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Abstract: The global push for higher renewable energy production is driven by concerns about climate change, pollution, 
and diminishing fossil fuel reserves. Governments, businesses, and communities worldwide prioritize cleaner 
energy sources like solar, wind, and hydroelectric, over traditional fuels. Technological advancements 
enhancing efficiency and cost-effectiveness have made renewables more competitive, catalyzing their 
growing dominance in the energy market. In this context, renewable energy forecasting models are 
fundamental for both operators of the energy market called energy aggregators, and prosumers for different 
reasons like planning, decision-making, energy sales optimization, and investment evaluation. Therefore, the 
present work aimed to develop a machine learning model designed for multi-step hydropower forecasting of 
plants integrated into Water Distribution Systems (WDSs).  The Alcantara 1 Hydroelectric Plant, situated in 
Italy, was utilized as the case study. This plant generates electricity from the water flow utilized for municipal 
water supply, which is then sold to the medium voltage network, resulting in substantial remuneration. This 
innovative approach utilizes previously unused architectures like TCN and N-Beats, to provide multi-step 
hydropower forecasting for WDS-integrated plants, a special category of systems for which models have not 
yet been developed. Results indicate TCN as the most accurate model for addressing the proposed task. 

1 INTRODUCTION 

In the last few years, the energy sector has been 
featured by an increasing need for renewables and 
energy supply diversification as well as for 
continuous technological progress (Borozan and 
Pekanov Starcevic, 2021); the current global trend is 
to increase the proportion of renewable energy 
production.  

Worldwide, governments, companies, and 
communities are increasingly prioritizing cleaner and 
more sustainable energy sources—such as solar, 
wind, hydroelectric, geothermal, and biomass—over 
traditional fossil fuels. Climate change, pollution, and 
the depletion of finite fossil fuel reserves have 
prompted a shift toward cleaner energy sources that 
have a significantly lower impact on the environment. 
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In response to these concerns, governments are 
implementing policies and regulations to incentivize 
and accelerate the adoption of renewable energy 
technologies (Kerscher and Arboleya, 2022). 
Additionally, there is a noticeable increase in 
investment, both public and private, in renewable 
energy infrastructure and research and development 
initiatives.  

This transitional phase owes its feasibility to 
technological advancements that made renewable 
energy sources more efficient and cost-effective. This 
progress has contributed to their increased 
competitiveness in the energy market, further driving 
the shift toward renewables. 
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1.1 Energy Market 

The traditional and modern energy markets differ 
significantly in various aspects, including their 
infrastructure, sources of energy, market dynamics, 
and technological advancements. 

In the traditional energy market model, large 
centralized power plants (such as nuclear and coal-
fired plants) typically monopolize energy production. 
Energy flows in a unidirectional manner from these 
centralized producers through the grid to consumers. 
The market is often regulated, with utilities playing a 
significant role in energy generation, transmission, 
and distribution. Notably, electricity customers do not 
actively participate in the electricity market (Kerscher 
and Arboleya, 2022). 

Modern energy markets, however, embrace a 
more decentralized approach, incorporating multiple 
small-scale renewable energy sources like solar 
panels, wind turbines, and hydroelectric plants, 
alongside demand-response resources, to contribute 
to the energy mix. These advancements in renewable 
energy have facilitated a shift in energy generation 
capacity closer to consumption points. The 
coordination of generation and demand in the electric 
power system is crucial, especially in managing a 
greater number of active consumers and what are 
termed ‘prosumers’—consumers who both consume 
and produce electricity within the grid (Hernandez-
Matheus et al., 2022). 

To facilitate this coordination, energy aggregators 
play a crucial role. These entities integrate different 
energy sources, allowing them to participate in 
energy trading and contribute to grid flexibility. 
Serving as intermediaries between prosumers and 
electricity markets, they offer competitive pricing and 
streamline the buying and selling of energy services 
(Iria and Soares, 2023; Kerscher and Arboleya, 2022; 
Khajeh et al., 2020; Marneris et al., 2023). 

1.2 Paper Aim and Motivation 

Aggregators engage directly in the modern wholesale 
electricity market through three primary foundations 
(Hernandez-Matheus et al., 2022): 
 employing optimal bidding strategies and 

pertinent optimization techniques; 
 utilizing advanced forecasting methods; 
 leveraging spatial aggregation (known as the 

‘portfolio effect’), which inherently minimizes 
the variability and uncertainty in renewable 
energy sources production. 

 

This paper specifically emphasizes the second 
point, particularly the development of renewable 
energy production forecasting models. The models 
employed are machine learning models focused on 
hydropower forecasting of plants inserted into a 
Water Distribution System (WDS). 

