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Abstract: Several popular cloud NoSQL data stores, such as MongoDB and Firestore, organize data as document col-
lections. However, they provide few resources for querying complex data by similarity. The comparison
conditions provided to express queries over documents are based only on identity, containment, or order re-
lationships. Thus, reading through an entire collection is often the only way to execute a similarity query.
This can be both computationally and financially expensive, because data storage licenses charge for the num-
ber of document reads and writes. This paper presents Similarity-Slim, an innovative extension for NoSQL
databases, designed to reduce the financial and computational costs associated with similarity queries. The
extension was evaluated on the Firestore repository as a case study, considering three application scenarios:
geospatial, image recommendation and medical support systems. Experiments have shown that it can reduce
costs by up to 2,800 times and speed up queries by up to 85 times.

1 INTRODUCTION

Several popular cloud NoSQL data stores, such as
MongoDB (MongoDB, 2023) and Firestore (Kesavan
et al., 2023; Google, 2023a), organize data as docu-
ment collections. The query costs are associated with
the number of read and write operations performed
on the documents: for example, reading 100,000 doc-
uments in Firestore costs US$ 0.06, as shown in Table
1.

Table 1: Firestore costs to handle documents in
USA(Google, 2023h).

Operation over 100,000 documents cost
Read US$ 0.06
Write US$ 0.18
Delete US$ 0.02

Although NoSQL stores provide powerful re-
sources to retrieve data based on relationships of iden-
tity, order, containment, and even some support for
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spatially located queries (Koutroumanis and Doulk-
eridis, 2021), include indexing structures to acceler-
ate them (Qader et al., 2018), few resources, if any,
are provided to query by similarity complex data such
as images, geolocated objects, and texts.

Often, reading the entire collection of documents
is the only way to perform similarity queries. Consid-
ering that the licenses charge for the number of doc-
ument operations, this can turn to be expensive. To
the best of the authors’ knowledge, there is no work
in the literature focused on optimizing the amount
of document reads/writes and the associated financial
cost to perform similarity queries in NoSQL docu-
ment stores.

This work aims at creating an extension for
NoSQL data stores, called Similarity-Slim, which re-
duces the amount of reads when performing similar-
ity queries on large document collections. As a case
study, we also perform experiments to evaluate the ex-
tension using the Firestore data store. The similarity
comparisons are evaluated using a distance function
defined by the application. The search algorithm re-
trieves exact answers, meaning that when the k near-
est neighbors are requested, the response is the cor-
rect, not an approximate answer.

The experiments were conducted on three real-
world datasets: Geonames (Unxos GmbH, 2023),
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DeepLesion (Yan et al., 2018; Yan et al., 2019) and
FeatSet+ (Cazzolato et al., 2022). They contain data
from a variety of complex domains (geospatial points,
sets, and images) of varying cardinalities and dimen-
sionalities. The performance of the queries using our
solution was compared with equivalent queries exe-
cuted by a sequential scan (i.e., reading the entire col-
lection). Briefly, the main contributions of this work
are as follows:

• The new Similarity-Slim extension, which is em-
ployed to optimize the time and reduce the cost
of similarity queries in cloud-based NoSQL doc-
ument stores.

• The analysis of a variety of case studies to validate
the extension in geospatial application, image rec-
ommendation, and medical support systems.

• Analysis of a case study that validates the use of
the extension on Google Firestore.

The remainder of the paper is structured as fol-
lows: Section 2 presents concepts required to un-
derstand this work; Section 3 describes the proposed
extension; Section 4 illustrates the experiments, and
Section 5 presents our conclusions and future work.

2 BACKGROUND AND RELATED
WORK

This section shows the basic concepts required to un-
derstand this paper. Section 2.1 presents the definition
of similarity queries, Section 2.2 illustrates the con-
cepts that allow optimizing them, Section 2.3 presents
a brief introduction to the Firestore infrastructure, and
Section 2.4 reviews relevant related works.

