
Task Offloading in Edge-Cloud Computing Using a Q-Learning
Algorithm

Somayeh Abdi*, Mohammad Ashjaei and Saad Mubeen
Department of Networked and Embedded Systems, Mälardalen University, Västerås, Sweden

Keywords: Task Offloading, Edge-Cloud Computing Continuum, Reinforcement Learning, q-Learning Algorithm.

Abstract: Task offloading is a prominent problem in edge−cloud computing, as it aims to utilize the limited capacity
of fog servers and cloud resources to satisfy the QoS requirements of tasks, such as meeting their deadlines.
This paper formulates the task offloading problem as a nonlinear mathematical programming model to max-
imize the number of independent IoT tasks that meet their deadlines and to minimize the deadline violation
time of tasks that cannot meet their deadlines. This paper proposes two Q-learning algorithms to solve the
formulated problem. The performance of the proposed algorithms is experimentally evaluated with respect to
several algorithms. The evaluation results demonstrate that the proposed Q-learning algorithms perform well
in meeting task deadlines and reducing the total deadline violation time.

1 INTRODUCTION

As the use of Internet of Things (IoT) devices pro-
liferates, the need to move processing, storage, and
decision-making closer to the data source becomes
increasingly important. The edge-cloud computing
paradigm addresses this critical need by integrating
fog and cloud servers to process requests from edge
devices (Aazam et al., 2018). This computing con-
tinuum provides distributed computing resources by
locating fog servers close to the data source to reduce
network congestion and latency. However, the com-
puting capacity of fog servers is limited. Therefore,
it also leverages resources provided by a centralized
cloud to offer scalable resources.

Providing such distributed and scalable resources
is a critical requirement for various systems such
as traffic management systems, smart cities, smart
healthcare, and industrial IoT. In these systems, as the
level of autonomy increases, more and more data- and
compute-intensive tasks need to be performed, and
edge devices alone are not sufficient to meet the de-
mands of these tasks. Hence, task offloading becomes
a prominent challenge in edge-cloud computing as it
aims at utilizing the limited capacity of fog servers
and satisfying the QoS requirements of all tasks.

Task offloading refers to selecting appropriate re-
sources in the fog or cloud layer to execute the
tasks requested by the edge devices. The limited
capacity of fog servers requires that delay-sensitive

tasks be processed in the fog layer, while compute-
intensive tasks are offloaded to the cloud layer. Meet-
ing the QoS requirements of requests and utilizing
the limited capacity of fog servers is significantly
impacted by such task offloading. To solve a task-
offloading problem, different problem-solving tech-
niques such as mathematical programming, machine
learning, heuristics, meta-heuristics, and game theory
can be applied (Abdi et al., 2022).

In this paper, we formulate the task offloading
problem in edge-cloud computing as a non-linear
mathematical programming model. Then, for the for-
mulated problem, we propose a Q-learning algorithm
which is a popular reinforcement learning technique.
Reinforcement learning algorithms can be used to
learn effective scheduling policies to meet specific
performance objectives while satisfying problem con-
straints (Watkins and Dayan, 1992). This paper fo-
cuses on deadline-constrained task offloading in edge-
cloud. Considering a set of independent tasks, the ob-
jective is to maximize the number of tasks that meet
their deadlines and minimize the deadline violation
time of the tasks that cannot meet their deadlines. The
main contributions in this paper are as follows:

• Formulate the task offloading problem in edge-
cloud computing as a non-linear mathematical
programming model. The objective is to maxi-
mize the number of tasks that meet their deadlines
and minimize the deadline violation time.

Abdi, S., Ashjaei, M. and Mubeen, S.
Task Offloading in Edge-Cloud Computing Using a Q-Learning Algorithm.
DOI: 10.5220/0012590800003711
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Cloud Computing and Services Science (CLOSER 2024), pages 159-166
ISBN: 978-989-758-701-6; ISSN: 2184-5042
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

159

• Propose two Q-learning algorithms, called TOQL
and PTOQL, to efficiently assign the IoT tasks
to available resources in fog and cloud servers to
solve the proposed mathematical model.

• Conduct extensive experiments to configure the
hyper-parameters of the proposed Q-learning al-
gorithms and to evaluate their performance in
comparison with other algorithms.

2 RELATED WORKS

The problem of task offloading in edge-cloud com-
puting has been studied under various optimization
objectives, including energy efficiency, completion
time (Mohammadi et al., 2023), and financial cost
(Islam et al., 2021).