A particular case of study is considered: Alcantara 
1 Hydroelectric Plant, located in the region of Sicily, 
in Italy. The plant generates electricity from the flow 
of water used for municipal water supply. The 
electricity produced is sold to the medium voltage 
network, allowing for favorable remuneration and 
contributing significantly to reducing the high costs 
associated with electricity consumption in WDSs. In 
Section 3, a deeper description of the case study will 
be provided. 

In this context, the forecasting models serve the 
interests of both aggregators and hydropower 
prosumers, catering to diverse purposes such as 
planning, decision-making, and optimizing energy 
sales in the market (Ahmad et al., 2020; Barzola-
Monteses et al., 2022; Hernandez-Matheus et al., 
2022). Accurate forecasts play a fundamental role in 
effectively planning energy sales within the market. 
This accuracy contributes to maximizing profits 
through informed decisions on the timing and 
quantity of energy to sell. Forecasting energy 
production facilitates resource allocation by aiding 
the management of maintenance schedules, 
optimizing water flow, and ensuring efficient 
resource utilization to meet energy demands. The 
reliability of these forecasts reduces risks associated 
with overestimating or underestimating energy 
production, enhancing risk management in trading 
operations and financial planning. Moreover, 
predicting energy generation supports grid 
management by providing insights into expected 
supply, assisting in the balancing of the grid supply 
and demand dynamics. 

This paper presents an extended version of the 
work developed in (Di Grande et al., 2023a). The 
authors have enhanced the earlier research by 
providing a more accurate literature review and by 
testing the machine learning algorithms for multi-
step-ahead forecasting. 

According to the aim of the paper, just pointed 
out, the paper is structured as it follows. Section 2 
gives an overview of the related work present in the 
current literature; Section 3 highlights the methods 
and algorithms utilized in this study; Section 4 details 
and deliberates upon the attained results; Section 5 
will provide final remarks and prospects for future 
works. 
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2 RELATED WORKS 

The main distinction between WDS-integrated and 
traditional plants lies in their purpose and location. 

WDS-integrated plants produce electricity by 
utilizing water flow from sources serving other 
functions, like municipal water supply or irrigation. 
As a result, their primary role revolves around water 
distribution. On the contrary, traditional plants are 
primarily designed for power generation, often 
harnessing significant water flow from large 
reservoirs to generate substantial grid power. WDS-
integrated facilities strategically position themselves 
within or near existing water distribution systems, 
while conventional hydroelectric plants are typically 
found in areas abundant in natural water resources, 
like rivers or large bodies of water, where dams can 
be constructed for water storage and subsequent 
power generation. 

During the last years, the energy sector has 
featured an increasing digitalization, for example, in 
terms of the metering and control of energy, or the use 
of technologies such as big data applications and 
artificial intelligence (Hernandez-Matheus et al., 
2022; Kezunovic et al., 2020; Weigel and Fischedick, 
2019). In particular, (Mosavi et al., 2019) provided an 
overview of the use of artificial intelligence in the 
energy sector, demonstrating that machine learning 
can greatly increase the accuracy of energy 
production forecasting. For system operators of 
electrical grids, energy production forecasting is of 
great importance. Indeed, for daily operation tasks 
short-term time horizon of prediction is required, 
while for grid planning and investment evaluation, a 
medium-long-term horizon is preferred (Ahmad et 
al., 2020; Hernandez-Matheus et al., 2022). 

In the same way, energy production forecasting is 
fundamental for prosumers, like companies operating 
in the WDS sector with the integration of renewable 
energy plants. In WDSs, the digitalization phase is 
quite recent. The Water 4.0 industrial revolution has 
introduced different features, such as automation, 
increased integration of sensors, the Internet of 
Things, Big Data analysis, and Artificial Intelligence 
(Adedeji et al., 2022). In literature, three of the most 
famous applications of artificial intelligence in WDSs 
are anomaly detection, water demand forecasting, and 
energy consumption forecasting (Adedeji et al., 2022; 
Berlotti et al., 2023; Di Grande et al., 2023b). The 
energy used by these systems to deliver water is high, 
indeed approximately 7%-8% of the total energy 
generated worldwide is used for the production and 
distribution of drinking water (Sharif et al., 2019). A 
great part of this energy comes from fossil fuels but 

driven by goals of sustainability, cost savings, and 
adherence to environmental regulations, companies 
today are motivated to reduce energy consumption. 
As reported in (Alhendi et al., 2022; Yi et al., 2022), 
energy consumption forecasting in WDSs is a 
consolidated field for different tasks, such as energy 
optimization, identification of anomalous 
consumption patterns, energy load plans for 
estimating anticipated costs and assessing the 
capacity of the system to meet the required demands. 
Therefore different works exist about the energy 
consumption forecasting in WDSs (Bagherzadeh et 
al., 2021; Di Grande et al., 2023b; Oliveira et al., 
2021; Yi et al., 2022). 

