
Deep Convolutional Neural Network and Character Level Embedding
for DGA Detection

João Rafael Gregório1 a, Adriano Mauro Cansian1 b, Leandro Alves Neves1 c

and Denis Henrique Pinheiro Salvadeo2 d

1Department of Computer Science and Statistics (DCCE), São Paulo State University (UNESP),
São José do Rio Preto, São Paulo, Brazil

2Institute of Geociences and Exact Sciences (IGCE), São Paulo State University (UNESP), Rio Claro, Brazil

Keywords: Domain Generation Algorithms, DGA, Convolutional Neural Networks, Embedding, NLP, Short Text
Classification, Cybersecurity.

Abstract: Domain generation algorithms (DGA) are algorithms that generate domain names commonly used by botnets
and malware to maintain and obfuscate communication between a botclient and command and control (C2)
servers. In this work, a method is proposed to detect DGAs based on the classification of short texts, high-
lighting the use of character-level embedding in the neural network input to obtain meta-features related to
the morphology of domain names. A convolutional neural network structure has been used to extract new
meta-features from the vectors provided by the embedding layer. Furthermore, relu layers have been used to
zero out all non-positive values, and maxpooling layers to analyze specific parts of the obtained meta-features.
The tests have been carried out using the Majestic Million dataset for examples of legitimate domains and
the NetLab360 dataset for examples of DGA domains, composed of around 56 DGA families. The results
obtained have an average accuracy of 99.12% and a precision rate of 99.33%. This work contributes with a
natural language processing (NLP) approach to DGA detection, presents the impact of using character-level
embedding, relu and maxpooling on the results obtained, and a DGA detection model based on deep neural
networks, without feature engineering, with competitive metrics.

1 INTRODUCTION

Botnets are groups of computers or devices infected
by malware that can be controlled remotely through
a command and control (C2) server (Kambourakis
et al., 2019). Attackers use botnets to carry out var-
ious types of cyberattacks, such as distributed denial
of service (DDoS) attacks, directing members of their
botnet to attack a specific target or for the system-
atic leakage of information from corporate and gov-
ernment networks (Shahzad et al., 2021).

Domain generation algorithms (DGA) are existing
codes in most malware families that generate domain
names. The generated domains are used to maintain
communication between the infected machine and the
C2 servers (Wong, 2023; Huang et al., 2022). This
strategy allows the C2s to, for example, change their

a https://orcid.org/0000-0001-7783-2567
b https://orcid.org/0000-0003-4494-1454
c https://orcid.org/0000-0001-8580-7054
d https://orcid.org/0000-0001-8942-0033

IP addresses without affecting communication with
botnet member machines. Therefore, DGAs are used
to increase the communication resilience between C2
and botnet members and improve the obfuscation ca-
pacity of the C2 server (Kambourakis et al., 2019).

Attackers register large numbers of domains com-
patible with their generating algorithms on regis-
trants1 on the internet. This strategy allows that in
the event of a domain being listed due to abuse, an-
other domain name can be used. This large num-
ber of DGA domain names makes using blocklists a
problematic alternative, as a list of a few thousand do-
mains will likely be a performance drag on any fire-
wall system (Ren et al., 2020). Thus, identifying re-
quests for DGA domains on a computer network, or
even noticing them during the registration process,
can help mitigate botnet-related threats, prevent im-
pending attacks on corporate networks, and support

1Companies authorized to sell second-level domain
names directly to individuals or companies (Tanenbaum
et al., 2021).

Gregório, J., Cansian, A., Neves, L. and Salvadeo, D.
Deep Convolutional Neural Network and Character Level Embedding for DGA Detection.
DOI: 10.5220/0012605700003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 2, pages 167-174
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

167



proactive cybersecurity.
In this context, some works focused on detecting

DGAs have been developed using approaches based
on classic machine learning, with the manual devel-
opment of attributes, to map the characteristics that
characterize these domain names. For instance, the
proposal of (Piras et al., 2022) presents an explainable
approach based on attributes of data collected from
domain name system (DNS) servers and compares the
benchmarked results of some classical machine learn-
ing algorithms such as random forest, adaboost and
decision tree. That approach depends on data collec-
tion windows related to DGAs on DNS servers. The
work presents the comparison of results obtained with
windows of five and fourteen days, demonstrating that
the best results are obtained with the largest data cap-
ture window.

