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Abstract: In recent years, we have witnessed a considerable increase in performance in image classification tasks. This
performance improvement is mainly due to the adoption of deep learning techniques. Generally, deep learn-
ing techniques demand a large set of annotated data, making it challenging when applied to small datasets.
Transfer learning strategies have become a promising alternative to overcome these issues in this scenario.
This work compares the performance of different pre-trained neural networks for feature extraction in image
classification tasks. We evaluated 16 different pre-trained models in four image datasets. Our results demon-
strate that the best general performance along the datasets was achieved by CLIP-ViT-B and ViT-H-14, where
the CLIP-ResNet50 model had similar performance but with less variability. Therefore, our study provides
evidence supporting the choice of models for feature extraction in image classification tasks.

1 INTRODUCTION

The rapid technological advancements in the last
decades have pushed organizations to produce and ac-
cumulate all kinds of data. In the past, critical orga-
nizational information was primarily represented by
structured data stored in databases. However, nowa-
days, a significant part of this information is repre-
sented unstructured, such as images (Pferd, 2010).

There is a need to develop approaches capable
of recovering and evaluating images in applications
of several fields (Pferd, 2010). In that sense, one
of the challenges concerning image recovery is that
the semantic content of images is not apparent, so
this information is not easily acquired through direct
queries. An alternative for recovering images is an-
notating them first (Hollink et al., 2003) in a way that
allows us to retrieve them by querying for the an-
notations. However, it is necessary to bear in mind
that manual annotation of large databases of images
is time-consuming and impractical. In this context,
we can use machine learning approaches to automat-
ically classify these large databases of images, thus
enabling retrieval through direct queries.

Image classification (IC) tasks aim to classify the
image by assigning a specific label. Usually, labels in
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an IC task refer to objects that appear in the image,
kinds of images (photographs, drawings, etc.), feel-
ings (sadness, happiness, etc.), etc (Lanchantin et al.,
2021).

Most of the recent approaches for IC are based on
deep neural network (DNN) architectures. These ar-
chitectures usually demand a large set of annotated
data, making it challenging to apply deep learning
when small amounts of data are available. In this
scenario, transfer learning strategies have become a
promising alternative to overcome these issues. One
of the main alternatives of transfer learning is through
feature extraction, where models trained on large
datasets can produce informative features that another
classifier can use. Using transfer learning, we can
leverage knowledge previously learned by neural net-
work models on a large dataset and use this knowl-
edge in a context where just small datasets are avail-
able.

There are currently several large datasets avail-
able, such as Imagenet (Deng et al., 2009), and
a range of models that were pre-trained on these
datasets 1. The literature suggests that particular tasks
on distinct datasets can benefit from different pre-
trained models (Mallouh et al., 2019; Arslan et al.,
2021).

1Some pre-trained models are found in https://pytorch.
org/vision/stable/models.html
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It is essential to notice that there are different ap-
proaches for transfer learning for image classifica-
tion, such as fine-tuning and feature extraction. When
adopting fine-tuning, a neural network pre-trained in
a big dataset is retrained in a novel task, for which
usually only a small dataset is available. The goal of
this approach is to use the knowledge (represented by
the weights of the model) acquired in the first train-
ing process as a starting point for the training in the
second task, and the weights of the pre-trained model
are updated during the training in the target task. In
the case of feature extraction, the pre-trained model
extracts features that represent the images and can be
used as input for a classifier. Notice that in this ap-
proach, the pre-trained model is kept frozen; that is,
their weights are not updated during the training of the
classifier used in the target task. Some studies (Kief-
fer et al., 2017; Mormont et al., 2018) comparing fine-
tuning and feature extraction demonstrate that fine-
tuning achieves higher performance. Still, the results
also suggest that feature extraction achieves a com-
parable performance while requiring fewer computa-
tional resources for training. In this context, the main
goal of this work is to compare and evaluate the per-
formance of feature extraction (FE) of various pre-
trained models in the image classification task.