The forecasting of hydropower generated in 
WDSs, instead, is an unexplored topic, maybe 
because the construction of hydroelectric WDS-
integrated plants is relatively recent (Sari et al., 2018).  

The literature presents many works about 
forecasting models for traditional plants. Statistical 
and neural network models are the most used in this 
field. In (Barzola-Monteses et al., 2022), the authors 
employed artificial neural network (ANN) models, 
such as MLP (Multilayer Perceptron), LSTM (Long 
Short-Term Memory), and seq2seq LSTM (sequence-
to-sequence Long Short-Term Memory), to forecast 
hydroelectric output in Ecuador over the short and 
medium term. They illustrated that ANN models 
exhibit enhanced accuracy in predicting hydropower 
generation, even when the dataset is not extensive. 
Moreover, they conducted an extensive literature 
review encompassing similar studies. Case studies 
from various regions worldwide, as cited in (Jung et 
al., 2021; Kostić et al., 2016; Lopes et al., 2019; Zhou 
et al., 2020), showcase the use of ANN models for 
hydropower prediction, highlighting their efficacy in 
addressing this specific task. The algorithms used are 
DeepHydro recurrent neural networks and MLP. 
These researchers underscored the superior 
performance of ANN models compared to statistical 
approaches in multivariate time series problems. 
Conversely, the studies outlined in (Mite and 
Barzola-Monteses, 2018; Polprasert et al., 2021) 
serve as instances demonstrating the application of 
statistical models, AutoRegressive Integrated 
Moving Average (ARIMA) model, to accomplish the 
same forecasting task. 

To the best of the authors’ knowledge, literatures 
features the absence of papers about multi-step ahead 
hydropower generation forecasting in WDSs-
integrated plants. Furthermore, the authors would like 
to point out that, there is a dearth of similar studies in 
existing literature that have applied the Neural Basis 
Expansion Analysis for Time Series (N-Beats) and 
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the Temporal Convolutional Network (TCN) 
algorithms within contexts related to hydropower 
forecasting, despite their strong performance in the 
broader field of water and energy forecasting (Di 
Grande et al., 2023b; Guo et al., 2022; Lin et al., 
2020; Xu et al., 2022). Consequently, this paper aims 
to showcase the viability of employing these 
innovative architectures for the intended forecasting 
task. Furthermore, unlike prevailing literature that 
predominantly focuses on the general run-of-river or 
storage-reservoir-based systems (Barzola-Monteses 
et al., 2022), the proposed methodology is designed 
to apply to all WDSs-integrated plants. 

3 EXPERIMENTAL SETUP 

In this section, the case study will be described, 
including an outline of the project steps such as data 
collection, preprocessing, and model development 
and evaluation. 

3.1 Case Study 

This study utilizes data obtained from the Alcantara 1 
Hydroelectric Plant, situated in Taormina, Sicily, 
Italy, and operated by Siciliacque S.p.A. 
(https://www.siciliacquespa.it/). This hydroelectric 
plant, with a maximum power of 1.1 megawatts, 
holds significance due to its integration within a 
WDS. The Alcantara aqueduct, spanning 65 
kilometers, ensures a consistent flow rate of 600 liters 
per second. 

One critical challenge faced by WDSs is the 
potential for excessive pressure, posing a risk to 
infrastructure integrity and leading to pipeline leaks 
or bursts. Previously, Siciliacque managed hydraulic 
jumps by dissipating them through tanks and valves. 
However, the implementation of integrated turbines 
now harnesses these hydraulic jumps to generate 
electricity. Another significant concern within WDSs 
is the considerable energy expenditure. Therefore, 
Siciliacque constructed this hydroelectric plant for 
electricity generation, which is then channeled into 
the medium voltage network and incentivized 
through a tariff scheme, effectively reducing their 
substantial electricity consumption expenses. 
Notably, integrating this hydropower plant into the 
WDS does not compromise the primary function of 
the system, which is to provide water to communities. 
Following electricity production, the water 
discharged from the plant is directed into a lower tank 
and subsequently conveyed through pipelines to 61 
delivery points (tanks). These delivery points cater to 

the Municipalities of the Ionian Messina Strip, 
ensuring continued water supply. 