2.1 Similarity Queries

Similarity queries perform comparisons based on the
similarity between pairs of elements, which can be
evaluated, for example, by a distance function d
that measures the similarity as a real number that is
smaller for more similar pairs. In this work, we call
”complex” the data that, to be compared, requires the
definition of how to measure similarity – in fact, at
least one distance function, as there are usually sev-
eral ways to assert similarity even among the same
objects.

Many distance functions are defined in the litera-
ture (Deza et al., 2009; Wilson and Martinez, 1997),
for different data domains, such as: the Manhattan
distance to evaluate similarity among dimensional ar-
rays (such as the features extracted from images)

(Zhang and Lu, 2003); the Jaccard distance for sets
(e.g. sets of keywords) (Niwattanakul et al., 2013)
and the Orthodromic distance for geospatial points
(Cong and Jensen, 2016). Figure 1 visually shows
those distance functions applied to two complex ele-
ments A and B.

Figure 1: Some common distance functions.

A similarity query is defined by specifying a query
center sq, a similarity comparison operator (Barioni
et al., 2011) and a threshold. There are two basic op-
erators: the Similarity Range (Rg), whose threshold
is a similarity radius ξ; and the k-Nearest Neighbors
(kNN), whose threshold is the amount of elements k.
A Range Query retrieves the elements whose similar-
ity to sq does not exceed ξ. A k-Nearest Neighbors
query retrieves the k elements nearest to sq.

Figure 2: Similarity queries in a geospatial application.

Figure 3: Similarity query in an image recommendation
system.

Figures 2 and 3 exemplify similarity queries in a
geospatial application and in an image recommenda-
tion system, respectively. Figure 2 shows a subset of
the Geonames dataset (Unxos GmbH, 2023) queried
by a range (left) and a kNN query (right) using the
Orthodromic distance to measure similarity between
geolocated points. In Figure 3, the similarity between
images of dogs (Cazzolato et al., 2022) is measured
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using the Manhattan distance to execute a kNN query
with k = 4.

2.2 Metric Access Methods

A distance function d over a data domain M is called
a metric when it satisfies the following properties for
any elements a,b,c ∈M .

• Non-negativity: d(a,b)≥ 0.

• Identity of Indiscernibles: d(a,b) = 0 iff a and b
are the same element.

• Symmetry: d(a,b) = d(b,a).

• Triangular inequality: d(a,b)≤ d(a,c)+d(c,b).

When these conditions are met, M is said to be
a metric space under d. Those properties are useful
to create indexing structures, called Metric Access
Methods (MAM), which can greatly speed up sim-
ilarity queries. There are many MAMs described in
the literature (Shimomura et al., 2021; Chen et al.,
2022), such as the M-Tree (Ciaccia et al., 1997) and
the Slim-Tree (Traina-Jr et al., 2000). They store
data in fixed-size memory pages (or store a maximum
number c of elements per page) in a hierarchical struc-
ture, partition the metric space into metric balls, and
support dynamic updates. The Slim-Tree is an evolu-
tion of the M-Tree, which seeks to reduce the overlap
of the subspaces covered by nodes in the same hierar-
chical level (Traina-Jr et al., 2000).

Similarity queries are executed on a Slim-Tree us-
ing the following algorithms:

• Range queries are executed with a branch-and-
bound algorithm. It descends from the root to the
leaves using the threshold ξ and the triangular in-
equality property to evaluate whether each subtree
can be pruned by ensuring that its covered sub-
space does not overlap the query ball.

• The kNN query is performed by the best-first al-
gorithm (Roussopoulos et al., 1995): the nodes
are visited following a single priority queue that
searches in the sub-trees for the elements closest
to the query center sq. A dynamic threshold ξ as-
sumes the distance value from sq to the kth ele-
ment already found. The threshold makes it possi-
ble to prune sub-trees using the triangular inequal-
ity.