In this study, Geological Images (Todescato
et al., 2023; Abel et al., 2019; Todescato et al.,
2024), Stanford Cars (Krause et al., 2013), CIFAR-
10 (Krizhevsky et al., 2009), and STL10 (Coates
et al., 2011) are the datasets adopted for analyzing
the performance of FE of the following pre-trained
models: AlexNet, ConvNeXt Large, DenseNet-161,
GoogLeNet, Inception V3, MNASNet 1.3, Mo-
bileNet V3 Large, RegNetY-3.2GF, ResNeXt101-
64x4D, ShuffleNet V2 X2.0, SqueezeNet 1.1, VGG19
BN, VisionTransformer-H/14, Wide ResNet-101-2,
and both CLIP-ResNet50, and CLIP-ViT-B. We eval-
uate the performance of the considered pre-trained
models using these metrics: accuracy, macro F1-
measure, and weighted F1-measure. Our results anal-
ysis involves a comparison between the models, an-
alyzing the potential of each one in each dataset and
also analyzing the correlation between each model.
Furthermore, we also explore the results of each
dataset to understand which is the most difficult and
the easiest for the models to classify.

Our results indicate that the pre-trained
models CLIP-ResNet50, CLIP-ViT-B, and
VisionTransformer-H/14 had significantly better
performance than the other considered pre-trained
models for all datasets. It is important to notice that
these are the only three models among those consid-
ered in our experiments that include transformers in

their architecture, while the others are based solely
on CNN architectures. Our analysis also indicates
differences regarding the pattern of performances of
these three transformer-based architectures compared
to those of the CNN-based architectures across
the datasets in all the considered metrics. These
differences become evident when we analyze the
Pearson correlation in Section 3.4. Moreover, our
analysis suggests that the Stanford Cars dataset is
the most challenging of all datasets analyzed. We
hypothesize that it is due to its large number of
classes, few samples per class, and the inclusion of
images with different sizes and features at different
scales.

The remainder of this paper is structured as fol-
lows. Section 2 discusses the related work. In Section
3, we present our experiments and discuss our results.
Finally, Section 4 presents the conclusions.

2 RELATED WORK

The TL approach based on FE has been adopted for IC
in several domains, such as Biomedicine (Alzubaidi
et al., 2021), and Geology (Dosovitskiy et al., 2020;
Maniar et al., 2018; Karpatne et al., 2018). In this
work, we reviewed the literature covering the last five
years that focused on comparing the performance of
FE for different pre-trained models. In our literature
review, the most frequently used pre-trained models
were the VGG16, the Inception V3, and AlexNet.

An extensive range of pre-trained models can be
applied for transfer learning. The main expected re-
sult of FE from the pre-trained models is to improve
classification quality. The size and similarity of the
target dataset and the source task can be used to
choose the pre-trained model (Fawaz et al., 2018).

The literature suggests that each dataset may need
a different pre-trained model. For instance, for plank-
ton classification (Lumini and Nanni, 2019), when
adopting the models as a feature extractor, the best
result among a wide range of pre-trained models (In-
ception V3, AlexNet, VGG16, VGG19, ResNet50,
ResNet101, DenseNet-161, and GoogLeNet) is us-
ing DenseNet-161. On the other hand, when classify-
ing pathological brain images, Kaur & Gandhi (2020)
found that the AlexNet showed the best results among
eight pre-trained models.

Finally, using the CIFAR-10 dataset and ex-
perimenting with the Inception V3, GoogLeNet,
SqueezeNet 1.1, and DarkNet53, ShuffleNet models,
(Kumar et al., 2022) found that, overall, the Incep-
tion V3 model achieved the highest accuracy, as well
as higher values in other evaluation metrics including
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precision, sensitivity, specificity, and F1-score (Ku-
mar et al., 2022).

In summary, finding a suitable pre-trained model
can be challenging for specific application needs.
Different models can present better results for
other datasets and different performance parameters
(Abou Baker et al., 2022). Therefore, it is essential
to systematically investigate the usability of several
pre-trained models to find the best match for specific
datasets.

Recent papers are showing the capacity of DL and
TL to facilitate the analysis of uninterpreted images
that have been neglected due to a limited number of
experts, such as fossil images, slabbed cores, or pet-
rographic thin sections (De Lima et al., 2019), or even
for environmental images (Sun et al., 2021). The abil-
ity to create distinctive models for specific datasets
allows a versatile application of those techniques.