Approaches using deep neural networks (DNN)
and lexical features of DGAs are also found in recent
literature. B. Yu, J. Pan, J. Hu, A. Nascimento and
M. De Cock (Yu et al., 2018) discuss some models of
DNNs for the detection of DGAs comparing them to
results from models based on lexical features. The re-
searchers applied models of convolutional neural net-
works (CNN) and long-short term memory (LSTM)
trained with about 1.6 million samples (80% of the
dataset) and obtained results of about 98% accuracy.
Vranken, H.; Alizadeh, H. (Vranken and Alizadeh,
2022) propose the use of Term Frequence-Inverse
Document Frequency (TF-IDF) to evaluate the rele-
vance of 5000 n-grams of 1, 2, and 3 letters in the
composition of domain names. Their model based
on an LSTM network achieved around 97% accuracy.
The approach with manually developed characteris-
tics can be more complex as it requires more special-
ized work in addition to possibly failing to include
specific characteristics of DGA families that may not
be present in the used data set.

Other approaches use DNNs, directly exploring
domain names as data input, without manually pro-
ducing characteristics. Ren, F., Jiang, Z., Wang, X.
and Liu, J. (Ren et al., 2020) present a hybrid model
of a DNN, with CNN, bi-directional long-short term
memory (BiLSTM) layers and an attention mecha-
nism, also using 80% of the dataset for training and
20% for testing, about 1.3 million samples. The ob-
tained results have been of the order of 99% accu-
racy for the classification between DGA and legiti-
mate. The same work also presents a classification by
DGA family, using 24 families of DGA domains. H.
Shahzad, A. R. Sattar and J. Skandaraniyam (Shahzad
et al., 2021) propose removing the top-level domain
(TLD) during pre-processing, using “google” instead
of “google.com”. The proposed DNN model has been

based on three types of recurrent networks (LSTM,
Bi-LSTM, and GRU-Gated Recurrent Unit). The re-
sults have been about 87% accuracy with a training
dataset of about 1.8 million samples and 44 DGA
families. It is observed that recent works that address
the detection of DGAs with natural language process-
ing (NLP) techniques also use manually developed re-
sources at some point.

The works that propose directly using domain
names as input for their models are based on hybrid
structures, normally using CNN, Recurrent, LSTM,
BiLSTM networks, or attention mechanisms in the
same model. Yu Wang, Rui Pan, Zuchao Wang and
Lingqi Li (Wang et al., 2023) utilize the dataset pro-
vided by NetLab360 for DGA examples, which in-
cludes approximately 35 DGA families. They en-
code the input characters into values ranging from
0 to 38 to obtain the initial feature vector. A CNN
model concatenated with a BiLSTM network is pre-
sented to extract meta-features for the purpose of de-
tecting DGAs. The results reported in the study show
an accuracy of 94.51%, a recall of 95.05%, and a
precision of 93.11% for binary detection. Weiqing
Huang, Yangyang Zong, Zhixin Shi, Leiqi Wang and
Pengcheng Liu (Huang et al., 2022) uses pre-trained
word embedding models such as BERT (Devlin et al.,
2019) and ELMo (Peters et al., 2018) to generate the
initial feature vector from domain names. This ini-
tial vector is fed into a CNN and then to the classifier,
achieving an accuracy of 96.08% in its best result.

Thus, an approach based on NLP with character-
level embedding and CNN, exclusively using domain
names as input for the proposed model, to extract
the best meta-features for detecting DGAs has not
yet been completely covered in specialized literature.
Therefore, our method aims to contribute by verifying
the effectiveness of using character-level embedding
in detecting DGAs in datasets with heterogeneity of
DGA families.

