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Abstract: Generative Adversarial Networks (GANs) create artificial images through adversary training between a gen-
erator (G) and a discriminator (D) network. This training is based on game theory and aims to reach an
equilibrium between the networks. However, this equilibrium is hardly achieved, and D tends to be more pow-
erful. This problem occurs because G is trained based on only a single value representing D’s prediction, and
only D has access to the image features. To address this issue, we introduce a new approach using Explainable
Artificial Intelligence (XAI) methods to guide the G training. Our strategy identifies critical image features
learned by D and transfers this knowledge to G. We have modified the loss function to propagate a matrix
of XAI explanations instead of only a single error value. We show through quantitative analysis that our ap-
proach can enrich the training and promote improved quality and more variability in the artificial images. For
instance, it was possible to obtain an increase of up to 37.8% in the quality of the artificial images from the
MNIST dataset, with up to 4.94% more variability when compared to traditional methods.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfel-
low et al., 2014) are generative models composed of
a pair of neural networks: the generator (G) and the
discriminator (D). G aims to learn the probability dis-
tribution function from a set of samples and synthe-
size new images following the learned function. D
receives original images and those synthesized by G
as input and tries to differentiate between them. Both
networks are trained at the same time with different
objectives. G tries to produce increasingly realistic
images to fool the discriminator and maximize classi-
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fication error. D attempts to become increasingly bet-
ter at detecting which images are authentic and which
are artificial, minimizing classification error. This an-
tagonistic training strategy is based on game theory.
It aims to reach an equilibrium point, the Nash equi-
librium, which corresponds to the situation in which
G produces images identical to the original ones, and
D can no longer differentiate the authentic from arti-
ficial images (Trevisan de Souza et al., 2023).

However, training GANs is challenging due to is-
sues related to backpropagation, particularly in how
the G’s weights are updated. The backpropagation
process only shares D’s classification results with G,
and as G receives random noise as input, it has no in-
formation about how the images’ features contributed
to classification. Therefore, only D can access the rel-
evance of these features. Consequently, D tends to as-
sign higher scores to real images throughout the train-
ing, and G fails to fool D even after the model con-
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verges (Wang et al., 2022; Trevisan de Souza et al.,
2023).

Studies in the literature usually aim to improve the
discriminator due to its crucial role in training (Ar-
jovsky et al., 2017; Gulrajani et al., 2017; Jolicoeur-
Martineau, 2018; Wang et al., 2021). However, there
has been a shift in focus in recent years towards im-
proving the training of the generator. The new ap-
proaches involve finding effective ways to transfer
the knowledge about the image features learned by
the discriminator to the generator (Wang et al., 2022;
Trevisan de Souza et al., 2023). One potential so-
lution is to combine GANs with explainable artifi-
cial intelligence (XAI). XAI methods arose from the
need for more transparency and interpretability in the
decision-making process of deep learning algorithms.
It generates explanations illustrating which patterns a
model has learned or which parts of the input were
considered the most important for the model, thus
providing conditions for humans to understand why a
decision was made (Nielsen et al., 2022). On the other
hand, artificial neural networks simulate the function-
ing of the human brain, which includes the visual
cortex responsible for processing visual information.
These facts prompt whether XAI methods can pro-
vide relevant information to a GAN as they provide it
to humans.

We propose using XAI methods to identify the
most critical features of the input that the discrimi-
nator utilized to classify the images and feed this in-
formation into G. We use traditional architectures as a
basis and modify the loss function to propagate a ma-
trix instead of just an error value. This matrix derives
from the explanations generated by the XAI methods
and the discriminator error. Goodfellow et al. (Good-
fellow et al., 2014) use the forger versus police anal-
ogy to illustrate the training of GANs. In this analogy,
G plays the role of a forger who produces fake prod-
ucts, and D is a detective trying to identify whether
the products are original. Our method proposes ex-
panding the forger versus detective relationship to a
student versus teacher relationship. In the new anal-
ogy, G plays the role of a student who learns to repro-
duce works of art, and D is a teacher who evaluates
the work produced by the student, indicating where
the student has to focus to produce better art.