When comparing pre-trained models, in (De Lima
et al., 2019), the authors found that both Mo-
bileNet V2 and Inception V3 showed promising re-
sults on geologic data interpretation, with MobileNet
V2 having slightly better results. Also, in (Sun
et al., 2021), the authors compared the performance
of AlexNet, VGG16, ResNet50, GLNet (AlexNet),
GLNet (VGG16), and GLNet (ResNet) pre-trained
models on remote sensing scene classification using
FE, concluding that their proposed new model shows
better results compared to other traditional DNN ar-
chitectures. The proposed model GLNet, which uses
VGG16 as its base, got over 95% accuracy in ana-
lyzing a clear environment and over 94% in a cloudy
environment. In contrast, the traditional VGG16 got
over 93% and over 78%, for clear and cloud environ-
ments, respectively (Sun et al., 2021).

It is important to notice that the literature does not
provide a systematic comparison of the performance
in feature extraction for image classification tasks,
covering a broad range of models and datasets with
different characteristics. Our work aims to use mod-
els that achieve promising performances in these re-
lated works and other more recent models that do not
appear in these comparisons. We apply these selected
models to image classification benchmark datasets to
evaluate their performances in different datasets and
provide evidence for supporting the choice of the suit-
able model.

3 EXPERIMENTS

In this section, we discuss the experiments to evalu-
ate different pre-trained models in different datasets.
Firstly, we present the datasets and the models used in

our experiments. After, we describe the methodology
adopted in these experiments. Finally, we present and
discuss the results of the experiments.

3.1 Datasets

There are several widely used image datasets in com-
puter vision research. We adopted the following ones
in our experiments: Stanford Cars (Krause et al.,
2013), CIFAR-10 (Krizhevsky et al., 2009), and
STL10 (Coates et al., 2011). In addition to these,
we also consider the Geological Images dataset (Abel
et al., 2019), a domain-specific “real-world” dataset
that includes a set of annotated images that are rele-
vant for applications in Geosciences (Todescato et al.,
2023). These datasets are widely used in the litera-
ture, are colorful, and have different characteristics.

Table 1 shows the main information of all datasets
used in this work.

Notice that CIFAR-10 and STL10 are balanced,
include sets of images of homogeneous size (96x96 in
the STL-10 and 32x32 in the CIFAR-10), and have a
small number of classes. The Geological images and
the Stanford Cars datasets are unbalanced (Stanford
Cars is slightly unbalanced) and have images of het-
erogeneous sizes and a higher number of classes when
comparing with CIFAR-10 and STL10.

3.2 Pre-Trained Models

Due to the increasing adoption of transfer learning,
several pre-trained models are available in the liter-
ature nowadays. In our work, we use a wide range
of pre-trained models available in repositories2. The
majority of these models considered in this work were
pre-trained using ImageNet-1K3(Deng et al., 2009)
dataset except for the CLIP(Radford et al., 2021)
based models that were pre-trained in a dataset with
400 million images called WebImageText (WIT). Ta-
ble 2 presents the following properties of the selected
models: number of output features, number of pa-
rameters, training dataset, and architecture. Notice
that clip-rn50 and clip-vit-b adopt two encoders, one
for images and the other for text, and they were pre-
trained using pairs of images and text. Thus, in Table
2, the notation CNN + Tr means that the image en-
coder is based on CNN and the text encoder is based
on transformers.

2Can be accessed through https://pytorch.org/vision/
stable/models.html and https://github.com/openai/CLIP

3Can be accessed through https://image-net.org/index.
php
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Table 1: Datasets Information.

Dataset Instances Classes Avg Instances ± Std
per Class

Geo Images (Abel et al., 2019) 25725 45 571,67 ± 1290,90
Stanford Cars (Krause et al., 2013) 16185 196 84 ± 6,28
CIFAR-10 (Krizhevsky et al., 2009) 60000 10 6000 ± 0
STL10 (Coates et al., 2011) 100000 10 10000 ± 0

Table 2: Pre-trained Models Information. CNN indicates a convolutional neural networks architecture and Tr indicates a
transformer-based architecture.