The work in (Lou et al., 2023) formulates the
workflow scheduling in edge-cloud computing with
the objective of makespan optimization and proposes
a heuristic algorithm to find near-optimal solutions for
the scheduling problem. The work in (Saeed et al.,
2023) proposes a genetic algorithm that minimizes the
energy consumption and makespan of the workflows
that are generated by IoT devices. The work in (You
et al., 2016) proposes a mathematical programming
model to minimize mobile energy consumption un-
der latency constraints. The work in (Misra and
Saha, 2019) formulates the problem of task offload-
ing in fog computing as an integer-linear program-
ming (ILP) model and proposes a greedy-heuristic-
based approach to efficiently solve the problem. The
proposed algorithm, called Detour, makes optimal de-
cisions on the local or remote execution of tasks and
selects the optimal fog nodes for tasks. It also selects
the optimal path for offloading tasks.

The work in (Nguyen et al., 2019) proposes a par-
ticle swarm optimization algorithm that minimizes
the cost of executing Bag-of-Tasks (BoT) applica-
tions in fog-cloud computing. The work in (Nan
et al., 2022) proposes a genetic algorithm for task of-
floading in edge-cloud computing to minimize energy
consumption. The work in (Smys and Ranganathan,
2020) proposes a game theory-based scheduling algo-
rithm to minimize the waiting time of tasks. The work
in (Jararweh et al., 2018) uses Logistic regression, a
supervised learning algorithm, to balance the load of
edge nodes and enhance a dynamic resource alloca-
tion strategy. The work in (Bouet and Conan, 2018)
uses a clustering approach, an unsupervised learning
algorithm, to group resources based on the distance
between edge nodes to minimize the response delay.

Some works have proposed reinforcement learn-
ing algorithms for task offloading in edge-cloud com-

Tasks

...

C1

Cloud layer

Cv

LQ1 LQv

Scheduler

...

Offloading a task to the fog layer Offloading a task to the cloud layer

Edge devices

Fog layer

F1 Fu

GTQ

LQuLQ1

GTQ: Global Task Queue LQj: Local Queue of node jth.

Figure 1: Three-tier architecture used in the system model.

puting (Hortelano et al., 2023), (Hortelano et al.,
2023). The work in (Xue et al., 2022) proposes a
hybrid algorithm of deep reinforcement learning and
a genetic algorithm to minimize the execution time
of workflows. The work in (Wang et al., 2022) pro-
poses a task scheduling method based on reinforce-
ment learning to minimize the completion time of par-
allel tasks. It also applies digital twins to simulate
the results of different actions made by an agent. The
work in (Razaq et al., 2022) proposes a reinforcement
learning algorithm for task scheduling in fog-cloud
computing to satisfy the required latency and security
requirements.

However, these works do not consider the wait-
ing time of tasks when some tasks are assigned to
the same fog node. This paper proposes a Q-learning
algorithm to maximize the number of IoT tasks that
meet their deadline considering the waiting time of
tasks when some tasks are assigned to the same node.
This consideration leads to load balancing among
available fog nodes to decrease the total waiting time
for tasks. Moreover, it minimizes the violation time
of the tasks that cannot meet their deadline.

3 SYSTEM MODEL

The proposed edge-cloud computing continuum is
shown in Figure 1, which is a three-tier architecture
consisting of edge devices, a fog layer, and a cloud
layer. We assume that edge devices, such as health-
care devices, request some tasks to be executed in the
higher computing layers. The requests from different
edge devices are submitted to a scheduler located in
the fog layer and added to the global task queue in this
component. The scheduler decides on the computing
layers and nodes where the tasks will be executed.

The fog layer is closer to the source of gen-

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

160

erated tasks and it provides a set of fog nodes
F = {F1,F2, ..,Fu}. The cloud layer provides scal-
able computing resources in comparison to the fog
layer which provides limited computing resources.
The cloud layer provides a set of cloud nodes C =
{C1,C2, ..,Cv}. Generally, we assume that the fog-
cloud computing continuum provides computing re-
sources N = {F ∪C}. We assume that m comput-
ing layers provide computing nodes, and k ∈ {1, ..,m}
is used as the index of computing layers. The no-
tation Nk denotes the set of computing nodes pro-
vided by kth computing layer. The notation Nk j de-
notes jth node in the kth computing layer. The tuple
Nk j :< p fk j,bwk j > describes the characteristics of
node Nk j, where the notation p fk j indicates the CPU
processing capacity of a node Nk j, i.e., the number
of instructions that the node can process per second
(MIPS). The communication bandwidth of node Nk j
is denoted by bwk j. Moreover, each node has a lo-
cal queue, where tasks assigned to the node are added
to it and processed based on the First Comes First
Serves (FCFS) policy.