2.3 Firestore Infrastructure

Firestore is a NoSQL document store made available
by Google for mobile and web application develop-
ment (Google, 2023a). It stores data as key/value
pairs within documents, organizing documents into

collections. Firestore does not impose a schema on
the documents, making them highly customizable.
It supports a wide range of data types, including
boolean, bytes, date and time, floating-point numbers,
geographical points, integers, arrays, maps, null val-
ues, and text strings. Each document in a collection
is assigned a unique ID, and each document can store
up to 1 megabyte of data.

An application can either retrieve all documents in
a Firestore collection or selectively fetch only those
that meet specific criteria. In the latter approach, the
queries must include conditions based on the key-
value pairs within the documents. It’s worth noting
that Firestore queries utilize indexes that are automat-
ically generated for all keys when a new document is
added.

Cloud Functions (Google, 2023b) are employed
to deploy backend code that manipulates data and re-
sponds with the corresponding updates in Firestore.
This also includes either reading and processing each
new document added to a collection or reading the
entire collection. It is also possible to combine the
resources of Cloud Functions and Firestore to cre-
ate extensions to publish and use new features in the
data store (Google, 2023f). Usually, these extensions
are used to connect third-party resources to the data
store: for example, they can provide full-text search
(Google, 2023d), semantic search (Google, 2023e),
and approximate matches in vector similarity search
(Google, 2023c).

Reading/writing documents in Firestore incurs
costs, as shown in Table 1 and detailed in the Fire-
store pricing documentation (Google, 2023h).

2.4 Optimizing Similarity Queries on
Data Stores

In the literature, the main focus on optimizing similar-
ity queries in data stores aims at reducing query time.
Works like MSQL (Lu et al., 2017), SIREN (Barioni
et al., 2006), and RAFIKI (Nesso et al., 2018) use in-
dexing structures to speed up similarity queries in a
Database Management System (DBMS). For exam-
ple, MSQL organizes the complex data using a B+-
Tree and the others using a Slim-Tree.

In the NoSQL domain, there is a great focus on
how to perform similarity queries over big data. For
example SigTrac (Damaiyanti et al., 2017) targets
similarity queries over road traffic data using Mon-
goDB, (Kim et al., 2018) and (Kim et al., 2020) stud-
ies how to support the whole lifecycle of a similarity
query in Apache AsterixDB (The Apache Software
foundation, 2023). TrajMesa (Li et al., 2020) focuses
on queries over trajectory data domains, and (Karras
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Table 2: Main differences between Similarity-Slim and related works.

Method NoSQL document
collection domain

Applied over any metric
domain data

Exact Range and
kNN queries

Focused on billing
reduction

MSQL (Lu et al., 2017) No Yes No No
SIREN (Barioni et al., 2006)
RAFIKI (Nesso et al., 2018) No Yes Yes No

SigTrac (Damaiyanti et al., 2017) Yes No No No
(Kim et al., 2018)
(Kim et al., 2020) No No No No

TrajMesa (Li et al., 2020) No No Yes No
(Karras et al., 2022) No No Yes No

Similarity-Slim Yes Yes Yes Yes

et al., 2022) works with similarity queries in spatial
data. Developing resources to help execute similar-
ity queries over spatial data in NoSQL stores are pre-
sented and described in (Gonçalves et al., 2021) and
(Coşkun et al., 2019).

Table 2 summarizes the main differences between
the related works above and our solution based on
four criteria: whether it is used in document collection
NoSQL store; applied over any generic metric domain
data; exact similarity queries; and focus on billing re-
duction. To the best of the authors’ knowledge, un-
til now, there is no work focused on optimizing the
billing of similarity queries in cloud document stores.
This work aims at closing this gap, presenting the
Similarity-Slim Extension, which transfers a battle-
tested technology to a new problem domain: transfer
a MAM initially developed for relational databases to
a cloud-based NoSQL document store, aiming at re-
ducing the financial query cost of similarity queries.