In this scenario, this work presents an approach
based on a CNN, to extract features from the domain
names themselves, without the feature engineering
process. The proposal also used character-level em-
bedding at the proposed network’s input to find char-
acteristics related to the morphology of the analyzed
domain names. Furthermore, the proposed approach
uses relu layers to make the network sparse, returning
zero for any non-positive value, and maxpooling lay-
ers to highlight specific characteristics of the analyzed
classes. The main contributions of this paper are:

• Indicate the use of character-level embedding as
an effective strategy to improve DGA detection
results in DNN architectures.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

168



• Describe how the combined use of relu, maxpool-
ing and embedding layers can improve the results
and performance of CNNs in detecting DGAs.

• Present a DNN architecture with competitive re-
sults in detecting DGAs without feature engineer-
ing.

This paper is organized as follows. Section 2
presents the methodology used in data pre-processing,
the datasets used, tools, and the technologies that sup-
ported the development of this work, in addition to the
description of the proposed model. Section 3 presents
the results obtained in distinct tests, comparisons with
different combinations of the proposed model and an
overview of the obtained results in relation to the liter-
ature. Finally, in Section 4, conclusions and proposals
for future work are presented.

2 METHODOLOGY

This Section presents the methodology used for the
development of the proposed model, pre-processing
of datasets, and the technologies used. Section 2.1
presents the development environment and the tech-
nologies applied, the data sets, their pre-processing,
and division into sets for training and testing. Section
2.2 presents the proposed model, each of the layers
used along with their functions, hyperparameters, and
a summary to facilitate the reproduction of this exper-
iment. Section 2.3 presents the metrics used to eval-
uate the results obtained with training and testing the
proposed model.

2.1 Development Environment and
Datasets

The algorithms of this work have been executed us-
ing the Kaggle Notebook platform (Kaggle Team,
2023), a public and free platform, where it is possi-
ble to use a monthly Graphics Processing Unit (GPU)
processing quota, essential for processing large vol-
umes of data and training DNNs in less time. All
codes have been developed in the Python 3 pro-
gramming language, using the Tensorflow (Abadi
et al., 2015), Pandas (The Pandas Development Team,
2020), and Numpy (Harris et al., 2020) libraries.
The notebook containing the complete experiment
has been published, thus allowing the complete repro-
duction of this work. The source code is available
at https://www.kaggle.com/code/rafaelgregrio/deep-
convolutional-embedding-dga-detector.

Also, the Majestic Top Million(Majestic, 2023)
dataset containing 1 million domains has been used

as the legitimate domain data source. As a source
of DGA domain names, the dataset provided by Net-
Lab360(NetLab 360, 2022) has been used in this
investigation, containing about 1 million DGA do-
mains, distributed across 56 families, collected in real
traffic. Legitimate domain names have been labeled 0,
and the domain names from DGA families have been
labeled 1.

Domain names have been encoded character by
character to ASCII code. The maximum length
checked across the domain name samples has been
73 characters, so smaller domain names have been
padded with zeros from the end to the maximum
length. Table 1 shows examples of domain names al-
ready encoded to ASCII.

Table 1: Examples of domain names and each character en-
coded by ASCII.

domain label 1 2 . . .
gafsjfdues.com 1 103 97 . . .
yvhbrwh.info 1 121 118 . . .

nwqpswrwsn.us 1 110 119 . . .
awnspwrpnn.com 1 97 119 . . .
cghgfedguvol.net 1 99 103 . . .
mayermoney.com 0 109 97 . . .

sqlservercentral.com 0 115 113 . . .
lottomatica.it 0 108 111 . . .

In order to train the proposed model, 20% of the
total data have been proportionally selected. To test,
five samples, each one with 5% of the total data have
been selected randomly and proportionally.

