Micro Frontend-Based Development: Concepts, Motivations,

Implementation Principles, and an Experience Report

Fernando Rodrigues de Moraes'>®?, Gabriel Nagassaki Campos',

Nathalia Rodrigues de Almeida' and Frank José Affonso! ©°

I Department of Statistics, Applied Mathematics and Computation, Sdo Paulo State University — UNESP,

PO Box 178, Rio Claro, Sdo Paulo, 13506-900, Brazil

2yR Software, 59 Narciso Gongalves Street, Jardim Cidade Universitdria, Limeira, Sdo Paulo, 13484-646, Brazil

Keywords:

Abstract:

Micro Frontend Architecture, Development Approaches, Web Development.

Micro frontend is an architectural style that enables us to build large software systems by combining inde-
pendent micro applications, which can boost different aspects related to the development (e.g., innovation,
continuous software delivery), besides increasing the flexibility and scalability of the final application itself.
Although there are numerous benefits related to this architectural style, some companies are still hesitant to
adopt development based on micro frontends because of a lack of knowledge about concepts, development ap-
proaches, architectural models, and organizational aspects of the company. This paper presents the results of a
Systematic Mapping Study (SMS) on micro frontends based on 16 studies. The results were synthesized in an
important overview that addressed concepts, aspects related to development (i.e., development approaches, ar-
chitectural models, and company organization), and micro frontend trade-offs based on three scenarios. Next,
we present a case study on an inventory control application based on the knowledge of this SMS, analyzing the
development under three approaches (i.e., Build-time, Frameworkless, and Framework-based). As result, we
observed our paper has a good perspective to contribute efficiently to the micro frontend domain by providing

an overview of this research area and an experience report for researchers and practitioners.

1 INTRODUCTION

Designing the presentation layer of a contemporary
Web application is a vital task for software develop-
ment companies. Development teams have shown in-
terest in exploring innovative approaches to create,
deploy, and maintain applications efficiently, enabling
companies to swiftly and effectively provide value to
their customers. In this direction, micro frontends are
increasing in popularity in small and large companies,
because this technology enables to split off a mono-
lithic frontend into independent and micro applica-
tions, developing the same frontend application by
different teams (Bian et al., 2022; Mena et al., 2019;
Mannisto et al., 2023; Peltonen et al., 2021).
Regarding development, the main purpose of mi-
cro frontends is to organize an application (i.e., Web-
site or Web app) as a composition of features that
are owned by independent teams, developing its fea-

https://orcid.org/0009-0004-8631-9385
@ nhttps://orcid.org/0000-0002-5784-6248

Moraes, F., Campos, G., Aimeida, N. and Affonso, F.

tures like a full-stack specialist (i.e., from database
to user interface) (Shakil and Zoitl, 2020). In paral-
lel, microservice is an architectural style used to build
distributed applications organized in a collection of
services around business capabilities and indepen-
dently deployable by automated deployment (Lewis
and Fowler, 2014). Analyzing these two technologies,
it can be said that micro frontend extends microser-
vice because employs similar concepts. In short, we
can segment a Web application into individual mod-
ules in a Micro Frontend Architecture (MFA), and
implement them independently. The combination of
these two technologies enables frontend teams a level
of flexibility and quickness analogous to the bene-
fits that microservices offer to backend teams (Mo-
hammed et al., 2022; Lewis and Fowler, 2014; Geers,
2020; Jackson, 2019).

Although there is a relationship between the afore-
mentioned technologies (microservice and MFA), we
observed that MFA is still at a premature stage of
development and requires deeper and more solid in-
vestigation. Despite the notorious volume of docu-

175

Micro Frontend-Based Development: Concepts, Motivations, Implementation Principles, and an Experience Report.

DOI: 10.5220/0012627300003690
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 2, pages 175-184

ISBN: 978-989-758-692-7; ISSN: 2184-4992

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

mentation available on the Web, this information still
does not come from reliable sources, making compa-
nies not feel comfortable using it. This distrust comes
from the lack of establishment of concepts, applica-
tion scenarios, and a clear exposition of benefits that
can be achieved. Furthermore, there is a certain con-
tradiction between the concepts, definitions, and ar-
chitectural models found in these sources of informa-
tion. Thus, as happened with microservices, teams
that were unprepared from a conceptual and techno-
logical point of view had severe difficulties in adopt-
ing the MFA (Soldani et al., 2018).