3 THE PROPOSED EXTENSION

In this paper, we introduce an innovative extension,
called the Similarity-Slim, designed to significantly
reduce the financial costs associated with executing
similarity queries over a data collection TS stored
in a NoSQL Store, such as the Google Cloud Fire-
store. We assume that the queries involve compar-
isons based on a complex attribute S, which is a com-
ponent of every individual document Doci ∈ TS.

The size limit of a document in Firestore is sig-
nificantly larger than the size required to store each
document Doci. Thus, the basic idea for reducing the
number of read operations is to concatenate multiple
Doci into a single concatenated Firestore document
Docc. However, for this to be effective, the docu-
ments stored together must be ones that will also need
to be read together during the queries - a random con-
catenation will require reading many scattered Docc
documents, making the process even worse.

The central idea of our extension is to integrate a

Figure 4: Concatenating c = 3 document’s complex at-
tributes from collection TS in another document on collec-
tion TP.

MAM into the NoSQL store and to use its structure
to identify the objects to be stored together, consoli-
dating the complex attributes S from multiple individ-
ual documents Doci into a single composite document
Docc: we define c as the maximum number of com-
plex attribute values that are consolidated together in
the same document Docc. Provided the concatenated
values of the complex attributes from the Docc doc-
uments are meaningful to answer a query, multiple
read operations on the data collection TS can be trans-
formed into fewer read operations on a new collection
TP that store the documents Docc.

Figure 4 shows an example of the main idea of
this extension: instead of reading all three docu-
ments from collection TS, it is necessary only one
read on collection TP to obtain all complex attributes
S = t[S](Doci), i ∈ [1,3].

Our extension uses the Slim-tree (Traina-Jr et al.,
2000) MAM to select the documents that have the
complex attributes that are worth storing together.
The main reasons to choose it are:

• When deployed within an RDBMS, a Slim-tree
answers similarity queries requiring significantly
fewer accesses to external memory, often being
the best option regarding this property (Traina-Jr
et al., 2000). So, aiming at the objective of this
work, the Slim-Tree can reduce the number of ac-
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Figure 5: Similarity-Slim framework applied over a collection TS.

cesses (reads) to documents in the NoSQL data
stores domain competitively with or better than
the other compared MAMs.

• Its structure uses two types of nodes (index and
leaf nodes) well-tailored for storage in a doc-
ument store. Correspondingly, each document
Docc stored in TP will always be either an index
Docci or a leaf Doccl document.

• It allows customizing the maximum number c of
documents that are worth storing together in a
node.
(Notice that the effective number of elements in
each node can be smaller than c).
Every original document identifier Idsc and S

value from document Doci ∈ TS is stored in a leaf
document in TP, whereas the index documents store
only copies of S values existing in a few documents
from TS: just those required to create the structure.

In short, the extension is responsible for concate-
nating and indexing the documents from the collec-
tion TS in another collection TP using the complex
values S from each Doci ∈ TS. Therefore, instead of
performing the similarity query reading every docu-
ment in collection TS, it is performed first navigating
in TP and only reading the Doci documents required
to be in the answer. Figure 5 shows a sketch of how
Similarity-Slim works in four steps.

• Step 1: Shows the input collection TS using a
dataset with 17 documents Doci, i ∈ [1,17]. The
value of the complex attribute t[S] in each doc-
ument is shown as si = t[S](Doci) in a two-
dimensional representation.

• Step 2: Consist of the module responsible by in-
dexing, concatenating the complex attributes t[S],
and generating the documents from collection TP.

• Step 3: Shows the output collection TP. As can
be seen, the documents from TS are concatenated
into 6 documents (in blue), while the other 4 doc-
uments (in gray) are used to index them.

• Step 4: Consist of the module responsible for per-
forming the optimized similarity queries on col-
lection TP.

Similarity-Slim comprises two main modules: a
create module and a similarity query module, which
are described following.