The necessity for more meticulous and rational 
energy management, driven by the significance of 
electricity costs and environmental impacts, 
motivated Siciliacque to become one of the 
pioneering companies in Italy to attain the Energy 
Management System certification (ISO 50001). 

3.2 Dataset 

The paper aimed to predict the hydropower generated 
by the plant, necessitating access to hydropower-
related information. In the dataset provided by 
Siciliacque, the hydropower variable was only 
partially available due to various missing values 
caused by malfunctions or maintenance of the plant. 
To derive a variable accounting for normal 
hydropower generation, excluding malfunctions or 
maintenance events, other dataset variables were 
utilized to calculate the target variable. 

Modern hydroelectric plants harness mechanical 
potential energy within a water flow at a specific 
elevation relative to the turbine’s position. 
Consequently, the power of the hydraulic system 
relies on three primary factors: the elevation 
difference between the water resource level and its 
level after passing through the turbine (head of 
water), the mass of water passing through the 
machine per unit time (inflow), and the efficiency of 
the hydroelectric system. The efficiency of the 
hydroelectric system is contingent upon factors such 
as turbine type and efficiency, alternator 
performance, mechanical transmissions, and 
electromechanical components contributing to energy 
production losses. Additionally, the Earth’s 
gravitational acceleration value must be considered. 

Therefore, as outlined in (1), the hydroelectric 
plant’s power (P) in kilowatts (kW) is computed by 
multiplying four key input variables: Earth’s 
gravitational acceleration (9.8 meters per second 
squared, m/s²), inflow denoted as Q in cubic meters 
per second (m³/s), the net head (Hn) in meters (m), and 
the efficiency (η). 

The head and inflow information was derived 
from two time series collected from the plant’s 
commissioning from January 2019 to May 2023, with 
a 5-minute timestep. The efficiency was set to 0.9, as 
suggested by the plant operators. As the head of water 
was measured in bars and the inflow in liters per 
second (l/s), a unit conversion was performed. 
Specifically, the head was converted into meters 
using the conversion factor where 1 bar equals 
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10.1974 meters of water, while the inflow was 
converted to cubic meters per second. 

P[kW] = 9.8[m/s2] × Q[m3/s] × Hn[m] × η (1)

Then, noises were detected through a boxplot and 
were deleted from the dataset. A boxplot is a 
graphical method used to display the distribution, 
variation, and potential outliers within a dataset. It 
represents the quartiles (25th, 50th, and 75th 
percentiles) of the data, along with the minimum and 
maximum values or outliers. This method facilitated 
the identification of outliers or irregular data points 
that significantly deviated from the typical range of 
values within the dataset. Addressing these outliers 
was crucial as they could potentially distort the 
analysis or modeling outcomes (Arimie et al., 2020; 
Kolbaşı and Ünsal, 2021). Therefore, once these 
outliers were visually identified using the boxplot, 
they were deleted from the dataset to ensure the 
integrity and accuracy of subsequent procedures. 

Finally, as the authors were focused on monthly 
hydropower forecasting, data were aggregated using 
the mean operator to create a monthly timestep. In 
particular, the ‘resample(‘M’)’ Python function was 
applied to the hydropower time series to change the 
frequency of the data. In this case, data were 
resampled to a new frequency based on months (‘M’), 
indeed the original 5-minute data were segmented 
into separate monthly groups. After resampling the 
data to a monthly frequency, the ‘.mean()’ function 
calculated the average value for each month within 
the dataset. The result of this step was a new series 
where each data point corresponds to the average 
hydropower value within each month of the original 
dataset. 

Since the authors aimed to solve a univariate time 
series problem by predicting the hydropower based 
solely on past hydropower values, the final dataset 
was composed of the time and the hydropower 
columns, and 53 rows containing hydropower data in 
each month from January 2019 to May 2023. 

After the preprocessing steps, the dataset was split 
into a training set and a test set. The training set 
comprised the first 80% of the dataset, encompassing 
monthly observations from January 2019 to June 
2022. Meanwhile, the remaining 20% of 
observations, covering the period from July 2022 to 
May 2023, constituted the test set. 

3.3 Models Development 

Several machine learning models were evaluated to 
identify the most suitable one for the current 
univariate time series problem. In univariate time 

series problems, only a single variable serves as both 
the input and output of the model. In this specific 
case, the variable of interest is the hydropower 
production. 