2.2 Proposed Model

The model proposed in this work has been constructed
based on an approach rooted in a DNN, using domain
names converted, character by character, to their re-
spective ASCII codes as input data. This initial fea-
ture vector is then passed through an embedding layer
that converts each ASCII value into a vector of 20
features related to the context of the character in the
initial string. The output of the embedding layer is
connected to a CNN, which aims to extract relevant
features from the domain names based on the vectors
received from the upper embedding layer. In addition,
the relu layers have been applied to sparsify the net-
work, returning zero for any non-positive values, and
maxpooling layers to highlight specific features of the
analyzed classes.

Deep Convolutional Neural Network and Character Level Embedding for DGA Detection

169



2.2.1 Embedding Layer

Embedding layers are widely used in NLP, where
each word is represented by an array of floating point
values (Goodfellow et al., 2016; Zhang et al., 2023).
Embedding layers are trainable. Therefore, the rep-
resentation of each word can be learned by the net-
work. In this work, embedding at the character level
has been used. Therefore, each character of a domain
name, after being transposed into its ASCII code, is
taken to the embedding layer, where it is represented
by a vector of 20 values. This feature vector con-
structed by the embedding layer is then passed to the
CNN part of the proposed model.

2.2.2 Deep Convolutional Neural Network

Convolutional neural networks are capable of finding
specific features in images, requiring minimal pre-
processing (Goodfellow et al., 2016; Zhang et al.,
2023). In this work, the CNN part of the proposed
model is designed to extract relevant features for the
analyzed classes, legitimate and DGAs, from the fea-
ture vector generated by the embedding layer posi-
tioned at the model’s input data. Our model has six
convolutional layers of distinct dimensions, forming
a deep CNN.The dimensions of each of the convo-
lutional layers and also the other layers used in the
proposed model are better illustrated in Figure 1.

2.2.3 ReLU and MaxPooling Layers

Positioned within the convolutional layers are relu
and maxpooling layers, contributing to maximizing
the model’s intrinsic ability to discern and iden-
tify pertinent attributes associated with each distinct
class (Bahera H. Nayef, 2023). Rectified linear unit
(ReLU) is an activation function that, in practice,
turns every negative input into zero (Zhang et al.,
2023), as described by equation 1. This feature is de-
sirable for two reasons, firstly neurons in the network
that receive zero values will not be activated, making
the network sparse. Secondly, the positive values that
will be treated by the network tend to be more repre-
sentative. Thus, the relu layer ends up working as a
high-contrast, highlighting important areas.

ReLU(x) = (x)+ = max(0,x) (1)

MaxPooling layers downsample the feature map
extracted by the convolutional layers (Zhang et al.,
2023). In the model proposed in this work, max-
pooling layers are used so that the feature maps high-
lighted by the relu layer can be condensed in the max-
pooling layer. This integration of layers and architec-
tural elements is intended to enhance the model’s ca-

pacity to extract and process information efficiently,
thereby facilitating its performance in the identifica-
tion of significant features relevant to the classifica-
tion of diverse classes.

2.2.4 Flatten and Dense Layers

The flatten layer has been used after the convolutional
part of the proposed model to reshape the format of
the feature vector produced by the upper layers, mak-
ing it compatible with the fully connected dense lay-
ers positioned at the end of the model. Finally, two
fully connected layers, with 15 and 1 neuron respec-
tively, act as classifiers using the feature vector re-
ceived from the flatten layer. Figure 1 shows the sum-
mary of the model, its layers, and its dimensions.

Figure 1: An illustrative overview of the proposed model.

2.2.5 Hyperparameters and the Experiment
Execution

Another important aspect of the proposed model is
the hyperparameters. In deep learning models, hyper-
parameters are parameters that are not learned during
the model training but need to be defined before the
start of this process (Koutsoukas et al., 2017; Dalli,
2022). They are set externally to the model and play
a crucial role in the architecture and training of the
neural network. Unlike model parameters such as
weights and biases, which are adjusted automatically

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

170



by the optimization algorithm during training, hyper-
parameters are predetermined and directly impact the
performance and behavior of the model. Thus, the
hyperparameters used to compile the proposed model
are shown in Table 2.