We assume that a set of independent IoT tasks
T = {τ1, ..,τn} are submitted to the scheduler and
added to the global task queue in the scheduler. The
tuple τi :< csi, idi,odi,di, pi > describes the charac-
teristics of task τi, where the notation csi indicates
the computation size of task τi in Million Instruc-
tions (MI). The notations idi and odi are the input and
output data size of task τi, respectively. The notations
di and pi indicate the deadline and priority of task τi,
respectively. The tasks are assigned priorities accord-
ing to their importance or criticality.

4 PROBLEM FORMULATION

We formulate the problem of task offloading in a het-
erogeneous fog-cloud computing system as a mathe-
matical programming model. We assume that a set of
tasks T is submitted to the scheduler and it assigns
the tasks to the nodes in the fog or cloud layer to ex-
ecute them. To formulate task assignment, we define
decision variable xik j; xik j = 1 if and only if task τi is
assigned to node Nk j; otherwise xik j = 0 . This assign-
ment is formulated in Eq. (1) and ensures that each
task is assigned to a node in the fog or cloud layer.

m

∑
k=1

∑
∀ j∈Nk

xik j = 1 ∀i ∈ T (1)

We consider non-preemptive resource allocation.
It means that once a task starts its execution on a node,
it will finish without any interruption. If task τi is
assigned to node Nk j, then xik j = 1 and its execution

time is determined as follows:

ξik j >= xik j · (csi/p fk j) (2)
∀i ∈ T, ∀k ∈ {1, ..,m}, ∀ j ∈ Nk

Moreover, we assume that each node can process only
one task at a time and assigned tasks to a node are
executed sequentially. Therefore, when task τi is as-
signed to node Nk j, it is added to the queue of the
node and waits until the node processes it. Suppose
the set T ′k j indicates the tasks assigned to node Nk j be-
fore task τi is assigned to node Nk j, then the waiting
time of task τi is formulated as follows:

wikj >= mtkj · xik j (3)

∀i ∈ T, ∀t ∈ T ′k j, ∀k ∈ {1, ..,m}, ∀ j ∈ Nk

Hence, the completion time of a task includes the
waiting time of the task, the execution time of the
task, and the input and output data transfer time.
Eqs. (4) and (5) formulate the data transfer time for
input and output data of task τi to/from node Nk j, re-
spectively.

βik j >= xik j · (idi)/bwk j (4)
ζik j >= xik j · (odi)/bwk j (5)
∀i ∈ T, ∀k ∈ {1, ..,m}, ∀ j ∈ Nk

In this work, we consider the overlap between the
waiting time of a task and the input data transfer time.
Therefore, the completion time of task τi is formu-
lated as follows:

mikj >= xik j · (ξik j +max (βik j,wikj)+ζik j) (6)
∀i ∈ T, ∀k ∈ {1, ..,m}, ∀ j ∈ Nk

The objective function of the proposed mathemat-
ical model is to maximize the number of tasks that
meet their deadlines and minimize the deadline vio-
lation times of tasks that cannot meet their deadlines.
Therefore, we define the decision variable δi to iden-
tify whether the deadline of the task τi is met. Eq. (7)
identifies the value of this decision variable. If the
deadline of task τi is met then δi = 1; otherwise δi = 0.
To define the deadline violation time of the task τi, we
define the decision variable ϑi in Eq. (8).

mikj ·δi ≤ di (7)
ϑi >= (1−δi) · (mikj−di) (8)
∀i ∈ T, ∀k ∈ {1, ..,m}, ∀ j ∈ Nk

If the deadline of the task τi is met, then δi = 1
and ϑi = 0; otherwise δi = 0 and ϑi represents the
time when the completion time of task τi exceeds its
deadline. Based on the defined constraints and deci-
sion variables, the objective function of the model is

Task Offloading in Edge-Cloud Computing Using a Q-Learning Algorithm

161

formulated in Eq. (9) which is a multi-objective opti-
mization problem. It involves maximizing the num-
ber of tasks that meet their deadlines and minimizing
the deadline violation time for tasks that cannot meet
their deadlines.