Models Output
Features Parameters Architecture

alexnet(Krizhevsky, 2014) 256 61,100,840 CNN
clip rn50(He et al., 2016; Radford et al., 2021) 1024 63,000,000 CNN + Tr

clip vit b(Radford et al., 2021) 512 63,000,000 Tr + Tr
convnext large(Liu et al., 2022) 1536 197,767,336 CNN
densenet161(Huang et al., 2017) 2208 28,681,000 CNN
googlenet(Szegedy et al., 2015) 1000 6,624,904 CNN

inception v3(Szegedy et al., 2016) 1000 27,161,264 CNN
mnasnet1 3(Tan et al., 2019) 1000 6,282,256 CNN

mobilenet v3 large(Howard et al., 2019) 960 5,483,032 CNN
regnet y 3 2gf(Radosavovic et al., 2020) 1000 19,436,338 CNN

resnext101 64x4d(Xie et al., 2017) 1000 83,455,272 CNN
shufflenet v2 x2 0(Ma et al., 2018) 1000 7,393,996 CNN
squeezenet1 1(Iandola et al., 2016) 512 1,235,496 CNN

vgg19 bn(Simonyan and Zisserman, 2014) 512 143,678,248 CNN
vit h 14(Dosovitskiy et al., 2020) 1000 632,045,800 Tr

wide resnet101 2(Zagoruyko and Komodakis, 2016) 1000 126,886,696 CNN

3.3 Methodology

We aim to evaluate the performance of different avail-
able pre-trained models as feature extractors in the
image classification task in other datasets. We used
the datasets and models previously detailed for con-
ducting our experiments. Notice also that since differ-
ent versions are available for each family of models,
we have selected a single model for each family that
presented the best overall performances according to
the literature.

Since we are considering 16 models and four
datasets, 64 experiments considering pairs of models
and datasets were performed.

In each experiment, each pre-trained model was
used as a feature extractor. Therefore, in this context,
all initial layers (except the last one) of the model, re-
sponsible for extracting relevant features from the in-
put images, were maintained, while the last layer was
replaced by a new classification layer, with output size
N (where N is proportional to the number of classes
in the used dataset) using a linear activation function
and a softmax. During the training, the weights of
the initial layers (responsible for extracting features)

are kept frozen while the weights of the last layer are
adjusted.

For each experiment, the datasets went through
a homogeneous pre-processing. The pre-processing
consisted of applying resizing, center cropping, and
normalization. The resize is always done by decreas-
ing or increasing the size of the image’s smallest di-
mension to the size of the pre-trained model’s input.
Then, we perform the center crop, where the central
area of the image is cut as a square that matches the
size of the model’s input. Finally, we ensure that all
images are converted to RGB.

Each model was evaluated considering a 5-fold
cross-validation process. To comprehensively assess
the efficacy of our approach, we adopted three differ-
ent metrics: accuracy, macro F1-score, and weighted
F1-score. These metrics offer a robust evaluation of
the results since they cover several evaluation aspects
in a multiclass classification setting. Accuracy is a
fundamental measure of overall correctness (although
it can be misleading in contexts with data imbal-
ance), while the macro F1-score offers insights into
the model’s ability to perform effectively across all
classes, irrespective of class imbalances. Addition-
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Table 3: Geological Images Dataset.