Therefore, this work presents a new way to train
GANs that includes XAI’s explanations in the back-
propagation algorithm to guide G’s training. We show
through experiments that our proposal not only im-
proves the quality of the images but also promotes an
increase in image variability. This research makes the
following significant contributions: 1. An approach
that feeds G with substantial information concern-

ing the images’ features, increasing the quality of the
generated images; 2. The enrichment of D feedback
that promotes a greater variability in the generation
of artificial images, and; 3. A quantitative compar-
ison between the proposed model’s capabilities and
established architectures on commonly utilized image
datasets within specialized literature, such as MNIST
and CIFAR10.

2 RELATED WORK

One of the first attempts at improving the training was
introducing the DCGAN, where the challenge was
creating a GAN architecture using convolutional lay-
ers. The strategies focused on changing the discrim-
inator to make it more stable. It included batch nor-
malization and leaky ReLU activations between inter-
mediate layers of the discriminator and the minimiza-
tion of the number of fully connected layers (Wang
et al., 2021). However, the DCGAN uses the orig-
inal Jensen-Shannon divergence as the loss function
(Goodfellow et al., 2014), which leads to training in-
stability.

WGAN (Arjovsky et al., 2017) is a technique that
enhances the training of GANs by replacing the tra-
ditional loss function with the Wasserstein distance.
The Wasserstein distance is a continuous measure
of the difference between probability distributions,
which helps to improve training stability. WGAN en-
forces the Lipschitz constraint on the discriminator by
using weight clipping. However, this technique can
lead to undesired side effects, such as vanishing or
exploding gradients, which may decrease the model’s
learning capacity. WGAN-GP (Gulrajani et al., 2017)
employs a gradient penalty term in the loss function
instead of weight clipping to address these issues.
This approach penalizes the norm of the gradient of
the discriminator concerning its input, thus helping
to maintain the Lipschitz constraint without weight
clipping. It is considered a more stable alternative to
weight clipping.

RAGAN (Jolicoeur-Martineau, 2018) is another
way to make the training more stable. It introduces
the relativistic discriminator, where instead of just
classifying whether an input is real or fake, it esti-
mates the probability that an authentic sample is more
realistic than a fake sample and vice versa. This rel-
ativistic approach improves the training stability and
quality of generated samples in specific scenarios. It
provides a more nuanced signal to the generator, al-
lowing it to understand better how to generate plausi-
ble samples not just on its own but also in relation to
the real data distribution.
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Newer techniques now focus on improving the
generator’s training rather than the discriminator. For
instance, the EqGAN-SA (Wang et al., 2022) is a
training technique that reduces the information imbal-
ance between D and G by enabling spatial awareness
of G and aligning it with D’s attention maps. The
method randomly samples heatmaps from the dis-
criminator using Grad-CAM and integrates them into
the feature maps of G via the spatial encoding layer.

Another strategy is GLeaD (Bai et al., 2023),
which introduces a new training paradigm to establish
a fairer game setting between G and D. The method
is based on the premise that D does not act as a player
but rather as a referee in the adversarial game. There-
fore, to balance the networks, the method introduces
a generator-leading task in which the discriminator
must extract features that G can decode to reconstruct
the input.

3 METHODOLOGY

Figure 1 shows an overview of the proposed model,
the X-GAN. The model uses architectures such as
DCGAN, WGAN-GP, and RAGAN as the basis for
G and D. Therefore, G receives a random signal vec-
tor z and outputs an image Ig, and D classifies authen-
tic Ir and artificial images Ig. The main novelty of
the proposed method is the inclusion of XAI expla-
nation (E) in the loss function to guide the training
of G, performing a new form of training called edu-
cational training. The new loss Led

G uses traditional
adversary losses (Ladv

G ) combined with the explana-
tions (E) to backpropagate important information to
the generator. This new training follows a student
versus professor-analogy, in which the professor (D)
teaches the learned features to the student (G).
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Figure 1: Schematic summary of the proposed model.