Max (w1 ·∑
i∈T

δi ·qi−w2 ·∑
i∈T

ϑi ·qi) (9)

Subject to:
Constraints (1)-(8)

where w1 and w2 are the weights assigned to the ob-
jectives and w1 +w2 = 1. Indeed, the weights reflect
the importance or priority of each objective. More-
over, we consider the priority of tasks in the objec-
tive functions and qi indicates the normalized priority
of the task τi using the softmax function in Eq. (10)
to prevent sharp changes in the learning process that
may arise due to large reward or penalty values.

qi =
epi

∑
n
j=1 ep j

(10)

5 Q-LEARNING ALGORITHM
FOR TASK OFFLOADING

In this section, we propose a Q-learning algorithm
which is a type of reinforcement learning (RL) algo-
rithm to solve the formulated problem in Section 4.
Reinforcement learning is a type of machine learning
technique in which an agent learns how to maximize
the cumulative reward by taking actions and receiving
feedback in the form of rewards or penalties (Sutton
et al., 1998).

The proposed RL model is represented by a tuple
< S ,A ,R >, where S , A , and R define a finite set
of the system space, a finite set of actions, and the re-
ward associated with taking an action in a given state,
respectively. In this paper, the system state space is
comprised of all tasks waiting to be assigned. In each
step, the agent selects a task out of all the tasks in the
queue and takes action for the task. Therefore, the
system state space S is represented as follows:

S =

(
s(τ1), ..,s(τi), ..,s(τn)

)
(11)

A task is selected from all the tasks waiting to be as-
signed according to the current state. After assign-
ing a task to a node in the fog/cloud layer, the system
transfers to the next state.

The action space describes the set of possible de-
cisions that the agent can make in a given state. Con-
sidering a given state, e.g., s(τi), selecting a node in

the fog layer, i.e., F = {F1,F2, ..,Fu} or cloud layer,
i.e., C = {C1,C2, ..,Cv} is defined as an action for the
given state. Therefore, selecting a computing layer
and a node from it is defined as an action the agent
takes in a given state. After a task is assigned to a
node in the fog or cloud layer, the task is added to the
queue of the node, and the state of the system changes
to the next state. Moreover, the start and completion
times of tasks on the allocated nodes are used as parts
of the state/action description as follows:

S/A =

(
..,

s(τi)︷ ︸︸ ︷[
Nk j,wikj,mikj

]
, ..

)
(12)

This state/action space indicates that task τi is as-
signed to node Nk j where the notations wikj and mikj
are the start time and the completion time of the task
on the allocated node according to Eqs. (3) and (6),
respectively.

The RL agent explores the environment by taking
actions from the action set in given states and receiv-
ing feedback from the environment. This feedback is
defined in terms of the reward function and the precise
definition of the reward function plays a vital role in
the learning process.

As mentioned in Section 4, our objective is to
maximize the number of tasks that meet their dead-
lines and minimize the deadline violation time of
tasks that cannot meet their deadlines. According to
the defined objective function in Eq. (9), the reward
function for taking an action in state s(τi) is defined
as follows:

R =

{
w1 ·qi δi = 1
−w2 ·ϑi ·qi δi = 0

(13)

where the agent receives a positive reward w1 · qi if
task τi meets its deadline, i.e., δi = 1; otherwise it re-
ceives a penalty −(w2 ·ϑi · qi). In this formula, qi is
the normalized priority of the task τi. We consider the
priority of tasks in receiving rewards or penalties to
maximize the number of high-priority tasks that meet
their deadlines and to decrease their deadline viola-
tion time. Moreover, w1 and w2 are positive constants.

This paper uses model-free reinforcement learn-
ing, where the agent tries to learn the consequences
of its actions using algorithms such as policy gradi-
ent and Q-learning. Indeed, a model-free algorithm
does not estimate the transition probability distribu-
tion. Therefore, the agent interacts with the environ-
ment by taking actions and receiving rewards to learn
to optimize its policy. We use the Q-learning algo-
rithm, which is a popular model-free, value-based re-
inforcement learning algorithm (Watkins and Dayan,

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

162

1992). This algorithm uses a Q-table to learn the op-
timal action to take in a given state.