Geological Images Dataset
Macro Weighted

Model \Metrics Accuracy Precision Recall F-Score Precision Recall F-Score
alexnet 0,85 0,74 0,67 0,69 0,84 0,85 0,84
clip rn50 0,93 0,86 0,83 0,84 0,92 0,93 0,92
clip vit b 0,93 0,86 0,83 0,84 0,93 0,93 0,93
convnext large 0,91 0,84 0,80 0,82 0,91 0,91 0,91
densenet161 0,90 0,83 0,78 0,80 0,90 0,90 0,90
googlenet 0,87 0,75 0,72 0,73 0,86 0,87 0,86
inception v3 0,83 0,70 0,65 0,67 0,82 0,83 0,83
mnasnet1 3 0,88 0,77 0,73 0,75 0,87 0,88 0,87
mobilenet v3 large 0,90 0,82 0,77 0,79 0,90 0,90 0,90
regnet y 3 2gf 0,89 0,79 0,76 0,77 0,89 0,89 0,89
resnext101 64x4d 0,88 0,79 0,74 0,76 0,88 0,88 0,88
shufflenet v2 x2 0 0,89 0,80 0,76 0,78 0,89 0,89 0,89
squeezenet1 1 0,87 0,77 0,72 0,74 0,87 0,87 0,87
vgg19 bn 0,88 0,79 0,74 0,76 0,88 0,88 0,88
vit h 14 0,91 0,82 0,79 0,80 0,90 0,91 0,90
wide resnet101 2 0,89 0,79 0,75 0,77 0,89 0,89 0,89

Average 0,89 0,79 0,75 0,77 0,88 0,89 0,88
Standard Deviation 0,02 0,04 0,05 0,05 0,03 0,02 0,03

Table 4: Stanford Cars Dataset.

Stanford Cars Dataset
Macro Weighted

Model \Metrics Accuracy Precision Recall F-Score Precision Recall F-Score
alexnet 0,28 0,26 0,28 0,26 0,26 0,28 0,26
clip rn50 0,82 0,82 0,82 0,82 0,82 0,82 0,82
clip vit b 0,83 0,83 0,83 0,83 0,83 0,83 0,83
convnext large 0,65 0,65 0,64 0,64 0,65 0,65 0,64
densenet161 0,64 0,64 0,64 0,64 0,64 0,64 0,64
googlenet 0,41 0,41 0,41 0,41 0,40 0,41 0,40
inception v3 0,34 0,33 0,34 0,33 0,33 0,34 0,33
mnasnet1 3 0,42 0,42 0,42 0,42 0,41 0,42 0,41
mobilenet v3 large 0,56 0,56 0,56 0,55 0,56 0,56 0,55
regnet y 3 2gf 0,49 0,49 0,49 0,49 0,49 0,49 0,49
resnext101 64x4d 0,35 0,35 0,35 0,34 0,34 0,35 0,34
shufflenet v2 x2 0 0,50 0,50 0,50 0,50 0,50 0,50 0,50
squeezenet1 1 0,42 0,42 0,42 0,41 0,41 0,42 0,41
vgg19 bn 0,51 0,50 0,51 0,50 0,50 0,51 0,50
vit h 14 0,86 0,86 0,85 0,85 0,86 0,86 0,86
wide resnet101 2 0,44 0,44 0,44 0,44 0,44 0,44 0,44

Average 0,53 0,53 0,53 0,53 0,53 0,53 0,53
Standard Deviation 0,18 0,18 0,18 0,18 0,18 0,18 0,18
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Table 5: CIFAR-10 Dataset.

CIFAR-10 Dataset
Macro Weighted

Model \Metrics Accuracy Precision Recall F-Score Precision Recall F-Score
alexnet 0,79 0,79 0,79 0,79 0,79 0,79 0,79
clip rn50 0,88 0,88 0,88 0,88 0,88 0,88 0,88
clip vit b 0,95 0,95 0,95 0,95 0,95 0,95 0,95
convnext large 0,96 0,96 0,96 0,96 0,96 0,96 0,96
densenet161 0,93 0,93 0,93 0,93 0,93 0,93 0,93
googlenet 0,87 0,87 0,87 0,87 0,87 0,87 0,87
inception v3 0,86 0,86 0,86 0,86 0,86 0,86 0,86
mnasnet1 3 0,90 0,90 0,90 0,90 0,90 0,90 0,90
mobilenet v3 large 0,91 0,91 0,91 0,91 0,91 0,91 0,91
regnet y 3 2gf 0,93 0,93 0,93 0,93 0,93 0,93 0,93
resnext101 64x4d 0,95 0,95 0,95 0,95 0,95 0,95 0,95
shufflenet v2 x2 0 0,92 0,92 0,92 0,92 0,92 0,92 0,92
squeezenet1 1 0,85 0,85 0,85 0,85 0,85 0,85 0,85
vgg19 bn 0,88 0,88 0,88 0,88 0,88 0,88 0,88
vit h 14 0,98 0,98 0,98 0,98 0,98 0,98 0,98
wide resnet101 2 0,95 0,95 0,95 0,95 0,95 0,95 0,95

Average 0,91 0,91 0,91 0,91 0,91 0,91 0,91
Standard Deviation 0,05 0,05 0,05 0,05 0,05 0,05 0,05

Table 6: STL10 Dataset.