Table 2: Hyperparameters used to compile the proposed
model.

Hyperparameter Value
L1 Regularizer 1e-5
L2 Regularizer 1e-4

Optimizer Adam
Activation Function ReLU

Learning Rate 1e-4
Batch Size 500

The L1 and L2 regularizers have been used to
apply penalties to the layer parameters, being added
to the loss function to avoid overfitting (Salehin and
Kang, 2023). The low values adopted, 1e-5 and 1e-
4 respectively, are low enough not to have a sudden
impact on the training process. Adam optimizer has
been selected because it is a computationally efficient
stochastic gradient descent method for problems with
a large number of parameters and data (Kingma and
Ba, 2017). ReLU activation function has been chosen
to increase the sparsity of the network due to its char-
acteristic of turning every negative value received into
zero (Zhang et al., 2023) and the network’s learning
rate has been set to a low value, 1e-4, to seek a slower
evolution of parameter updates and thus seek the best
global minimum loss.

The experiment has been conducted in three
stages. The first involved data pre-processing, where
domain names have been converted, character by
character, to their respective ASCII codes, up to a
limit of 73 characters—the maximum length observed
in the examples used. Domain names shorter than 73
characters have been padded with zeros from the end.
In a second phase, a subset of 20%, approximately
400 thousand examples, has been selected from the
complete dataset for training the proposed model. In
addition, five separate samples of 5% each have been
set aside for conducting tests with the trained model.
These datasets have been used to train and test, in ad-
dition to the main model, two other models with dif-
ferent layers combinations to assess the impact of us-
ing embedding, relu and maxpooling on the obtained
results. The results are presented in Section 3. Fi-
nally, the model has been trained for 20 epochs and
the best accuracy has been selected using the callback
function. Then the prediction of the five test samples
has been performed. For each test, an evaluation has
been made based on the metrics presented in Subsec-

tion 2.3. The complete process diagram is detailed in
Figure 2.

Figure 2: Experiment process diagram with data pre-
processing, data sampling, training and testing steps.

2.3 Metrics and Evaluations

The model has been evaluated using the most com-
monly accepted metrics currently: Precision (equa-
tion 2), Recall (equation 3), Accuracy (equation 4),
False Positive Rate (FPR) (equation 5). These met-
rics are obtained as follows:

Precision(Prec.) =
T P

FP+T P
(2)

Recall(Rec.) =
T P

FN +T P
(3)

Accuracy(Acc.) =
T N +T P

T N +T P+FN +FP
(4)

FalsePositiveRate(FPR) =
FP

T N +FP
(5)

Where:

• True Positive (TP): DGA domain names classified
as DGA;

• True Negative (TN): Legitimate domain names
classified as Legitimate;

• False Positive (FP): Legitimate domain names
classified as DGA;

• False Negative (FN): DGA domain names classi-
fied as Legitimate;

Deep Convolutional Neural Network and Character Level Embedding for DGA Detection

171



3 RESULTS

This section presents the results obtained in the de-
veloped experiments. In order to evaluate the perfor-
mance of the proposed model, called Model 1, and the
effectiveness of combining the embedding, relu and
maxpooling layers with the deep CNN for detecting
DGAs, two other models have been trained and tested
using the same datasets.

Model 2 has the same CNN and embedding net-
work structure but without the relu and maxpooling
layers. Model 3 has the same CNN structure with
relu and maxpooling layers but without the embed-
ding layer in the data input. The structures of the
evaluated models are presented in Table 3.

Table 3: Tested models and their respective base architec-
tures.

Model Architecture
Model 1 CNN+Embedding+ReLU+MaxPooling
Model 2 CNN+Embedding
Model 3 CNN+ReLU+MaxPooling

The average (Avg.), median (Med.) and standard
deviation (Stdev.) of the metrics results obtained for
the positive class in the five test samples for each
of the three models have been calculated to compare
the results. Table 4 presents the results obtained by
Model 1.