The main idea behind Q-learning is to learn a Q-
table, denoted as Q(s,a). This table represents the
expected cumulative reward of taking action a in state
s. Before learning begins, the Q-values are initialized
to a fixed value, e.g. 0. Then, in each step, the agent
selects an action a in state s, receives a reward, and
the system transfers to a new state s′. The Q-value
then is updated based on the received rewards and the
estimated future rewards. The Q-learning update rule
is based on the Bellman equation (Sutton et al., 1998)
as follows:

Q(s,a) = (1−α) ·Q(s,a)+α ·
(

R + γ ·max
a′

Q(s′,a′)
)

(14)

where α, γ, and R are the learning rate, the discount
factor for future rewards, and the immediate reward
received after taking the action a in the state s, re-
spectively. The learning rate, i.e. 0 ≤ α ≤ 1, de-
termines the impact of newly acquired information
(reward (R) and the maximum Q-value of the next
stat (maxa′Q(s′,a′))) on the current Q-value. The
discount factor, i.e. 0 ≤ γ ≤ 1, indicates the extent
to which the agent considers future rewards in its
decision-making process. When the agent takes an
action a ∈ A in the state s ∈ S , the system changes
its state from s to s′. Here, a′ is the action chosen
in the next state s′, and maxa′Q(s′,a′) represents the
maximum Q-value in the next state.

The goal of a Q-learning algorithm is to learn the
optimal policy and follow it thereafter. The optimal
policy is defined by the learned Q-values and is to se-
lect the action with the highest Q-value for a given
state as follows:

π(a|s)∗ = argmax
a

Q(s,a) (15)

Afterwards, the agent follows the optimal policy to
decide which action to take in a given state. During
the learning process, we use the epsilon-greedy pol-
icy (Wunder et al., 2010) to keep a balance between
exploration to discover the environment and exploita-
tion of prior knowledge. The policy chooses a ran-
dom action with probability ε, i.e., exploration, and
with probability 1− ε, it selects the action with the
maximum Q-value, where 0≤ ε≤ 1 is the exploration
parameter.

The proposed task offloading algorithm is shown
in Algorithm 1, called TOQL. It takes the learning
rate α, discount factor γ, epsilon ε, number of IoT
tasks n, available nodes in the fog layer and cloud
layer N as inputs. The objective of the algorithm
is to learn the optimal policy so that the best fog or
cloud nodes are selected for offloading a given set of

Data: α: learning rate, γ discount factor, ε: a
small value, n, N

Result: A Q-table defining estimated optimal
policy π∗

Initialize Q(s,a)← 0
for each episode do

Generate task set T = {τ1, ..,τn}
Initialize state space S and available

resource N
Assign tasks to the resources and update
Q-table using Algorithm 2

end
Algorithm 1: TOQL algorithm.

Data: State space S, Q-table, α, γ, ε, N
Result: The Q-table
for each s(τi) ∈ S do

x← uniform random number between 0
and 1

if x < ε then
a← random action from the action
space

else
a←maxQ(s,a′)

end
Take action a and add task τi to the queue

of the selected node
Get the start and completion time of task

τi on the allocated node using
Eqs. (3)-(6)

Calculate immediate reward R using
Eq. (13)

Transfer to the next state s′

Update Q-table using Eq. (14)
end

Algorithm 2: Epsilon-greedy resource allocation algorithm.

tasks. Hence, the output of the proposed algorithm is
the Q-table values and the optimal policy. The algo-
rithm initially creates a Q-table containing values 0.
Afterwards, the algorithm performs episodes repeat-
edly until reaches the termination condition which is
a predefined number of time steps. The TOQL algo-
rithm performs the following steps for all episodes.
First, a set of tasks T is generated, and the state space
S and the state of available resources N are initial-
ized by resetting the environment. That is, the state
space S is initialized by a set of tasks T awaiting to
be assigned to the resources, and the local queues of
available resources N are reset. Then, the tasks are
assigned to the available resources in the fog-cloud
computing continuum and the Q-table is updated us-
ing Algorithm 2. In this algorithm, for each s(τi) ∈ S ,
the agent takes an action based on the epsilon-greedy
policy. This means if the random number x is smaller

Task Offloading in Edge-Cloud Computing Using a Q-Learning Algorithm

163

than ε then a random computing layer and a random
node from the layer are selected and task τi is assigned
to the node. Otherwise; the agent takes an action with
the highest Q-value for the task τi, which this decision
is based on the prior knowledge in the Q-table. In the
next step, the start time and completion time of task
τi on the allocated node are calculated according to
Eqs. (3)-(6). The immediate reward R is calculated
based on the completion time of task τi using Eq. (13)
and the system state transfers to new state s′. Finally,
the agent updates the Q-table values using Eq. (14).