STL10 Dataset
Macro Weighted

Model \Metrics Accuracy Precision Recall F-Score Precision Recall F-Score
alexnet 0,88 0,88 0,88 0,88 0,88 0,88 0,88
clip rn50 0,97 0,97 0,97 0,97 0,97 0,97 0,97
clip vit b 0,99 0,99 0,99 0,99 0,99 0,99 0,99
convnext large 0,99 0,99 0,99 0,99 0,99 0,99 0,99
densenet161 0,98 0,98 0,98 0,98 0,98 0,98 0,98
googlenet 0,96 0,96 0,96 0,96 0,96 0,96 0,96
inception v3 0,96 0,96 0,96 0,96 0,96 0,96 0,96
mnasnet1 3 0,97 0,97 0,97 0,97 0,97 0,97 0,97
mobilenet v3 large 0,96 0,96 0,96 0,96 0,96 0,96 0,96
regnet y 3 2gf 0,98 0,98 0,98 0,98 0,98 0,98 0,98
resnext101 64x4d 0,99 0,99 0,99 0,99 0,99 0,99 0,99
shufflenet v2 x2 0 0,97 0,97 0,97 0,97 0,97 0,97 0,97
squeezenet1 1 0,91 0,91 0,91 0,91 0,91 0,91 0,91
vgg19 bn 0,96 0,96 0,96 0,96 0,96 0,96 0,96
vit h 14 1,00 1,00 1,00 1,00 1,00 1,00 1,00
wide resnet101 2 0,99 0,99 0,99 0,99 0,99 0,99 0,99

Average 0,97 0,97 0,97 0,97 0,97 0,97 0,97
Standard Deviation 0,03 0,03 0,03 0,03 0,03 0,03 0,03
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ally, the weighted F1-score considers the non-uniform
distribution of classes, providing a nuanced under-
standing of performance weighted by class preva-
lence. The reported metrics are averages obtained
considering the performance in each test fold of this
cross-validation process.

Regarding the training hyperparameters, the
learning rate used in this study was 0.001 with a mo-
mentum of 0.9. We adopted the Adam optimizer with
default parameters, with the Cross-Entropy loss func-
tion. All executions were done using 100 epochs and
early stopping with a minimal improvement of 0.001
and patience of 5.

3.4 Results

The following tables represent the model’s perfor-
mance according to the selected metrics for each
dataset. Table 3 represents the model’s evaluation
on the Geological Images dataset. Table 4 repre-
sents the model’s evaluation according to Stanford
Cars dataset. Table 5 represents the model’s evalua-
tion considering the CIFAR-10 dataset. Table 6 repre-
sents the model’s evaluation for the STL10 dataset. In
each table, we highlight the model with the best per-
formance in green and with the lowest performance in
red.

To facilitate the data analysis, we have represented
the results of our experiments in the following line
charts, demonstrating the performance (according to
different metrics) of each pre-trained model for classi-
fying the images in the four selected datasets. Figure
1 represents the accuracy, Figure 2 demonstrates the
macro f1-score, and Figure 3 indicates the weighted
f1-score of each model on each dataset.

Figure 1: Line chart representing the accuracy of each
model on each dataset.

The line charts in Figures 2-3 present a simi-
lar pattern of variation of the model’s performance

Figure 2: Line chart representing the macro f1-score of each
model on each dataset.