To demonstrate the superior performance of the 
selected complex models compared to simpler ones, 
the seasonal AutoRegressive Integrated Moving 
Average (ARIMA) model was chosen as the baseline 
model. The models examined encompass the 
ARIMA, the Neural Basis Expansion Analysis for 
Time Series (N-Beats), and the Temporal 
Convolutional Network (TCN). 

All machine learning models were performed 
through Darts (ARIMA — Darts Documentation, n.d.; 
N-BEATS — Darts Documentation, n.d.; Temporal 
Convolutional Network — Darts Documentation, 
n.d.), a Python machine learning library specific for 
time series analysis, in particular for time series 
forecasting (Herzen et al., 2023). The powerful 
feature of Darts is to provide modern machine 
learning functionalities with a user-friendly and easy-
to-use API design (Herzen et al., 2023). Since 
hyperparameter optimization is crucial in machine 
learning model development, the best set of 
hyperparameters was found using the Optuna Python 
library (Optuna: A Hyperparameter Optimization 
Framework — Optuna 3.5.0 Documentation, n.d.), 
encompassing the exploration of 600 models. 

Before performing hyperparameter optimization 
for ARIMA, the ‘statsmodels’ library was utilized to 
conduct seasonal decomposition of the time series 
data, followed by visualization of the decomposed 
components. Subsequently, an optimization process 
was carried out for each hyperparameter of the model, 
searching for optimal values within the range of 0 to 
2 for all parameters. 

For both N-Beats and TCN, some 
hyperparameters that were used for training were set 
as constants. The batch size was set to 1, and the max 
n epochs were set to 30. The output length was set to 
3 because the purpose of the paper is to do a multi-
step ahead forecast producing the forecasting for the 
subsequent three months. Finally, the objective 
function to optimize hyperparameters was to 
minimize the Symmetric Mean Absolute Percentage 
Error (SMAPE). 

For N-Beats, the range of values to search for each 
hyperparameter is as follows: input chunk length 
ranging from 10 to 12, number of stacks from 25 to 
35, number of blocks from 1 to 3, number of layers 
from 2 to 6, and dropout from 0.0 to 0.5 with step of 
0.05.  

For TCN, the range of values includes input chunk 
length ranging from 10 to 12, kernel size from 2 to 9, 
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number of filters from 16 to 512, number of layers 
from 2 to 10, dilation base from 2 to 8, weight 
normalization as either True or False, and dropout 
ranging from 0.0 to 0.5 with an increment of 0.05. 

3.4 Models Evaluation 

A total of 600 distinct models were created and vali-
dated; they were achieved considering the three models 
described before, tuning the relevant parameters.  

Considering the time series nature of the data, a 
specific validation method was adopted. Time series 
data possess autocorrelation, signifying that 
observations close in time are correlated. Traditional 
cross-validation techniques (e.g., K-fold, Shuffle 
split) are not suitable as they assume sample 
independence and identical distribution. Since 
temporal relationship in time series data needs to be 
preserved during testing, a viable solution is 
employing Walk Forward Validation (WFV), a 
rolling basis cross-validation technique (Barzola-
Monteses et al., 2022; Bergmeir and Benítez, 2012; 
Ngoc et al., 2021).  

Darts offers two functions catering to this need: 
‘historical_forecasts()’ and ‘backtest()’. 
‘historical_forecasts()’ generates iterative training 
sets by extending from the series beginning or 
maintaining a fixed length (‘train_length’). The 
model trains on this set, forecasts a length equal to 
‘forecast_horizon’, and shifts the end of the training 
set forward by 'stride' time steps. The 'start' parameter 
was set to '2022-07', marking the initial date of the 
test set. The 'forecast_horizon' was set to 3 for the 
multi-step-ahead forecasts, and 'stride' was set to 1 
ensuring consecutive predictions and validations. 
With 'retrain' set to True, the model updates and 
retrains with new data after each forecast. Therefore, 
the validation works by training the model with the 
first x observations, and testing it with the next x + 1, 
x + 2, and x + 3 observations. The 'backtest()' directly 
returns the average error metric post-forecasting. The 
principal evaluation metric used was the SMAPE. 
Additional metrics supported the decision-making 
process: Mean Absolute Percentage Error (MAPE), 
Root Mean Squared Scaled Error (RMSSE), and 
Mean Absolute Scaled Error (MASE) (Botchkarev, 
2019; Koutsandreas et al., 2022). Lower values across 
these metrics signify better model performance. 

4 RESULTS AND DISCUSSION 

The aim of this section is the presentation and 
discussion of the main results achieved in the research 

carried out by the authors. A two-step evaluation 
procedure has been considered, made up of a  
statistical analysis of the data set and the analysis of 
forecasts achieved by the models described in the 
previous section. 