3.1 Models

As a basis for our method, we used the DCGAN,
WGAN-GP, and RAGAN models to define the archi-
tectures and loss functions Ladv

D and Ladv
G .

3.1.1 DCGAN

The DCGAN performs the traditional adversarial
training (Goodfellow et al., 2014), where a gener-
ator and a discriminator are trained simultaneously
through a min-max game. The loss for the discrimina-
tor was calculated through the binary cross-entropy:

LDCGAN
D =− 1

m

m

∑
i=1

log(D(xi))+ log(1−D(zi)), (1)

where m is the number of real samples x, D(xi) is the
D’s output for the real sample xi, zi is a random noise
vector, and D(zi) is the D’s output for the generated
images G(zi).

For real samples, D tries to maximize the proba-
bility of assigning them a value close to 1. For arti-
ficial samples, D aims to minimize the probability of
assigning a high value to them, i.e., tries to assign a
value close to zero.

The DCGAN generator’s loss considers D’s out-
put for the generated samples and tries to maximize
the probability of the discriminator assigning a value
close to 1 to the generated samples. It was defined as:

LDCGAN
G =− 1

m

m

∑
i=1

log(1−D(zi)). (2)

3.1.2 WGAN-GP

WGAN-GP uses the Wasserstein distance as a loss
function and a gradient penalty term to enforce the
Lipschitz continuity of the discriminator. The D’s ob-
jective is to approximate the Wasserstein distance be-
tween the actual and generated data distribution. The
Wasserstein distance is the difference between the ex-
pected values of the discriminator’s output for real
and generated samples:

LW = Ex∼Pdata [D(x)]−Ez∼Pnoise [D(G(z))]. (3)

The gradient penalty encourages the gradients of
the D’s output concerning the input to have a norm of
1:

LGP = λEx̂∼Px̂ [(∥∇x̂D(x̂)∥2 −1)2] (4)

where x̂ is a sample along a straight line between a
real sample and a generated sample, and λ is a hyper-
parameter that controls the strength of the penalty.

Thus, the adversarial loss for D was defined as
the sum of the Wasserstein distance and the gradient
penalty:

LWGAN−GP
D =−LW +LGP, (5)
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and for G, as the negation the expected value of the
D’s output for generated samples:

LWGAN−GP
G =−Ez∼Pnoise [D(G(z))]. (6)

3.1.3 RAGAN

The RAGAN introduces the relativistic discriminator.
The primary idea is to compare the realism of real and
fake samples relative to each other instead of indepen-
dently. It can result in more stable training and better
convergence. The relative loss function is defined as
follows:

Lrel =−1
2
Ex∼Pdata,z∼Pnoise [log(D(x)−D(G(z))]. (7)

The total loss for the discriminator was the sum
of the DCGAN loss and the relativistic discriminator
loss:

LRAGAN
D = LDCGAN

D +Lrel . (8)

Similar to the discriminator, the generator aims
to produce samples that are considered more realistic
than the average fake sample. Thus, the loss function
was defined as:

LRAGAN
G =−1

2
Ez∼Pnoise [log(1−D(G(z))]−

Ex∼Pdata [log(D(x)].
(9)

3.2 XAI Methods

For this work, we have opted to use gradient-based
XAI techniques. The idea was to extract the most
important features from the discriminator gradients.
These methods rely on the gradients of the discrim-
inator’s output (logits or softmax probabilities) con-
cerning its input to construct explanations. These
techniques offer several benefits, such as computa-
tional efficiency and the absence of restrictions on
specific architectures (Nielsen et al., 2022).

3.2.1 Saliency

The Saliency method (Simonyan et al., 2014) allowed
us to create explanations by calculating the gradients
of the D’s output concerning the input features. The
method takes an N-dimensional input x = {xi}N

i=1 and
the associated C-dimensional output S(x) = {Sc}C

c=1,
where C is the total number of classes, and calculates
the partial derivative of S(x) with respect to input x:

Esaliency =
∂Sc(x)

∂x
. (10)

The gradient represents how much the output
would change with a slight change in the input.
Thus, this method created maps highlighting regions
where a slight change in the input would significantly
change the D’s predictions. In other words, it indi-
cates which features best represent an authentic im-
age.