Figure 3: Line chart representing the weighted f1-score of
each model on each dataset.

across all datasets. We can also notice that, in gen-
eral, the model’s performance pattern increases, and
the differences among patterns decrease (resulting in
a smoother pattern) in the Geological Images dataset
when we consider the accuracy and the weighted av-
erages of the f1-score compared with the macro F1-
score. This behavior is expected since the imbalance
of this dataset is more apparent.

The CLIP-ViT-B and VisionTransformer-H/14
models generally show the best performances, con-
sidering all metrics in most datasets. The CLIP-ViT-
B presents the best performance in the Geological
Images dataset in all metrics. The CLIP-ResNet50
also performs well in the other datasets. However,
in the case of the CIFAR-10 and Geological Im-
ages datasets, this model’s performance is reasonably
lower than CLIP-ViT-B and ViT-H/14 in all metrics.
In the CIFAR-10 dataset, it is also worth highlight-
ing the good performance of ConvNeXt Large and
ResNeXt101-64x4D. The ConvNeXt Large model
also performs better than CLIP-ViT-B and CLIP-
ResNet50 in STL10.

In our evaluation, AlexNet presents the worst per-
formance on most datasets, considering all metrics.
This is expected since it is less sophisticated than
other models recently proposed. Inception V3 also
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Figure 4: Heat map representing the correlation between each pair of models regarding accuracy.

Figure 5: Heat map representing the correlation between each pair of models regarding the macro f1-score.

performed poorly on the Stanford Cars, CIFAR-10,
and Geological Images datasets, where it performed
worst. Another model that had reasonably low perfor-
mance compared to the others was Squezenet1-1. The
poor performance of this model is more pronounced
on the CIFAR-10 and STL10 datasets.

The previous analysis (Figures 1-3) suggests that
some models present a very similar performance be-

havior across the datasets. In contrast, other models
exhibit behaviors that do not follow the general pat-
tern. To emphasize how similar are the model’s be-
haviors, we analyzed the Pearson correlation (Cohen
et al., 2009) of the performances of each pair of mod-
els across the datasets according to all the selected
metrics. The Figures 4-6 visually represent heat maps
with this information in a way that the darker a cell
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Figure 6: Heat map representing the correlation between each pair of models regarding the weighted f1-score.

gets corresponds to the lower the correlation of a
given pair of models, according to a given perfor-
mance metric. Figure 4 represents the pairwise Pear-
son correlation regarding the accuracy of each model,
Figure 5 represents the pairwise Pearson correlation
regarding the macro f1-score, and Figure 6 shows the
pairwise Pearson correlation regarding the weighted
f1-score between each pair of models.

Figures 4-6 suggest that the correlation of the per-
formances of each pair of models presents a similar
pattern in all metrics. We can also notice that, in all
performance metrics, the correlation between mod-
els based solely on CNN architectures is high (gen-
erally above 0.97). However, CLIP-ResNet50, CLIP-
ViT-B, and VisionTransformer-H/14 models present
a lower correlation with the performances of other
models solely based on CNN. In the case of CLIP-
ViT-B, the correlation with the other models is subtly
lower, considering accuracy and the weighted average
f1-score. However, this model’s correlation is signifi-
cantly lower when we consider the macro average of
the f1-score. It is important to note that the CLIP-
ResNet50, CLIP-ViT-B, and VisionTransformer-H/14
models include transformers in their architectures.
This performance correlation analysis suggests that
this difference in the basic principles of the archi-
tecture of these models is correlated with this dif-
ference in the performance pattern of these mod-
els when compared to architectures based solely on
CNN. Further analysis should be done in the future
to investigate this hypothesis. The heat maps also

allow us to note that the correlations among CLIP-
ResNet50, CLIP-ViT-B, and VisionTransformer-H/14
models are low compared to the correlations among
the performances of models based solely on CNN.

In the previous analyses, we focused on the per-
formance of the models considered in our experi-
ments. In the following boxplots, we focused on an-
alyzing the datasets considered in our experiments.
Figure 7 represents the variation in accuracy. Figure
8 demonstrates the variation of macro f1-score. Fig-
ure 9 shows the variation of weighted f1-score in each
dataset.

Figure 7: Boxplot of accuracy for each dataset.