The statistical analysis was aimed at 
understanding the underlying patterns and structures 
within the time series data; the study of the behavior 
of the time series during the years to see if there are 
specific patterns was performed; a time series 
seasonal decomposition was performed to reach this 
goal. 

The seasonal decomposition was applied to break 
down the hydropower generation time series into its 
constituent components trend and seasonal. Figure 1 
represents the observed time series, the detected 
trend, and the seasonal pattern. 

 
Figure 1: Decomposition of hydropower production time 
series. 

The trend component within a time series offers a 
comprehensive view of the underlying behavior or 
trajectory observed in the dataset over an extended 
period. It reflects the long-term movement, 
identifying whether the data generally display an 
upward, downward, or relatively stable pattern over 
time. An upward trend signifies consistent growth or 
increase in the time series, while a downward trend 
indicates a decline or decrease. 

Upon close inspection of the dataset spanning 
from 2019 to 2021, an evident declining trend 
emerges, suggesting a consistent decrease in the 
observed values over this timeframe. However, an 
intriguing shift occurs thereafter, marking a reversal 
in the trend. From 2021 to 2022, the dataset reflects 
an increasing pattern, signifying a notable rise in 
values. Subsequently, the trend reverts to a declining 
trajectory, indicating a return to decreasing values. 
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The behavior of seasonality and trend is contingent 
upon the variability of power, which in turn relies on 
the fluctuating flow rate, a variable attribute owing to 
its source. The flow rate fluctuates due to its origin 
from the slopes of Mount Etna and is subject to the 
influence of rainfall and the melting of snow. As a 
result, not only does the behavior differ each month but 
also across years distinguished by varying levels of 
rainfall and temperatures. These factors impact the 
creation and melting of snow, thereby contributing to 
the variability observed over time. 

Shifting the focus to the seasonal component, it 
captures the recurring, periodic patterns or 
seasonality inherent within the time series data. This 
component reveals cyclicality or periodic fluctuations 
that occur regularly within specific timeframes, such 
as daily, weekly, monthly, or yearly cycles. Peaks and 
troughs within the seasonal component correspond to 
the high and low points recurring within each 
seasonal cycle. 

Notably, the seasonal pattern within this dataset 
exhibits a yearly recurrence, wherein the identified 
patterns tend to replicate themselves, presenting 
similar characteristics and fluctuations within each 
annual cycle. This seasonality can be particularly 
valuable for understanding and forecasting trends tied 
to specific time periods or seasons, aiding in better 
predictions or analysis within seasonal contexts. 

Domain experts working at Siciliacque validated 
the existence of a noticeable seasonal pattern, 
providing and confirming detailed insights into the 
variations observed in the flow rate directed in input to 
the hydropower plant. The flow rate exhibits variability 
ranging from 200 l/s to 1000 l/s, peaking typically in 
May or June. Subsequently, from June onward, it 
steadily declines, reaching its lowest production of 200 
liters in months such as September or October, before 
gradually rising again toward the peak. 

After the statistical analysis results, models 
described in Section 3 were considered, testing 
various combinations of algorithms and 
hyperparameters. For each algorithm, the best-
performing model was detected. The average 
performance metrics of the three models are reported 
in Table 1. 

The best TCN model obtained operates with the 
following hyperparameters: in_len = 11, kernel_size 
= 7, num_filters = 255, num_layers = 3, dilation_base 
= 7, weight_norm = True, dropout = 0.4. The 
hyperparameters of the best N-Beats model are in_len 
= 11, num_stacks = 27, num_blocks = 2, num_layers 
= 3, and dropout = 0.0. Instead, the parameters of the 
top ARIMA model are p = 0, d = 0, q = 0, P = 1, D = 
0, and Q = 2, with a seasonal period equal to 12. 

Table 1: Average performance metrics of the three best-
performing models for each algorithm. 

Metrics TCN NBEATS ARIMA 
SMAPE 5.913 11.763 11.614 
MAPE 5.911 11.733 11.484 
RMSSE 0.674 0.737 0.805 
MASE 0.896 1.034 1.12 

As reported in Table 1, TCN achieved the lowest 
SMAPE of 5.913, indicating better accuracy in 
forecasting compared to N-Beats (11.763) and 
ARIMA (11.614). Lower SMAPE values signify 
better accuracy and closeness of predicted values to 
the actual values. Similarly, TCN has the lowest 
MAPE (5.911), showcasing superior accuracy 
compared to N-Beats (11.733) and ARIMA (11.484). 
TCN once again displays the lowest RMSSE (0.674), 
indicating better performance in capturing both the 
magnitude and relative variations in the forecasted 
values compared to the actual values. N-Beats 
follows with an RMSSE of 0.737, and ARIMA with 
0.805. TCN demonstrates the lowest MASE (0.896), 
indicating better forecasting performance concerning 
the scale of the errors compared to N-Beats (1.034) 
and ARIMA (1.12).  