3.1 The Create Module

The create module is responsible for indexing the TS
collection, creating the TP collection. The application
must define how to measure the similarity between
documents Doci ∈ TS using the value t[S](Doci) of
attribute S in each document. The indexing process
uses the Slim-Tree creation algorithm to structure the
data in TS into TP. When the index collection TP
does not yet exist, a new one is built from scratch,
and the complete collection TS is loaded. Otherwise,
each new document is added to both TS and TP col-
lections, i.e., TP not need to be rebuilt, just updated
with the S value and document identifier Idsc from
the new document. The financial cost associated with
this module comes from reading documents from TS
and performing read and write operations on TP.

Figure 5 shows a two-dimensional representation
of 17 documents in an Euclidean space and a hierar-
chical model of them in a Slim-Tree using a maximum
number c = 3 of elements per document in TP: leaf
documents (Doccl) are displayed in blue and index
documents (Docci) are displayed in light gray. Every
document identifier from collection TS is stored in a
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Figure 6: Slim nodes (documents) on collection Tp.

leaf document in TP.
Figure 6 shows how the complex data are kept in

each type of document in TP. There is a representa-
tive complex value srep from attribute S, defined by
the Slim-Tree’s creation algorithm for creating the in-
dexing structure, for both types (displayed as a red
dot in Figure 5). Each index document Docci ∈ TP
also stores the distances d(si,srep) from the value
t[s](Doci) of each element that it stores to its rep-
resentative srep and each leaf document Doccl ∈ TP
stores the corresponding distances d(Doci,Docrep).
The information about each sub-tree is stored in the
corresponding index documents, including: the sub-
tree covering radius Rc, the number of elements in
the sub-tree Nce f f , and the document identifier Idpc
of the sub-tree root in collection TP. The leaf doc-
uments include the document identifiers Idsc of the
corresponding documents in collection TS.

3.2 The Similarity Query Module

This module is responsible for executing the simi-
larities queries. Every similarity search intended to
be executed over collection TS can now be executed
over collection TP using the algorithms introduced
in Section 2.2, and detailed below on Sections 3.2.1
and 3.2.2.

Each query is posed by specifying the following
parameters: the query center sq and either the search
radius ξ for a range query, or the amount k for a kNN
Query. The query module retrieves the list of docu-
ments identifier Idsc that satisfies the similarity condi-
tion. Now, the query answer can be returned by read-
ing those documents from collection TS. Therefore,
the financial cost of this module is associated with
reading the documents from the Slim-Tree structure
in collection TP and, if there are documents as query
answers, reading them in collection TS.

3.2.1 Range Query

Algorithm 1 shows how the range query is performed
over the collection TP to obtain the list result of docu-
ment identifiers Idsc that satisfies the similarity condi-
tion. It receives as input the document identifier Idpc
from the document root of the Slim-Tree on collec-
tion TP and the query ball Q =< sq,ξ > (result is
pre-initialized as empty). The document docc with
identifier Idpc is read and the algorithm evaluates each
element si stored in the document; if docc is an index
and the sub-tree centered at si cannot be pruned, the
algorithm is called recursively passing the document
identifier Idpi as the document root of the respective
sub-tree (lines 5-7); if it is a leaf and si is covered by
the query ball Q, then the document identifier Idsi is
added to the result list (lines 11-13). After that, all
documents from result are read on collection TS.

Algorithm 1: Range query over collection TP.

1: procedure RANGEQUERY(Idpc,Q,result)
2: docc ← read document with identifier Idpc

3: if docc is an index document then
4: for each si in docc do
5: if sub-tree centered at si cannot be pruned then
6: return rangeQuery(Idpi,Q,result)
7: end if
8: end for
9: else ▷ docc is a leaf document
10: for each si in docc do
11: if si is covered by the query ball Q then
12: add Idsi in result
13: end if
14: end for
15: end if
16: return result
17: end procedure

Figure 7 shows an example of a Range Query per-
formed on the TS collection: three documents from
the TP collection and two documents from the TS col-
lection must be read to obtain all documents that sat-
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Figure 7: Similarity query module - example of a Range Query performed over collection TS.

isfy the query parameters.