Table 4: Results of the metrics obtained by Model 1 on each
of the five test data sets, their average, median, and standard
deviation.

Prec. Rec. Acc. FPR
Test 1 99.32% 98.92% 99.11% 0.69%
Test 2 99.36% 98.98% 99.16% 0.65%
Test 3 99.33% 98.95% 9913% 0.68%
Test 4 99.33% 98.94% 99.13% 0.68%
Test 5 99.31% 98.86% 99.08% 0.70%
Avg. 99.33% 98.93% 99.12% 0.68%
Med. 99.33% 98.94% 99.13% 0.68%
Stdev. 0.02% 0.04% 0.03% 0.02%

It is possible to verify that Model 1, complete
with the embedding layer in the data input, relu and
maxpooling layers, obtained satisfactory results in the
tests carried out with the dataset used. It is noted that
the FPR remained below 1% in all test sets and the
average accuracy of 99.33% reinforces this assess-
ment. The average recall of 98.93% demonstrates that
the model has been indeed successful in capturing the
majority of the DGA examples presented. The aver-
age accuracy of 99.12% again demonstrates the bal-
ance of the proposed model depending on both classes
examined.

Table 5 presents the results obtained by Model 2.

Table 5: Results of the metrics obtained by Model 2 on each
of the five test data sets, their average, median, and standard
deviation.

Prec. Rec. Acc. FPR
Test 1 98.32% 97.69% 97.99% 1.70%
Test 2 98.28% 97.86% 98,06% 1,74%
Test 3 98.38% 97.75% 98.05% 1.64%
Test 4 98.37% 97.83% 98.09% 1.65%
Test 5 98.37% 97.69% 98.02% 1.65%
Avg. 98.34% 97.76% 98.04% 1.68%
Med. 98.37% 97.75% 98.05% 1.65%
Stdev. 0.04% 0.08% 0.04% 0.04%

Based on the results obtained by Model 2, a model
without the relu and maxpooling layers, it is noticed
that in all metrics the results have been slightly below
those obtained by Model 1, around 1% lower. The
FPR more than doubled, from 0.68% in Model 1 to
1.68% in Model 2. These results demonstrate the im-
portance of the relu and maxpooling layers for detect-
ing DGAs by the proposed model.

Table 6 presents the results obtained by Model 3.

Table 6: Results of the metrics obtained by Model 3 on each
of the five test data sets, their average, median, and standard
deviation.

Prec. Rec. Acc. FPR
Test 1 95.97% 91.42% 93.74% 3.91%
Test 2 95.93% 91.39% 93.70% 3.94%
Test 3 95.95% 91.33% 93.69% 3.92%
Test 4 95.90% 91.25% 93.62% 3.97%
Test 5 95.79% 91.24% 93.56% 4.08%
Avg. 95.91% 91.33% 93.66% 3.96%
Med. 95.93% 91.33% 93.69% 3.94%
Stdev. 0.07% 0.08% 0.07% 0.07%

The results obtained by Model 3, a model with-
out the embedding layer in the data input, have been
even worse than those of Model 2 in relation to Model
1. All metrics have been around 4% below the met-
rics obtained by Model 1 and the FPR increased about
sixfold, from 0.68% in Model 1 to 3.96% in Model 3.
These results confirm the importance of using the em-
bedding layer in the data input of the proposed model.
Table 7 compares the average of the metrics obtained
by the three models.

Table 7: Comparison of the average metrics values obtained
by the three tested models.

Model Prec. Rec. Acc. FPR
Model 1 99.33% 98.93% 99.12% 0.68%
Model 2 98.34% 97.76% 98.04% 1.68%
Model 3 95.91% 91.33% 93.66% 3.96%

Observing the average results of the metrics pre-
sented in Table 7, it can be verified that Model 1 pro-

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

172



posed with the combination of the different layers em-
bedding, relu, and maxpooling provided the best re-
sults. It can also be verified that removing the embed-
ding layer (Model 3) resulted in a greater impact on
metrics than removing the relu and maxpooling lay-
ers (Model 2). Therefore, it is possible to state, based
on these results, that the use of character-level embed-
ding has been fundamental for achieving the best met-
rics. However, the relu and maxpooling layers also
contribute to the better result obtained by Model 1,
which is the model proposed in this work.