3.2.2 InputXgrad

The InputXgrad (Shrikumar et al., 2017) generates the
explanations by calculating the elementwise multipli-
cation of gradients by the input:

EInputXgrad =
∂Sc(x)

∂x
⊙ x (11)

We used this method because the elementwise
multiplication applies a model-independent filter,
in this case, the input, which reduces noise and
smoothens the explanations (Nielsen et al., 2022).

3.2.3 DeepLIFT

The DeepLIFT (Shrikumar et al., 2017) calculates the
difference between the activation of each neuron (or
feature) at a reference point and the input. This differ-
ence represents the contribution of each feature to the
overall output. We used the minimal activation, i.e.,
all zeros, as the reference point. The calculated differ-
ences were then distributed through the layers, con-
sidering the weights of the connections and the activa-
tion functions at each layer. The goal was to attribute
the contribution of each feature to different parts of
the network. DeepLIFT uses a backpropagation-like
adjustment to distribute the contributions. It aims to
fairly distribute the differences while accounting for
the role of each neuron in the network.

3.3 Loss Function

The main novelty of the proposed model is the new
form of training called educational training that fol-
lows a student versus professor analogy, in which the
professor (D) teaches the learned features to the stu-
dent (G). To perform this new way of training, we
included the XAI explanations in the G’s loss func-
tion as follows:

Led
G = Ladv

G ∗E, (12)

in which ∗ is the multiplication operation, Ladv
G is

the adversarial loss for the generator (Equation 2, 6,
or 9), and E is the XAI explanations generated with
Saliency, DeepLIFT, and InputXgrad, from the artifi-
cial images.
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The gradient is a vector of real numbers that al-
lows us to determine the amount that must be adjusted
in each weight of G so that the loss function walks to-
wards minimization. Integrating E within the gradient
enables emphasis on areas corresponding to objects
of interest while dampening the influence of less rele-
vant regions. In the student versus professor analogy,
E corresponds to a test answer in which the professor
(D) informs the student (G) of his/her test score, in-
dicating where the error is, i.e., which features drawn
are close to reality and which are not similar to the
original images. Therefore, instead of propagating
just one value that indicates the error of D, we propa-
gate a matrix with relevant information for each pixel
in the image.

To propagate a matrix instead of a scalar, it is
necessary to perform an operation known as vector-
Jacobian Product, defined as:

J · v⃗, (13)

where J is the Jacobian matrix and v⃗ is a multidimen-
sional vector of the same dimension as the explana-
tions E with 1 in all positions.

The Jacobian matrix indicates how the output
changes when a small amount of the input changes.
Thus, the proposed method defines the change that
each pixel of the artificial image causes in the predic-
tion of D. Moreover, the proposal also assigns greater
weights to the more relevant pixels.

3.4 Datasets

The MNIST dataset (LeCun et al., 1998), shown in
Figure 2, is a widely used collection of handwritten
digit images commonly employed for training vari-
ous image processing systems and machine learning
models. It consists of grayscale images of handwrit-
ten digits (0 through 9) centered within the images.
Each image is a 28 × 28 pixel square.

Figure 2: Examples from the MNIST dataset.

The CIFAR-10 dataset (Krizhevsky, 2009) is an-
other widely used benchmark dataset in computer vi-
sion and machine learning. It comprises 60,000 32 ×
32 color images in 10 different classes. Each image
belongs to the following classes: airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship, or truck.
Figure 3 shows examples from some classes from the
dataset (airplane, automobile, and cat).

Figure 3: Examples from the CIFAR10 dataset.

3.5 Performance Evaluation

3.5.1 Fréchet Inception Distance

We applied the Fréchet Inception Distance (FID) met-
ric (Heusel et al., 2017) to assess the quality of arti-
ficial images quantitatively. This metric measures the
distance between the distributions of real and gener-
ated images. Therefore, lower FID scores indicate
higher similarity between the distributions, meaning
that the generated images closely resemble the origi-
nal ones.