3.2.2 kNN Query

Algorithm 2 illustrates how the kNN query is per-
formed over collection TP. It receives as input the
document identifier Idpc from the document root of
the Slim-Tree on collection TP, the query center sq,
and the amount k of documents to be returned. It starts
initializing the dynamic query range (dk) as ∞ and the
priority list (PQ) as empty (line 3). At each iteration,
a document of the structure is read and each of its el-
ements si is analyzed. If it is an index document and
the ball centered at si cannot be pruned, then the docu-
ment identifier Idpi from the root document of the cor-
responding sub-tree is added to the priority queue us-
ing the distance between si and the query center (lines
7-9) as its priority. If it is a leaf document and si is
covered by the query ball, then (si, Idsi) is added to
the result list (line 14). If result has more than k el-
ements, the farthest one is removed and the radius of
the query ball is updated to the value of the distance
between the query center and the element at position
k (lines 18-20). The choice of the document that is
analyzed at each iteration of the algorithm is done by
the single priority queue, so it selects the document
with the lowest priority that contains an intersection
between its elements with the query ball (line 25-27).
After that, all k documents from result are read on
collection TS.

4 EXPERIMENTS

We evaluated the Similarity-Slim extension for three
different applications. They employ datasets with
varying cardinalities (n), dimensionality (E), and dis-

Algorithm 2: kNN query over collection TP.

1: procedure KNNQUERY(Idpc,sq,k)
2: docc ← read document with identifier Idpc

3: dk ← ∞, PQ← empty, result← empty
4: repeat
5: if docc is an index document then
6: for each si in docc do
7: if sub-tree centered at si cannot be pruned then
8: add (si, Idpi) into PQ with priority d(sq,si)

9: end if
10: end for
11: else ▷ docc is a leaf document
12: for each si in docc do
13: if si is covered by the query ball < sq,dk > then
14: add (si, Idsi) into result
15: if |result|> k then
16: remove the element k+1 from result
17: end if
18: if |result|= k then
19: dk ← d(sq,result[k](si))

20: end if
21: end if
22: end for
23: end if
24: repeat
25: Idpc← PQ[0](Idpi)
26: until intersection of PQ[0](si) with the query ball < sq,dk > is

not null or PQ is empty
27: docc← read document with identifier Idpc

28: until PQ is empty
29: return result
30: end procedure

tance functions (d), covering many meaningful use
cases. Each dataset is stored as a collection with one
document in Firestore per original document.

• Geo-Spatial Application. We use a subset of n =
1,000,000 elements from the Geonames dataset
(Unxos GmbH, 2023). It contains geospatial
points and information about the corresponding
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Figure 8: Financial cost of creating Slim-Tree varying the number of elements per node (c).

locations. The complex data has two dimensions
(latitude and longitude), and we assume that the
similarity is their geographic distance measured
by the Orthodromic distance function.

• Image Recommendation. We use a dataset of
features extracted from n = 20,580 images of
dogs (Cazzolato et al., 2022). The complex data
is the color layout characteristics extracted, which
has 16 dimensions, and the similarity is measured
using the Manhattan distance function.

• Physician Diagnosis Support System. We use
the DeepLesion dataset (Yan et al., 2018; Yan
et al., 2019). It contains sets of tags from anno-
tated lesions identified on CT images and other
information about patients. There are n = 22,450
elements in the dataset. The complex data are adi-
mensional sets of tags whose similarity is mea-
sured using the Jaccard distance function.

Notice that Firestore must now store two docu-
ment collections: TS with the original, complete doc-
uments including the complex data, and TP with the
indexing structure and only the complex data from the
original documents.

The experiments evaluate useful metrics for simi-
larity queries: the query time, the number of similar-
ity calculations and, most importantly for this exten-
sion, the financial costs associated with the creation
and similarity query modules.

The experiments varied the maximum number of
elements per Slim-Tree node (c), and computed the
financial costs to handle the documents, as shown in
Table 1, corresponding to the Firestore costs in EUA
(multi-region) (Google, 2023h).