3.1 A Comprehensive Overview of the
Proposed Model in Relation to the
Literature

In specialized literature, distinct approaches have
been proposed for detecting DGAs, exploring dif-
ferent datasets. The models have been developed
based on diverse combinations, using both classical
machine learning (ML) and deep learning (DL) tech-
niques. Features have been extracted either manually
or through meta-features obtained by neural network
models. A comprehensive overview is crucial to high-
light the quality of this study, which adopts a natural
language processing approach using character-level
embedding and CNN. This overview is presented in
Table 8.

Table 8: Overview of the results of some recent works, with
different approaches for detecting DGAs.

Work Architecture Acc.

Proposed Model 1
Embedding +

CNN + ReLU +
MaxPooling

99.13%

Ren
et al., 2020

CNN + BiLSTM +
Attention 98.82%

Huang
et al., 2022

Pré-trained Embeddings +
CNN +

MaxPooling
96.08%

Wang
et al., 2023 CNN + BiLSTM 94.51%

Vranken and
Alizadeh, 2022 TF-IDF + LSTM 90.69%

Shahzad
et al., 2021

LSTM +
BiLSTM + GRU 87.00%

Analyzing the data presented in the overview, it is
observed that the results obtained by this study align
with works found in specialized literature, consider-
ing the variety of existing approaches. In this compre-
hensive overview, Model 1 exhibited higher accuracy
than the other approaches. However, this naturally
does not imply that our model is superior, given the
differences in techniques and datasets. Nevertheless,
the approach has demonstrated effectiveness and ro-

bust metrics with the dataset used. Finally, it is worth
noting that the majority of works focused on DGA
detection show results close to the ideal, with metrics
above 90%. Therefore, the contribution of this work
lies in presenting an approach and demonstrating the
effectiveness of using character-level embedding for
the DGA detection problem.

4 CONCLUSION AND FUTURE
WORKS

This work presented a brief overview of DGA, how
they represent important cyber threats today, and
presents some recent works, their results for detect-
ing DGAs, as well as their approaches.

The proposed model proved to be robust, with re-
sults aligned with the results of the most current stud-
ies in the same direction. From the tests carried out
with changes to the main Model 1, it has been pos-
sible to verify the impact of the combined use of the
relu and maxpooling layers for the CNN model in de-
tecting DGAs. It has been observed from the results
obtained that the inclusion of the embedding layer
contributed significantly to improving the results ob-
tained.

Checked that the impact of using the relu and
maxpooling layers has been smaller in the results
obtained than using the embedding layer at the
character-level in the data input. While the model
without the relu and maxpooling layers obtained met-
rics around 1% lower than the full model in the tests,
the model without embedding obtained results around
4% lower. Thus, the complete model (Model 1), with
all layers, has been more efficient in detecting DGAs
during the experiment.

It is noteworthy that for the FPR metric, Model 1
achieved superior performance, with an FPR of less
than half compared to Model 2 and almost six times
lower than Model 3. In high DNS query volume en-
vironments, FPR can significantly impact the perfor-
mance and usability of predictive models.

In future works, it is suggested an approach based
on Transformers, a recent technique that has sur-
passed in some cases the results of CNNs. Studies
focusing on specific DGA families may help to bet-
ter understand this threat type, perhaps using mod-
els based on NLP approaches. It is also suggested an
unsupervised or semi-supervised approach to detect
DGA domains, including some integration with DNS
traffic collection mechanisms in local networks, thus
being able to work as a powerful cybersecurity tool.