The boxplots present a similar pattern seen across
the different metrics. There are subtle differences
when comparing the macro average of the f1-score
with accuracy and weighted average. Note that, in
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Figure 8: Boxplot of macro f1-score for each dataset.

Figure 9: Boxplot of weighted f1-score for each dataset.

general, the models tend to perform better in the
STL10 dataset; in second place, CIFAR-10 has the
best overall results; in third place, the dataset of
Geological Images and, finally, the dataset with the
worst performances in general, is the Stanford Cars.
The low performance in the Stanfor cars is expected
since this dataset has a large number of classes, few
samples per class, and includes images with differ-
ent sizes and features at different scales. The Geo-
logical Images dataset has similar properties but has
fewer classes and more samples per class than Stan-
ford Cars, although it presents a more significant im-
balance. These charts allow us to conclude that the
Stanford Cars dataset is the most challenging among
those analyzed, with the worst and most considerable
variability of performances in all metrics. Besides
that, we can also notice that the STL10 dataset and
Geological Images have a smaller variability in the
performance of the different models when compared
with the other two datasets.

4 CONCLUSION

In this work, our goal was to compare the perfor-
mance of sixteen pre-trained neural networks for fea-

ture extraction in four different datasets. By analyz-
ing the accuracy and macro and weighted averages
of the f1-score in our experiments and considering
all the datasets, our experiments suggest that CLIP-
ViT-B and VisionTransformer-H/14 achieved the best
performance results. Besides that, CLIP-ResNet50
achieved performance similar to the performance
achieved by CLIP-ViT-B and VisionTransformer-
H/14 and even lower variability. It is important to no-
tice that CLIP-ViT-B, VisionTransformer-H/14, and
CLIP-ResNet50 include transformers in their archi-
tectures. Thus, our results suggest that the principles
underlying the transformers can be the reason cor-
roborating these remarkable results, but with further
studies, we can investigate this hypothesis.

Among the CNN-based architectures, ConvNeXt
Large presents the best performance, in general, and
lower variability when compared to other CNN-based
architectures. AlexNet showed the worst performance
and high variability. Besides that, ResNeXt101-
64x4D, Wide ResNet 101-2, and Inception V3 also
showed high variability.

Our analysis also showed that the performances
of models based solely on CNN architectures present
a high Pearson correlation in all performance met-
rics. However, the performances of CLIP-ResNet50,
CLIP-ViT-B, and VisionTransformer-H/14 models
show a lower correlation with other models based
solely on CNN. We can hypothesize that this differ-
ence is due to differences regarding the basic prin-
ciples of the architecture of these models. How-
ever, the correlations among CLIP-ResNet50, CLIP-
ViT-B, and VisionTransformer-H/14 models are low
compared to correlations among the performances of
CNN-based models. Further studies are needed to in-
vestigate this finding better.

Our analysis also has shown that the selected mod-
els performed better on the STL10 dataset, followed
by CIFAR-10, then the Geological Images dataset,
and finally, the Stanford Cars dataset. Thus, the Stan-
ford Cars dataset is the most challenging dataset eval-
uated in this work. The Stanford Cars present a con-
siderable image size (compared with CIFAR-10 and
STL10, for example) and many classes with just a few
samples per class. These characteristics may explain
this result. The Geological Images dataset shares
some of the properties of the Stanford Cars dataset.
Still, it presents fewer classes and has more images
per class, in general.

The investigation presented in this work can pro-
vide evidence supporting the choice of transfer learn-
ing models in image classification tasks in “real-
world” datasets such as the geological dataset. Since
our evaluation also covered other image datasets with
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different characteristics, it can suggest reasonable
model choices in other domains.

In future works, it is important to expand the anal-
ysis by including other image datasets to make the
analysis more comprehensive. Besides that, the in-
vestigation can also be expanded to include more pre-
trained models that eventually were not considered in
the scope of this work. Furthermore, future works
could also investigate the relationship between the un-
derlying principles of each architecture, the properties
of the datasets used in the pre-training of these mod-
els, and the properties of the target datasets in which
the pre-trained models are applied to extract features.
This investigation can reveal insights into what makes
the pre-trained model best suited for each task.
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