The Similarity-Slim extension was implemented
in Python 3.11 and is available as open-source soft-
ware in our GitHub (William Zaniboni Silva, 2024)
ready to be deployed as a Firestore backend using
Cloud Functions. The experiments were made using a
Google-provided Firestore Emulator (Google, 2023g)
running on a Dell-G3 computer with an Intel Core i7-
8750H 2.20 GHzx12 processor, 16GB of RAM and
480 GB SSD, under the Ubuntu 20.04.4 LTS operat-
ing system.

Section 4.1 shows experiments performed on the
create module, and Section 4.2 presents the results ob-
tained evaluating the similarity query module. The
metrics used to evaluate the creation module are the
average of 10 index creation operations, shuffling the
document ordering in the dataset. The metrics ob-
tained from the query module correspond to the aver-
age of 20 distinct queries performed with random cen-
ters. The averages of the financial cost in the queries
were scaled for 10,000 queries for better visualiza-
tion.

4.1 The Create Module Costs

The first experiments evaluated the cost of creating
a Slim-Tree structure. As explained in Section 3.1,
this cost is related to reading the entire TS collection
and reading/writing the Slim-Tree documents in the
TP collection.

Figure 8 shows the financial cost to create a Slim-
Tree for each application. As can be seen, the finan-
cial cost decreases with increasing values of c. For
example, in the geospatial application, for c = 3, cre-
ating the Slim-Tree costs around $38, and for c= 100,
the cost drops to $11. As it can be seen in red, the total
cost is steadily dominated by the cost to write on the
documents from collection TP: it happens because the
Slim-Tree’s create algorithm usually performs more
write than read operations and the financial cost of a
write is 3 times more expensive than a read. For in-
stance, Figure 9 shows the ratio between the number
of writes and reads that are performed on the creation
of collection TP: the ratio increases with increasing c
and almost stabilizes at 1.3 for c = 200 in every ap-
plication.

Figure 10 shows the number of documents that
were created for the Slim-Tree structure, i.e., the num-
ber of documents on the collection TP that concate-
nates and indexes the documents from TS. For exam-
ple, in the geospatial application, for c = 3 it is neces-
sary around 800,000 documents, whereas for c= 200,
this amount drops to 15,000.

Another important metric from the create module
is the time to create an index structure. Figure 11
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Figure 9: Ratio between reads and writes for creating the
Slim-Tree on collection TP.

Figure 10: Number of documents on the collection TP.

shows the total time required to create each Slim-
Tree. As it can be seen, there is a minimum time that
occurs at around c = 10 for all applications, and after
that, the time increases significantly.

Figure 11: Time required to create a Slim-Tree.

4.2 The Similarity Query Module Costs

The main metric analyzed here is the financial cost
of executing similarity queries. As discussed in Sec-
tion 3.2, this cost is related to reading documents
in the Slim-tree structure and then reading the doc-
uments that satisfy the query parameters on collec-
tion TS.

We compare query executions asking the Simi-
larity query module for the same queries executed

through sequential scans on the entire TS collection
and using the index structure. Figure 12 shows the
costs associated with the range (bottom row) and the
kNN queries (top row), varying the number of ele-
ments per node as c ∈ {3,25,200}. For kNN queries,
k varies from 1 to 100 (which covers the most fre-
quent queries). For range queries, the radius varies
from zero to the average radius obtained by the corre-
sponding kNN query with k = 100.

As it can be seen, for small range and k thresholds,
the Similarity-Slim extension (with c = 200) can re-
duce the similarity query cost by around 2,800 times
for the geospatial application, 130 times for image
recommendation and 260 times on physician diagno-
sis support system, and it essentially keeps the same
order of magnitude for the cost reduction as these
thresholds increase. To help understand the reason
why this cost reduction is achieved, Table 3 shows the
average number of document reads in each collection
for a kNN query (for k = 5) on the geospatial appli-
cation: even with 15,000 documents in collection TP
for c = 200 (Figure 10) and 1,000,000 documents in
collection TS, only around 357.28 documents reads in
collection TP and 5 documents reads in collection Ts
were required to perform the query.

