

RQ3: Participants’ Perception. For the part (i) of
questions, we asked about the easiness of finding in-
formation, whether proper instructions are provided,
and usability in general. All participants agreed or
strongly agreed that BotExpTest is easy to use and in-
teract. As for part (ii), the questions asked about spe-
cific features like bug/issue reporting and time man-
agement of test sessions. Most participants strongly
agreed or agreed that the user interface for those fea-
tures is adequate. In particular, the bug/issue re-
porting was unanimously well-evaluated (all strongly
agreed).

For the last part of questions, the responses indi-
cated that participants would use a chatbot in sim-
ilar tasks, and they perceived more organized test
sessions. They also thought that BotExpTest helped
them to find more bugs. We also asked if the chatbot
helped them to understand new concepts of software
testing, and whether the suggestions made by BotEx-
pTest were helpful; all participants strongly agreed or
agreed with those statements.

From the open question and our observations, we
draw the following thoughts. Participants believed
that the chatbot helped to shorten the time spent with
process tasks, saving more time to test the app. Bo-
tExpTest worked as a rich and centralized source of
testing information; participants sometimes used the
message history to revisit decisions and bugs de-
tected. One suggested that it could support novice
programmers testing their software, and another men-
tioned that it could help teams without QAs. Finally,
there were suggestions to add support for other testing
tasks, like managing test scripts, tracking the status of
test executions, and communication with stakehold-
ers.

Answer to RQ3: The participants perceived BotExpTest as
a valuable resource while performing exploratory testing.
Overall, the participants’ perceptions were positive concern-
ing the features, the ease of interaction, and testing resources.

6 RESEARCH OPPORTUNITIES

This section delves into research opportunities identi-
fied while conducting this study. The following fea-
tures have the potential to enhance the synergy be-
tween the tester and bots, thereby making the testing
process more effective, systematic, and traceable.
Sophisticated Conversational Capabilities. By em-
ulating more human-like interactions, chatbots can
significantly enhance engagement with testers. We
hypothesize that this increased engagement will lead
to a more thorough exploration of the SUT, thereby
helping to prevent a plateau in exploration. Advance-
ments in natural language processing (e.g., ChatGPT,
Bard, and Llama 2) and machine learning are key to
propelling chatbots towards these more nuanced inter-
actions. Thus, we believe that retrofitting our chatbot
with LLM capabilities will foster a more immersive
and effective testing experience.
Access to a Wider Collection of Curated Soft-
ware Testing Resources. Currently, BotExpTest
supports only a limited set of software testing re-
sources. As mentioned, to allow for more complex
and knowledge-intensive exploratory tasks, it is es-
sential to upgrade BotExpTest with an LLM. Addi-
tionally, we could integrate the LLM system with
external software testing knowledge. This enhance-
ment would ensure greater factual consistency, en-
hance response reliability, and address the “hallucina-
tion” issue commonly encountered in LLM-generated
responses. Moreover, such an upgrade would allow
our chatbot to better match the tester’s proficiency
level by tailoring the technical level of responses to
align with the tester’s knowledge. Achieving this
would entail retrofitting our chatbot with LLM ca-
pabilities and employing retrieval-augmented gener-
ation (RAG), which is an approach that refines LLM-
generated responses by grounding them on external
software testing information sources, supplementing
the LLM’s inherent knowledge representation.
Communication Layer with the SUT. To provide
better feedback and make smarter suggestions for the
tester, BotExpTest would be able to interact with the
SUT. We surmise that these interactions will be pos-
sible by implementing a communication layer with
the SUT. This layer will leverage existing testing
technologies like code coverage, mocking, E2E test
frameworks, virtualization, and so on. An example is
to include the ability of observing the SUT (using e.g.
monitoring or dynamic analyses as in (Leveau et al.,
2020)). This ability would be used to feed the chat-
bot and help the tester making more educated insights.
Another direction is to provide screenshots or videos
of the tester’s interactions with the SUT and make use
of AI solutions.

Can a Chatbot Support Exploratory Software Testing? Preliminary Results

165



Integration-Based Intelligence. By implementing
the aforementioned features, it is possible to improve
the overall intelligence of chatbot and make it part
of a more integrated testing environment. To make
it less reactive, BotExpTest could evolve to learn
from past test explorations, or adopt automated ini-
tiatives like GPTDroid (Liu et al., 2023). Pairing hu-
man developers with a bot like GitHub CoPilot (i.e.,
pair programming) has been investigated (Imai, 2022;
Moradi Dakhel et al., 2023). In a parallel vein, this
pivotal feature will facilitate the establishment of a
pair-programming like strategy for software testing,
thereby leveraging both human and bot capabilities.

ACKNOWLEDGEMENTS

AT Endo is partially supported by grant #2023/00577-
8, São Paulo Research Foundation (FAPESP). Y
Duarte is supported by grant FAPESP #2022/13469-
6, and CAPES grant 88887.801592/2023-00.