The FID measures the similarity between two
multivariate Gaussian distributions, defined by the
mean and covariance matrix of activation features ex-
tracted from Inception v3’s 2048th layer. Mathemati-
cally, The FID score is defined by:

FID = ∥µr −µf∥2 +Tr(Σr +Σf −2(Σr ·Σf)
0.5), (14)

where µr and µf are the mean features of real and fake
images. Σr and Σf are the covariance matrices of real
and fake image features, and Tr(·) denotes the trace
of a matrix.

3.5.2 Inception Score

We also applied the Inception Score (IS) metric (Sal-
imans et al., 2016) to estimate the diversity of gener-
ated images. A higher IS suggests greater variety in
the assigned classes, although it does not necessarily
indicate a high degree of realism.

In the IS calculation, fake images were evalu-
ated based on the activations of the final classifica-
tion layer of a pre-trained Inception v3 model. This
model assigns a probability distribution to each image
over predefined classes in the ImageNet dataset. Di-
verse images are expected to have probabilities spread
across multiple classes. The IS was calculated by tak-
ing the average entropy of all generated images and
computing its exponential value:

IS = exp(Ex [DKL(p(y|x)||p(y))]) , (15)
where p(y|x) is the probability of class y being as-
signed to the generated image x, p(y) is the marginal
probability of class y in the dataset, Ex denotes
the expectation taken over all generated images,
DKL(p(y|x)||p(y)) is the Kullback-Leibler divergence
between p(y|x) and p(y) and exp(·) represents the ex-
ponential function.
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3.6 Experiments Setup

We conducted this research through two experiments,
one in the MNIST and the other in the CIFAR10
dataset. We used the same GAN architecture for
both experiments, following the work of (Jolicoeur-
Martineau, 2018). We used a generator with five
transposed convolutional layers with batch normaliza-
tion, ReLU activation, and the Tanh function after the
last layer. For the discriminator, we used six convolu-
tional layers with BatchNorm and LeakyReLU. The
sigmoid activation function was used in DCGAN but
not in WGAN-GP and RAGAN.

Our models were trained for 100 epochs in batches
of size 32, with a z size 128. To ensure fair perfor-
mance evaluation, we ran each method ten times and
compared the simple average of the FID and IS met-
rics. We estimated these metrics using 50 thousand
images. For standardization purposes, we normalize
the explanations from all XAI methods to the range
[1,2].

3.7 Execution Environment

The proposed method was implemented using Python
3.9.16 and the Pytorch 1.13.1 API. The experiments
were performed on a computer with a 12th Generation
Intel® Core™i7-12700, 2.10GHz, NVIDIA® GeForce
RTX™3090 card, 64 GB of RAM and Windows op-
erating system with 64-bit architecture.

4 RESULTS AND DISCUSSION

Tables 1, 2, and 3 show the averaged FID and IS on
the MNIST dataset regarding the DCGAN, WGAN-
GP, and RAGAN-based architectures, respectively.
Table 1 shows that using the Saliency method with the
DCGAN architecture improved the quality of the arti-
ficial images. XDCGAN (Saliency) produced images
of better quality, with an FID score around 3.72%
lower than DCGAN. In addition, the images gener-
ated with XDCGAN (Saliency) were more diverse, as
evidenced by an IS score of 2.1294, slightly higher
than the 2.1289 obtained with DCGAN.

Table 1: Averaged FID and IS scores on MNIST dataset
using DCGAN-based architectures.