Data: α: learning rate, γ discount factor, ε: a
small value, n, N

Result: A Q-table defining estimated optimal
policy π∗

Initialize Q(s,a)← 0
for each episode do

Generate task set T = {τ1, ..,τn}
Sort task set T based on the priority of the
tasks.

Initialize state space S and available
resource N

Assign tasks to the resources and update
Q-table using Algorithm 2

end
Algorithm 3: PTOQL algorithm.

We also propose the PTOQL algorithm, shown
in Algorithm 3, which sorts the tasks based on their
priorities and then assigns them to the available re-
sources. In this algorithm, a set of tasks T is gen-
erated. Then the tasks set T is sorted based on the
priority of tasks in descending order. In the next step,
the state space S is initialized by sorted tasks, and the
state of available resources N is initialized by reset-
ting the environment. Then, the tasks are assigned
to the available resources in the fog-cloud comput-
ing continuum and the Q-table is updated using Algo-
rithm 2. The idea behind this algorithm is to assign
tasks with higher priority to the available resources
before tasks with lower priority to reduce the waiting
time for high-priority tasks.

6 PERFORMANCE EVALUATION

For the simulation experiments performed in this
work, we implemented the proposed algorithm in
Python on a laptop with Intel Core i7 2.3 GHz, 32
GB RAM, and a Windows 10 operating system.

We consider a fog-cloud computing continuum
providing several heterogeneous fog-cloud nodes in
which the total number of nodes in the fog-cloud layer

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Learning rate ()

250

300

350

400

450

500

550

600

650

700

A
v

e
ra

g
e

 R
e

w
a

rd

Figure 2: The reward convergence analysis over changes in
α.

is varied from 30 to 90. The communication band-
width of the link from IoT devices to fog nodes is
assumed to be 1000 Mbps, while the communication
bandwidth between IoT devices and cloud nodes are
assumed to be 100 Mbps. To ensure the heterogeneity
of fog and cloud nodes, the CPU processing capac-
ity of each fog node is assumed to be uniformly dis-
tributed in [3000− 6000] MIPS, while the CPU pro-
cessing capacity of each cloud node is assumed to be
uniformly distributed in [7000−12000] MIPS (Fizza
et al., 2019). The number of tasks ranges from 100
to 500, and we consider two types of tasks, compute-
intensive (type 1) and data-intensive (type 2) tasks.
For data-intensive tasks, the computation size, i.e.
csi is assumed to be in the range of [100− 400] MI,
while for compute-intensive tasks, it is in the range of
[1000−4000] MI.

0 100 200 300 400 500 600 700 800 900 1000

Episode

-400

-200

0

200

400

600

800

1000

R
e

w
a

rd

Figure 3: The reward convergence analysis over episodes.

To choose an appropriate learning rate, i.e. α,
the convergence of the TOQL algorithm was analyzed
with different learning rates in the range [0.01−0.1],
as shown in Figure 2. According to this experiment,
the best learning rate is 0.01 with an average reward
of 664. Therefore, α = 0.01 was considered in the
experiments. Figure 3 shows the reward convergence
analysis of the TOQL algorithm. As can be observed,
the reward of the algorithm converges after 700 train-
ing episodes, and the reward fluctuation decreases sig-
nificantly after that.

Figure 4 shows the reward convergence analysis
of the TOQL algorithm over changes in the discount
factor, i.e., γ. As can be seen, the best results were

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

164

0 10 20 30 40 50 60 70 80 90 100

Iteration

-600

-400

-200

0

200

400

600

800

1000

A
v

e
ra

g
e

 r
e

w
a

rd

=.3

=.5

=.7

=.9

Figure 4: The reward convergence analysis over changes in
γ.

observed for γ = 0.9, as the reward for this value of γ

fluctuates less than other values, and converges after
50 iterations. In this experiment, the averages of 10
episodes are reported as an iteration.

In the experiments, a variable number of tasks and
available nodes was considered and formed into dif-
ferent groups: Group 1 (100 × 30), Group 2 (200×45),
Group 3 (300×60), Group 4 (400×75), and Group 5
(500×90), in the structure (n×m), where n and m are
the number of IoT tasks and available nodes in the
fog-cloud computing, respectively. The performance
of PTOQL and TOQL are compared to Detour (Misra
and Saha, 2019), the First Come First Serve (FCFS),
and the Earliest Deadline First (EDF) algorithms.