Across all four metrics, TCN consistently 
outperforms N-Beats and ARIMA, showcasing 
superior accuracy and precision in its predictions for 
the given dataset. With regards to N-Beats and 
ARIMA, the former has higher SMAPE (11.763) and 
MAPE (11.733) compared to the latter (SMAPE: 
11.614, MAPE: 11.484), indicating that ARIMA 
performs slightly better in terms of predicting closer 
values to the actual ones. At the same time, N-Beats 
demonstrates a lower RMSSE (0.737) and MASE 
(1.034) compared to ARIMA (RMSSE: 0.805, 
MASE: 1.12), implying that N-Beats performs 
slightly better in capturing the magnitude and relative 
variations between forecasted and actual values. 

As explained before in Section 3.4, after training 
the model with a certain number of observations, the 
model was tested multiple times by making 
predictions for subsequent time periods while 
incrementally updating the training dataset. During 
each test iteration, the model generates forecasts for 
the future. 

In this particular case, for every step forward in 
the dataset, the model produces three forecasts for the 
subsequent three months. Based on the length of the 
test dataset, each multi-step forecasting model was 
tested nine times, each time producing three forecasts 
for subsequent months, resulting in a total of 27 
individual forecasts (9 test iterations multiplied by 3 
forecasts per iteration). 
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Table 2 will report more precise results regarding 
the performance of the TCN model. 

Table 2: SMAPE of TCN model for each test iteration. 

1st month 2nd month 3rd month SMAPE 
2022-07 2022-08 2022-09 5.333 
2022-08 2022-09 2022-10 6.084 
2022-09 2022-10 2022-11 5.483 
2022-10 2022-11 2022-12 4.638 
2022-11 2022-12 2023-01 8.196 
2022-12 2023-01 2023-02 6.207 
2023-01 2023-02 2023-03 3.239 
2023-02 2023-03 2023-04 6.17 
2023-03 2023-04 2023-05 7.974 

As reported in Table 2, The SMAPE values range 
between 3 and 8, indicating the percentage of error 
between the predicted and actual values for each 
forecasted three-month period. Lower SMAPE 
values, such as 3.239 and 4.638, suggest higher 
accuracy in prediction for those particular forecasted 
periods. Most SMAPE values are below 8, suggesting 
a very good overall performance in predicting 
hydropower generation. Conversely, higher SMAPE 
values, for instance, 8.196 and 7.974, indicate 
relatively larger discrepancies between the model 
predictions and the actual hydropower generation for 
those periods. These occasional spikes in SMAPE 
highlight potential challenges or outliers where the 
model struggled to accurately predict hydropower 
generation. 

Therefore, the model appears to perform 
relatively well in some forecasted periods, 
showcasing lower SMAPE values, and indicating 
higher prediction accuracy. However, certain time 
intervals demonstrate higher error percentages, 
suggesting challenges or limitations in accurately 
forecasting hydropower generation during those 
periods. Further analysis will be done to understand 
the specific factors contributing to the discrepancies 
observed during certain forecasted periods and to 
potentially refine the model for improved accuracy 
across all forecast intervals. 

Table 3 and Table 4 will report more precise 
results regarding the performance of the N-Beats and 
the ARIMA model. 

As reported in Table 3, for N-Beats moderate 
SMAPE values range from 8 to 16, indicating varying 
levels of forecasting accuracy across different 
periods. In Table 4, SMAPE values range from 4 to 
19, showing higher and lower accuracy with respect 
to N-Beats in certain periods. 

Table 3: SMAPE of N-Beats model for each test iteration. 

1st month 2nd month 3rd month SMAPE 
2022-07 2022-08 2022-09 13.717 
2022-08 2022-09 2022-10 8.576 
2022-09 2022-10 2022-11 10.555 
2022-10 2022-11 2022-12 13.817 
2022-11 2022-12 2023-01 15.810 
2022-12 2023-01 2023-02 11.650 
2023-01 2023-02 2023-03 15.433 
2023-02 2023-03 2023-04 7.905 
2023-03 2023-04 2023-05 8.401 

Table 4: SMAPE of ARIMA model for each test iteration. 