FID IS

DCGAN 2.3428 2.1289
XDCGAN (Saliency) 2.2572 ↓ 2.1294 ↑
XDCGAN (DeepLIFT) 2.6792 ↑ 2.1239 ↓
XDCGAN (InputXgrad) 2.7468 ↑ 2.1168 ↓

In Table 2, it is verified that the proposed method
outperforms WGAN-GP significantly. XWGAN-
GP (DeepLIFT) and XWGAN-GP (InputXgrad) pro-
duced images with an FID up to 37.8% lower than
those generated by WGAN-GP. Moreover, it is im-
portant to note that all XWGAN-GP methods have
increased the variability of the images obtained com-
pared to WGAN-GP. For instance, XWGAN-GP (In-
putXgrad) produced an IS value of 2.2822, approx-
imately 4.94% higher than the IS value provided by
WGAN-GP.

Table 2: Averaged FID and IS scores on MNIST dataset
using WGAN-GP-based architectures.

FID IS

WGAN-GP 11.0952 2.1721
XWGAN-GP (Saliency) 12.0221 ↑ 2.1724 ↑
XWGAN-GP (DeepLIFT) 7.5686 ↓ 2.2673 ↑
XWGAN-GP (InputXgrad) 7.6735 ↓ 2.2822 ↑

Considering the RAGAN architecture (Table 3),
the proposed method also provided relevant results.
The highlight was XRAGAN (Saliency), which im-
proved the quality and variability of artificial images.
With this combination, obtaining an FID of 15.79%
lower than RAGAN and an IS of 2.0041 was possi-
ble.

Table 3: Averaged FID and IS scores on MNIST dataset
using RAGAN-based architectures.

FID IS

RAGAN 33.8299 1.9831
XRAGAN (Saliency) 28.8780 ↓ 2.0041 ↑
XRAGAN (DeepLIFT) 33.5152 ↓ 1.9532 ↓
XRAGAN (InputXgrad) 31.1702 ↓ 1.9652 ↓

Tables 4, 5, and 6 show the results obtained from
the CIFAR10 dataset. Using the XAI methods with
the DCGAN architecture (Table 4), it was possible to
obtain a slight quality improvement in the artificial
images with the XDCGAN (Saliency) and XDCGAN
(DeepLIFT) methods. These methods provided FIDs
of 30.9560 and 30.8860, lower values compared to
DCGAN (FID = 31.0575). The XDCGAN (Saliency)
also increased the IS metric, 2.1724, against 2.1721
provided by DCGAN.

When considering the WGAN-GP architecture,
we did not achieve an increase in quality when gener-
ating images from the CIFAR10 dataset. Despite this,
it is possible to notice in Table 5 that in all XWGAN-
GP combinations, there was a slight increase in the
variability of the artificial images.

On the other hand, when considering the RA-
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Table 4: Averaged FID and IS scores on CIFAR10 dataset
using DCGAN-based architectures.

FID IS

DCGAN 31.0575 6.7349
XDCGAN (Saliency) 30.9560 ↓ 6.7764 ↑
XDCGAN (DeepLIFT) 30.8860 ↓ 6.6785 ↓
XDCGAN (InputXgrad) 31.1186 ↑ 6.6900 ↓

Table 5: Averaged FID and IS scores on CIFAR10 dataset
using WGAN-GP-based architectures.

FID IS

WGAN-GP 33.9477 6.5254
XWGAN-GP (Saliency) 35.3156 ↑ 6.6791 ↑
XWGAN-GP (DeepLIFT) 34.4661 ↑ 6.6555 ↑
XWGAN-GP (InputXgrad) 35.1785 ↑ 6.5954 ↑

GAN architecture (Table 6), it was possible to ob-
tain an increase in the quality of artificial images with
all XRAGAN combinations, with emphasis on XRA-
GAN (DeepLIFT), which, in addition to promoting
increased quality, also generated images with more
variety compared to RAGAN.

Table 6: Averaged FID and IS scores on CIFAR10 dataset
using RAGAN-based architectures.