100 200 300 400 500

Number of tasks

0

20

40

60

80

100

D
e

a
d

li
n

e
 s

a
ti

s
fa

c
ti

o
n

 r
a

ti
o

 (
%

)

PTOQL

TOQL

Detour

FCFS

EDF

Figure 5: The deadline satisfaction ratio.

Detour makes optimal decisions on the local or re-
mote execution of tasks and then selects the optimal
fog nodes for task offloading. It also selects the opti-
mal path for offloading tasks. We ignore the optimal
path selection phase since this paper focuses on the
task scheduling process.

Figure 5 shows the percentage of deadlines met
for the PTOQL, TOQL, Detour, FCFS, and EDF al-
gorithms over changes in the number of tasks. As can
be seen, when the number of tasks increases, the per-
centage of tasks that meet their deadline decreases.
Since PTOQL and TOQL consider the workload of
the tasks, the data transmission overhead, and the
waiting time of the IoT tasks, overall, the deadline for
a higher percentage of tasks is met compared to other
algorithms. However, the performance of the PTOQL
algorithm is better than TOQL since it sorts the tasks

based on their priorities and then takes action for each
task. Furthermore, the performance gap between the
proposed PTOQL and TOQL algorithms and other al-
gorithms increases, indicating the superiority of their
performance as the system load increases.

100 150 200 250 300 350 400 450 500

Number of tasks

0

200

400

600

800

1000

1200

T
o

ta
l

v
io

la
ti

o
n

 t
im

e
 (

s
)

PTQL

TOQL

Detour

FCFS

EDF

Figure 6: Total violation time.

Figure 6 illustrates the total violation time of the
PTOQL, TOQL, Detour, FCFS, and EDF algorithms
over changes in the number of tasks. As can be seen,
when the number of tasks increases, the total viola-
tion time significantly increases for FCFS and EDF
algorithms. The PTOQL and TOQL algorithms try to
find nodes with minimum violation time by consider-
ing the communication time and waiting time of tasks
when tasks cannot meet their deadline. Therefore, as
the system load increases, their performance is sig-
nificantly better than other algorithms. Although the
TOQL algorithm performs better than the PTOQL al-
gorithm as the system load increases, the performance
gap between the PTOQL and TOQL algorithms is not
significant.

7 CONCLUSION

This paper formulated the problem of task offload-
ing in the edge-cloud computing continuum as a
non-linear mathematical programming model. This
model maximizes the number of IoT tasks that meet
their deadlines and minimizes the deadline violation
time for those tasks that cannot meet their deadline.
This paper also proposed two Q-learning algorithms,
called TOQL and PTOQL, to solve the formulated
problem. The proposed TOQL algorithm considers
the priority of tasks, the workload of tasks, and in-
put/output data transmission time to select appropri-
ate nodes from fog-cloud computing layers. Further-
more, it considers the waiting time of tasks as each
node can process tasks sequentially. The PTOQL
sorts the tasks based on their priorities and then as-
signs the tasks to available resources like the TOQL
algorithm. Experimental evaluation shows that the
proposed Q-learning algorithms significantly outper-

Task Offloading in Edge-Cloud Computing Using a Q-Learning Algorithm

165

form the baseline algorithms in terms of the percent-
age of tasks that meet their deadlines and in reducing
the violation time of tasks when completion time ex-
ceeds their deadlines. For future work, we are going
to implement the task offloading problem with a deep
Q-learning algorithm.

ACKNOWLEDGEMENTS

The work in this paper is supported by the Swedish
Governmental Agency for Innovation Systems (VIN-
NOVA) through the PROVIDENT and INTERCON-
NECT projects and KKS foundation through the
projects DPAC and FIESTA.

REFERENCES
Aazam, M., Zeadally, S., and Harras, K. A. (2018). Of-

floading in fog computing for iot: Review, enabling
technologies, and research opportunities. Future Gen-
eration Computer Systems, 87:278–289.

Abdi, S., Ashjaei, M., and Mubeen, S. (2022). Cognitive
and time predictable task scheduling in edge-cloud
federation. In 2022 IEEE 27th International Confer-
ence on Emerging Technologies and Factory Automa-
tion (ETFA), pages 1–4. IEEE.