Table 3: Documents reads in a kNN (k = 5) Query on a
geospatial application (n = 1M).

Method Reads from Tp Reads from Ts
Sequencial scan 0 1,000,000

Slim-Tree
(c=3) 16,584.82 5

Slim-Tree
(c=25) 1,617.08 5

Slim-Tree
(c=200) 357.28 5

The experiments show that the query cost de-
creases with increasing c. As discussed in Section 2.3,
a Firestore document can store up to 1 Mbytes of data,
so we can increase c until a document in TP reaches
this limit. However, to assist in defining a default
value for c, we looked at the impact of c on com-
mon queries. Figure 13 shows the cost of kNN queries
(k = 5) with varying c. As can be seen, after c = 100,
there is only a marginal cost reduction for every evalu-
ated application. Thus, we set c = 100 as the default.
Furthermore, Figure 14 and Figure 15 show the im-
pact of c in the query time and in the number of sim-
ilarity calculations, respectively: this recommended
default allows for reduction of the query time over
every application.

We also compared the Similarity-Slim extension
with sequentially scanning the full TS collection re-
garding the total time required to execute each query.
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Figure 12: Financial cost of similarity queries varying the number of elements per node (c).

Figure 13: Impact of c in a kNN query cost.

Figure 14: Impact of c in a kNN query time.

The experiments revealed that the extension could
also accelerate the queries: it happens because, for
similarity queries, the execution time is strongly re-
lated to the number of similarity calculations that
must be executed, and a MAM targets to reduce them.

Figure 16 shows an example of the query time re-
quired by a kNN query with k = 5 for each applica-
tion. As it can be seen, in addition to the financial
cost reduction, a query executed in a Slim-Tree with
c = 100 is 86 times faster in the geospatial applica-
tion, 1.2 times faster on image recommendation, and
2 times faster on physician support, always returning

Figure 15: Impact of c in the number of similarity calcula-
tions in a kNN query.

the same result (the query answer is exact). In this ex-
ample, the query execution took 360 times less sim-
ilarity calculations on the geospatial application, 1.4
times less on image recommendation, and 3.6 times
less on physician support.

Figure 16: Time to perform the queries.

5 CONCLUSION

This paper presented Similarity-Slim, an extension
for NoSQL document stores aiming at reducing the
financial cost of performing similarity queries over
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document collections in cloud-based data stores. It
uses a Metric Access Method integrated into the data
store’s resources to reduce both the financial cost and
the total query time of the similarity queries. The fun-
damental concepts presented can be applied to any
metric domain whose datasets are described by docu-
ments stored in document stores, although in this pa-
per, we evaluated its applicability using the Google
Cloud Firestore as the case study. Regarding finan-
cial costs, the experiments showed that the extension
always reduces the expenses of similarity queries. In
fact, depending on the cardinality and dimensionality
of the data, the extension was able to reduce the cost
by up to 2,800 times for small range and k.

We foresee that Similarity-Slim is a valuable re-
source to help make similarity queries more popular
and accessible in NoSQL cloud-based systems and
more specifically, in mobile and web app applications
that use Firestore as data stores. In this work we eval-
uated Geo-spatial applications, recommendation sys-
tems, and physician diagnosis support systems as case
studies, confirming that all of them can benefit from
the concepts presented.

The core of the proposed extension consists of
employing a successful existing indexing structure,
originally developed to perform similarity queries in
RDBMSs, now retooled to assist in obtaining cheaper
storage and retrieval of documents in a NoSQL store.
As the results obtained were very good, they pro-
vide support for us to explore the extension for other
NoSQL databases, like MongoDB, to develop other
types and variants of similarity queries, and under-
take the development of a new, more refined MAM,
specifically developed to further reduce the number
of documents that need to be read when answering
similarity queries over document stores.
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