Deep Convolutional Neural Network and Character Level Embedding for DGA Detection

173



ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior - Brasil (CAPES), the National Council for
Scientific and Technological Development CNPq
(Grant #313643/2021-0) and Núcleo de Informação
e Coordenação do Ponto BR - NIC.br.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Mané, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-
houcke, V., Vasudevan, V., Viégas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software avail-
able from tensorflow.org.

Bahera H. Nayef, Siti Norul Huda Sheikh Abdullah, R. S.
A. M. S. (2023). Text extraction with optimal bi-lstm.
Computers, Materials & Continua, 76(3):3549–3567.

Dalli, A. (2022). Impact of hyperparameters on deep learn-
ing model for customer churn prediction in telecom-
munication sector. Mathematical Problems in Engi-
neering, 2022:4720539.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Burstein,
J., Doran, C., and Solorio, T., editors, Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.
org.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor,
J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Rı́o, J. F., Wiebe, M., Peterson, P., Gérard-Marchant,
P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E. (2020). Array pro-
gramming with NumPy. Nature, 585(7825):357–362.

Huang, W., Zong, Y., Shi, Z., Wang, L., and Liu, P. (2022).
Pepc: A deep parallel convolutional neural network
model with pre-trained embeddings for dga detection.
In 2022 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8.

Kaggle Team (2023). Kaggle. https://www.kaggle.com/.
Kambourakis, G., Anagnostopoulos, M., Meng, W., and

Zhou, P. (2019). Botnets: Architectures, Countermea-

sures, and Challenges. CRC Press, Boca Raton, 1 edi-
tion.

Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.

Koutsoukas, A., Monaghan, K. J., Li, X., and Huan, J.
(2017). Deep-learning: investigating deep neural net-
works hyper-parameters and comparison of perfor-
mance to shallow methods for modeling bioactivity
data. Journal of Cheminformatics, 9(1):42.

Majestic (2023). Majestic Million. https://pt.majestic.com/
reports/majestic-million.

NetLab 360 (2022). NetLab360. https://data.netlab.360.
com/.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep contex-
tualized word representations.

Piras, G., Pintor, M., Demetrio, L., and Biggio, B. (2022).
Explaining machine learning dga detectors from dns
traffic data.

Ren, F., Jiang, Z., Wang, X., and Liu, J. (2020). A dga
domain names detection modeling method based on
integrating an attention mechanism and deep neural
network. Cybersecurity, 3:4.

Salehin, I. and Kang, D.-K. (2023). A review on dropout
regularization approaches for deep neural networks
within the scholarly domain. Electronics, 12(14).

Shahzad, H., Sattar, A., and Skandaraniyam, J. (2021). Dga
domain detection using deep learning. pages 139–143.

Silveira, M. R., Marcos da Silva, L., Cansian, A. M., and
Kobayashi, H. K. (2021). Detection of newly reg-
istered malicious domains through passive dns. In
2021 IEEE International Conference on Big Data (Big
Data), pages 3360–3369.

Tanenbaum, A. S., Feamster, N., and Wetherall, D. (2021).
Redes de Computadores. Pearson Education do Brasil,
Porto Alegre, 6 edition.

The Pandas Development Team (2020). pandas-dev/pandas:
Pandas.

Vranken, H. and Alizadeh, H. (2022). Detection of dga-
generated domain names with tf-idf. Electronics,
11(3).

Wang, Y., Pan, R., Wang, Z., and Li, L. (2023). A classi-
fication method based on cnn-bilstm for difficult de-
tecting dga domain name. In 2023 IEEE 13th Inter-
national Conference on Electronics Information and
Emergency Communication (ICEIEC), pages 17–21.

Wong, A. D. (2023). Detecting domain-generation al-
gorithm (dga) based fully-qualified domain names
(fqdns) with shannon entropy.

Yu, B., Pan, J., Hu, J., Nascimento, A., and De Cock, M.
(2018). Character level based detection of dga do-
main names. In 2018 International Joint Conference
on Neural Networks (IJCNN), pages 1–8.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2023).
Dive into Deep Learning. Cambridge University
Press. https://D2L.ai.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

174