Bouet, M. and Conan, V. (2018). Mobile edge computing
resources optimization: A geo-clustering approach.
IEEE Transactions on Network and Service Manage-
ment, 15(2):787–796.

Fizza, K., Auluck, N., and Azim, A. (2019). Improving
the schedulability of real-time tasks using fog com-
puting. IEEE Transactions on Services Computing,
15(1):372–385.

Hortelano, D., de Miguel, I., Barroso, R. J. D., Aguado,
J. C., Merayo, N., Ruiz, L., Asensio, A., Masip-
Bruin, X., Fernández, P., Lorenzo, R. M., et al.
(2023). A comprehensive survey on reinforcement-
learning-based computation offloading techniques in
edge computing systems. Journal of Network and
Computer Applications, 216:103669.

Islam, A., Debnath, A., Ghose, M., and Chakraborty, S.
(2021). A survey on task offloading in multi-access
edge computing. Journal of Systems Architecture,
118:102225.

Jararweh, Y., Issa, M. B., Daraghmeh, M., Al-Ayyoub, M.,
and Alsmirat, M. A. (2018). Energy efficient dynamic
resource management in cloud computing based on
logistic regression model and median absolute devi-
ation. Sustainable Computing: Informatics and Sys-
tems, 19:262–274.

Lou, J., Tang, Z., Jia, W., Zhao, W., and Li, J. (2023).
Startup-aware dependent task scheduling with band-
width constraints in edge computing. IEEE Transac-
tions on Mobile Computing.

Misra, S. and Saha, N. (2019). Detour: Dynamic task of-
floading in software-defined fog for iot applications.

IEEE Journal on Selected Areas in Communications,
37(5):1159–1166.

Mohammadi, S., PourKarimi, L., Droop, F., De Mec-
quenem, N., Leser, U., and Reinert, K. (2023). A
mathematical programming approach for resource al-
location of data analysis workflows on heterogeneous
clusters. The Journal of Supercomputing, pages 1–30.

Nan, Z., Wenjing, L., Zhu, L., Zhi, L., Yumin, L., and Na-
har, N. (2022). A new task scheduling scheme based
on genetic algorithm for edge computing. Computers,
Materials & Continua, 71(1).

Nguyen, B. M., Thi Thanh Binh, H., The Anh, T., and
Bao Son, D. (2019). Evolutionary algorithms to op-
timize task scheduling problem for the iot based bag-
of-tasks application in cloud–fog computing environ-
ment. Applied Sciences, 9(9):1730.

Razaq, M. M., Rahim, S., Tak, B., Peng, L., et al. (2022).
Fragmented task scheduling for load-balanced fog
computing based on q-learning. Wireless Communi-
cations and Mobile Computing, 2022.

Saeed, A., Chen, G., Ma, H., and Fu, Q. (2023). A memetic
genetic algorithm for optimal iot workflow schedul-
ing. In International Conference on the Applications
of Evolutionary Computation (Part of EvoStar), pages
556–572. Springer.

Smys, D. S. and Ranganathan, D. G. (2020). Perfor-
mance evaluation of game theory based efficient task
scheduling for edge computing. Journal of IoT in So-
cial, Mobile, Analytics, and Cloud, 2(1):50–61.

Sutton, R. S., Barto, A. G., et al. (1998). Introduction to
reinforcement learning, volume 135. MIT press Cam-
bridge.

Wang, X., Ma, L., Li, H., Yin, Z., Luan, T., and Cheng, N.
(2022). Digital twin-assisted efficient reinforcement
learning for edge task scheduling. In 2022 IEEE 95th
Vehicular Technology Conference:(VTC2022-Spring),
pages 1–5. IEEE.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine
learning, 8:279–292.

Wunder, M., Littman, M. L., and Babes, M. (2010). Classes
of multiagent q-learning dynamics with epsilon-
greedy exploration. In Proceedings of the 27th In-
ternational Conference on Machine Learning (ICML-
10), pages 1167–1174.

Xue, F., Hai, Q., Dong, T., Cui, Z., and Gong, Y. (2022). A
deep reinforcement learning based hybrid algorithm
for efficient resource scheduling in edge computing
environment. Information Sciences, 608:362–374.

You, C., Huang, K., Chae, H., and Kim, B.-H. (2016).
Energy-efficient resource allocation for mobile-edge
computation offloading. IEEE Transactions on Wire-
less Communications, 16(3):1397–1411.

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

166