REFERENCES

Bach, J. (2003). Exploratory testing explained.
Copche, R., Souza, M., Villanes, I. K., Durelli, V., Eler, M.,

Dias-Neto, A., and Endo, A. T. (2021). Exploratory
testing of apps with opportunity maps. In XX Brazilian
Symposium on Software Quality, pages 1–10.

Erlenhov, L., De Oliveira Neto, F. G., and Leitner, P. (2020).
An empirical study of bots in software development:
Characteristics and challenges from a practitioner’s
perspective. In The 28th ACM Symposium on the
Foundations of Software Engineering, pages 445–455.

Erlenhov, L., de Oliveira Neto, F. G., Scandariato, R., and
Leitner, P. (2019). Current and future bots in software
development. In IEEE/ACM 1st International Work-
shop on Bots in Software Engineering (BotSE), pages
7–11. IEEE.

Ghazi, A. N., Garigapati, R. P., and Petersen, K. (2017).
Checklists to support test charter design in exploratory
testing. In International Conference on Agile Software
Development, pages 251–258. Springer.

Imai, S. (2022). Is github copilot a substitute for hu-
man pair-programming? an empirical study. In The
ACM/IEEE 44th International Conference on Soft-
ware Engineering: Companion Proc., page 319–321.

ISTQB (2018). Worldwide Software Testing Practices Re-
port Message from the President Executive Summary
Survey Questions and Analysis.

Kaner, C., Nguyen, H. Q., and Falk, J. L. (1993). Testing
computer software.

Leveau, J., Blanc, X., Réveillère, L., Falleri, J., and Rouvoy,
R. (2020). Fostering the diversity of exploratory test-
ing in web applications. In IEEE 13th International
Conference on Software Testing, Validation and Veri-
fication (ICST), pages 164–174.

Liu, Z., Chen, C., Wang, J., Chen, M., Wu, B., Che, X.,
Wang, D., and Wang, Q. (2023). Chatting with GPT-3
for zero-shot human-like mobile automated GUI test-
ing. CoRR, abs/2305.09434.

Micallef, M., Porter, C., and Borg, A. (2016). Do ex-
ploratory testers need formal training? an investiga-
tion using HCI techniques. In 9th International Con-
ference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), pages 305–314.

Monperrus, M. (2019). Explainable software bot contribu-
tions: Case study of automated bug fixes. In 2019
IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE), pages 12–15. IEEE.

Moradi Dakhel, A., Majdinasab, V., Nikanjam, A., Khomh,
F., Desmarais, M. C., and Jiang, Z. M. J. (2023).
Github copilot ai pair programmer: Asset or liability?
Journal of Systems and Software, 203:111734.

Okanović, D., Beck, S., Merz, L., Zorn, C., Merino, L., van
Hoorn, A., and Beck, F. (2020). Can a chatbot support
software engineers with load testing? approach and
experiences. In The ACM/SPEC International Con-
ference on Performance Engineering, pages 120–129.

Paikari, E., Choi, J., Kim, S., Baek, S., Kim, M., Lee, S.,
Han, C., Kim, Y., Ahn, K., Cheong, C., et al. (2019).
A chatbot for conflict detection and resolution. In 1st
International Workshop on Bots in Software Engineer-
ing (BotSE), pages 29–33.

Pfahl, D., Yin, H., Mäntylä, M. V., and Münch, J. (2014).
How is exploratory testing used? a state-of-the-
practice survey. In The 8th ACM/IEEE international
symposium on empirical software engineering and
measurement, pages 1–10.

Shah, S. M. A., Gencel, C., Alvi, U. S., and Petersen, K.
(2014). Towards a hybrid testing process unifying ex-
ploratory testing and scripted testing. Journal of soft-
ware: Evolution and Process, 26(2):220–250.

Sharma, V. S., Mehra, R., Kaulgud, V., and Podder, S.
(2019). A smart advisor for software delivery-a bot
framework for awareness, alerts and advice. In The
1st International Workshop on Bots in Software Engi-
neering (BotSE), pages 22–23.

Shawar, B. A. and Atwell, E. (2007). Chatbots: are they
really useful? In Ldv forum, volume 22, pages 29–49.

Souza, M., Villanes, I. K., Dias-Neto, A. C., and Endo, A. T.
(2019). On the exploratory testing of mobile apps. In
The IV Brazilian Symposium on Systematic and Auto-
mated Software Testing, pages 42–51.

Storey, M. A., Serebrenik, A., Rosé, C. P., Zimmermann, T.,
and Herbsleb, J. D. (2020). Botse: Bots in software
engineering (dagstuhl seminar 19471). In Dagstuhl
Reports, volume 9.

Storey, M. A. and Zagalsky, A. (2016). Disrupting devel-
oper productivity one bot at a time. In The 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 928–931.

Subramanian, V., Ramachandra, N., and Dubash, N. (2019).
Tutorbot: contextual learning guide for software engi-
neers. In IEEE/ACM 1st International Workshop on
Bots in Software Engineering (BotSE), pages 16–17.

Whittaker, J. A. (2009). Exploratory software testing: tips,
tricks, tours, and techniques to guide test design. Pear-
son Education.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

166