FID IS

RAGAN 32.2899 6.7158
XRAGAN (Saliency) 32.0886 ↓ 6.6762 ↓
XRAGAN (DeepLIFT) 32.0968 ↓ 6.7174 ↑
XRAGAN (InputXgrad) 31.4539 ↓ 6.6980 ↓

To illustrate the quantitative results, we present
in Figure 4 some examples of artificial images gen-
erated by WGAN-GP and XWGAN-GP variants on
the MNIST dataset. It is worth noting that images
produced by WGAN-GP have some defects, such as
noise and artifacts. These defects are highlighted with
red arrows in Figure 4a. Meanwhile, the images gen-
erated by XWGAN-GP (Saliency) have a blur effect
(Figure 4b). Although the blur effect is undesirable
in generating artificial images, this indicates that in-
formation was included in the generator training. It is
also possible to note that this combination eliminated
the noise and artifacts.

On the other hand, the images created by
XWGAN-GP (DeepLIFT) and XWGAN-GP (In-
putXgrad) (Figures 4c and 4d) are crisp and noise-
free, nearly indistinguishable from the images in the
original dataset (as shown in Figure 2). Therefore,
the difference in FID presented in Table 2 is due
to these factors. These combinations resulted in the
most significant reduction in FID, with XWGAN-

GP (DeepLIFT) showing a decrease of 37.8% and
XWGAN-GP (InputXgrad) showing a decrease of
30.9% in comparison to XGAN-GP.

Figure 4: Examples of artificial images generated by
WGAN-GP (a), and by XWGAN-GP with the Saliency (b),
DeepLIFT (c) and InputXgrad (d) methods.

Table 7 shows the average time, in seconds, that
each method took to execute each epoch, consid-
ering an execution of 100 epochs and the configu-
rations mentioned in section 3.7. It is possible to
note that the proposed method does not cause a sub-
stantial increase in the processing time of GANs.
Considering, for example, the case that provided the
most significant difference in FID, i.e., XWGAN-GP
(DeepLIFT) in the MNIST dataset, the time differ-
ence compared to WGAN-GP was only 21 seconds
more per epoch. Thus, the proposed method provided
a 37.8% reduction in FID with an increase of only
15.79% in processing time. It is also important to
note that XWGAN-GP (InputXgrad), which provided
a 30.9% decrease in the FID of the MNIST dataset,
only caused a 4.51% increase in processing time.

Table 7: Average time per epoch in seconds.

MNIST CIFAR10

DCGAN 70 60
XDCGAN (Saliency) 80 (14.29%) 65 (8.33%)
XDCGAN (DeepLIFT) 96 (37.14%) 80 (33.33%)
XDCGAN (InputXgrad) 82 (17.14%) 67 (11.67%)

WGAN-GP 133 108
XWGAN-GP (Saliency) 138 (3.76%) 118 (9.29%)
XWGAN-GP (DeepLIFT) 154 (15.79%) 131 (21.30%)
XWGAN-GP (InputXgrad) 139 (4.51%) 117 (8.33%)

RAGAN 73 62
XRAGAN (Saliency) 84 (15.07%) 72 (16.13%)
XRAGAN (DeepLIFT) 98 (34.25%) 83 (33.87%)
XRAGAN (InputXgrad) 85 (16.44%) 70 (12.90%)
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5 CONCLUSIONS

In this work, we present a new way to train GANs
using XAI explanations to guide the training of the
generator. The idea was to extract the most crit-
ical features from the images and provide them to
the generator during the training. Through quantita-
tive experiments, we demonstrate that the proposed
method improved the quality of the generated images.
It was possible to obtain an increase of up to 37.8%
in the quality of the artificial images from the MNIST
dataset, with up to 4.94% more variability when com-
pared to traditional methods. We show that this sig-
nificant difference was achieved with little increase
in processing time. For example, it was possible to
obtain a 30.9% decrease in FID with just a 4.51% in-
crease in processing time. Although it was not pos-
sible to select a specific combination of methods for
all datasets, it is possible to note that the proposed
method always improved image quality or variability.

In future works, we intend to conduct new tests
with different combinations of GAN models and dif-
ferent ways to extract information from the images.
We believe that the improvement of the generator
training is a field that is still little explored, with much
room for improvement. We also intend to analyze
how stable the proposed method is compared to tra-
ditional methods. Finally, we intend to investigate
the relevance of artificial images in data augmentation
problems.
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