1st month 2nd month 3rd month SMAPE 
2022-07 2022-08 2022-09 16.834 
2022-08 2022-09 2022-10 19.083 
2022-09 2022-10 2022-11 14.399 
2022-10 2022-11 2022-12 8.733 
2022-11 2022-12 2023-01 8.806 
2022-12 2023-01 2023-02 7.319 
2023-01 2023-02 2023-03 4.077 
2023-02 2023-03 2023-04 12.191 
2023-03 2023-04 2023-05 13.085 

Comparing the performance results of the three 
models, for the TCN model, although mostly stable, 
there are minor fluctuations in SMAPE values across 
different forecast intervals. Overall, this model 
demonstrates relatively stable and comparatively 
accurate forecasting across the periods. In N-Beats 
models, while some periods exhibit higher accuracy 
(e.g., the 2023-02 to 2023-04 interval), others display 
comparatively higher forecasting errors (e.g., 2022-
11 to 2023-01). The accuracy of this model varies 
more than the one of the TCN model, showing 
fluctuations in forecasting precision. For which 
regards the ARIMA model, it demonstrates higher 
SMAPE values across some forecast intervals (e.g., 
the 2022-07 to 2022-10 interval), implying less 
accurate predictions compared to the others. 
Furthermore, it shows significant variations in error 
rates among the different three-month periods. 

In conclusion, this is the last ranking of models in 
terms of forecasting accuracy: 
 TCN, with the most consistent and accurate 

predictions; 
 N-Beats, showing moderate accuracy with 

varying performance across different intervals; 
 ARIMA, displaying higher errors. 

Figure 2, Figure 3, and Figure 4 depict segments 
of the observed time series spanning from September 
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2021 to December 2022, alongside the predictions 
generated by three forecasting models in their second, 
third, and fourth step iterations. Specifically, the top 
section of each image showcases predictions for a 
three-month period spanning from August 2022 to 
October 2022; the middle section displays predictions 
from September 2022 to November 2022; and the 
bottom section exhibits predictions from October 
2022 to December 2023. 

 

 
Figure 2: Observed hydropower time series and forecasts of 
TCN model for the second, third, and fourth test iteration. 

 
Figure 3: Observed hydropower time series and forecasts of 
N-Beats model for the second, third, and fourth test 
iteration. 

Due to lack of space, a portion of the results is 
displayed through images. Anyway, it is evident that 
the TCN forecasts are more accurate than those of the 
other models within the same time period. 

 
 

 

 
Figure 4: Observed hydropower time series and forecasts of 
ARIMA model for the second, third, and fourth test 
iteration. 

5 CONCLUSIONS 

Hydropower forecasting models are fundamental for 
energy aggregators and hydropower prosumers for 
planning, decision-making, energy sales optimiza- 
tion, and investment evaluation. Accurate forecasts 
are vital for planning energy sales, maximizing 
profits, and optimizing resource allocation. They 
reduce risks in trading and aid grid management by 
providing insights into expected supply and demand 
dynamics. 

This paper introduces a multi-step univariate 
time-series model designed for hydropower 
forecasting. The novelty of this approach lies in 
employing previously unused models, such as TCN 
and N-Beats, within the field of hydropower 
forecasting, specifically tailored for a distinct 
category of hydropower plants integrated into Water 
Distribution Systems (WDSs). 

To illustrate the viability of this method, the study 
focuses on the Alcantara 1 Hydroelectric plant 
situated in Sicily, Italy. This plant operates within a 
WDS, utilizing water flow from the municipal supply 
for electricity generation. The generated electricity is 
then sold to the medium voltage network, securing a 
favorable remuneration. This revenue significantly 
mitigates the substantial costs of WDSs associated 
with electricity consumption. 

Following comparisons among various models, 
involving a mix of complex and baseline algorithms 
along with different sets of hyperparameters using a 
walk-forward validation process, performance 
metrics confirmed the viability of employing the TCN 
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algorithm. Its notably high accuracy underscores its 
feasibility for multi-step hydropower forecasting. 

Future works involve testing and comparing 
alternative machine learning algorithms while 
developing different forecasting models utilizing 
varied data aggregation frequencies—hourly, daily, 
and weekly. Additionally, there will be evaluations of 
multi-variate time series forecasting models 
incorporating factors like weather measurements. 
Moreover, acknowledging the existence of additional 
hydroelectric plants integrated into WDSs across 
various areas of Sicily, another study will be conducted 
to create and compare global and local models. 
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