This paper presents a study on software develop-
ment based on micro frontends, whose research in-
terest was the formulation of concepts, integration
approaches, management aspects (organizational and
development), application scenarios, and micro fron-
tend trade-offs. To establish a fair and broad overview
of the aforementioned interests, we have adopted the
Systematic Mapping Study (SMS) process proposed
by Kitchenham and Charters (2007); Petersen et al.
(2015). Next, based on the established panorama, we
conducted a case study for a inventory control system,
where the following aspects were explored: the or-
ganization of the system concerning the architectural
model; the company’s structural organization about
the adoption of micro frontend architectural style; the
development team’s management; and the experience
report through a case study developed based on three
approaches. Thus, we identify the following contribu-
tions for our paper: (i) a solid panorama of the related
to the development based on micro frontend; (ii) the
main aspects of the management when designing mi-
cro frontend application(s) (MFApp(s)); (iii) the case
study as an experience report for the micro frontend
development based on the integration approaches; and
(iv) the micro frontend trade-offs.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the main concepts related
to development based on micro frontends and related
work. The main findings of our SMS is reported in
Section 3. Section 4 shows the key aspects of mi-
cro frontend development based on the integration ap-
proaches. Section 5 provides a discussion of results
on the main finding. Finally, Section 6 summarizes
our conclusions and perspectives for further research.

2 BACKGROUND AND RELATED
WORK

In this section, we present the background that con-
tributed to the development of our paper. Initially,
concepts of microservices, micro frontends, and three

176

development approaches for micro frontends are pre-
sented. Next, related work on software development
based on micro frontends is addressed.
Microservices and Micro Frontends. According
to Lewis and Fowler (2014), the microservice archi-
tectural style is an approach to developing a single
application based on a suite of small services, each
one running in its process and communicating with
lightweight mechanisms. These services are built
around business capabilities and can be independently
deployable by fully automated deployment. These
features enable teams to be organized around an appli-
cation, besides boosting continuous software delivery.
In parallel, Jackson (2019) defined micro frontends as
“an architectural style where independently deliver-
able frontend applications are composed into a greater
whole”. According to this last author, the main ben-
efits of micro frontends can be summarized in three
features: (i) more cohesive and maintainable code-
bases; (ii) scalable organizations with decoupled and
autonomous teams; and (iii) incremental development
with continuous delivery of software. As observed,
these features represent some of the same advantages
that microservices can provide (Peltonen et al., 2021).
Development Approaches. The development of
applications based on MFA can be conducted
through three integration approaches (Jackson, 2019),
namely: (i) Build-time; (ii) Frameworkless; and
(iii) Framework-based. Before presenting these ap-
proaches, two considerations must be highlighted.
First, in Frameworkless and Framework-based ap-
proaches, the term framework is used or referenced
as an architectural framework for supporting the de-
velopment of software based on micro frontends and
not as a framework for Web development. Second, the
Build-time approach differs from the others because it
does not enable integration at runtime, meaning that
micro frontends are packaged and coupled to the main
application at compile time. Next, we addressed a de-
scription of each approach.

Build-time is the simplest approach to the architec-
tural implementation of micro frontends because it
enables the development of micro applications as
packages. This approach does not depend on a frame-
work or particular implementation because it imports
libraries in a container application, which is respon-
sible for calling each MFA. Although simply, this
approach does not meet the main principles when
compared to microservices features such as language
agnosticism, fault isolation, and independent deliv-
ery of micro frontends container (Stefanovska and
Trajkovik, 2022; Pavlenko et al., 2020; Lewis and
Fowler, 2014; Jackson, 2019).

Micro Frontend-Based Development: Concepts, Motivations, Implementation Principles, and an Experience Report

Frameworkless is a type of approach that does not
require frameworks for software development. Ac-
cording to (Frameworkless, 2023), the lack of knowl-
edge that developers have when adopting a frame-
work and the technical debt that this can generate in
a project has been one reason for adopting this ap-
proach type. Since MFA is technology agnostic, Man-
nisto et al. (2023) reported an experience based on a
Frameworkless approach as a feasible alternative for
small organizations, providing improvements in the
development and deployment of MFAs. In this direc-
tion, we can highlight some elements that can sup-
port this approach, namely: (i) Webpack, a Web ap-
plication packaging tool that can handle Javascript,
HTML (HyperText Markup Language), CSS (Cas-
cading Style Sheet), and images; (ii) Module Feder-
ation, a tool that enables the use of exposed exter-
nal modules, allowing the applications’ remote code
to be consumed to build an integrated application at
runtime; (iii) iFrame, an HTML element that enables
the integration of other HTML elements (e.g., sin-
gle pages, micro frontends); (iv) Web components,
a technology used to create and reuse different Web
components with functionality decoupled from the
code; and (vi) Signal-based Web Components (Ste-
fanovska and Trajkovik, 2022; Nishizu and Kamina,
2022; Pavlenko et al., 2020), a technology that uses
reactive programming paradigm to facilitate the fron-
tend construction with better code organization.

A Framework-based approach enables a prag-
matic and successful implementation according to
guidelines established within an architectural frame-
work used to implement integration between MFAs,
avoiding high effort demands (e.g., time) being used
to design the final product, still providing built-in
mechanisms to overcome anti-patterns solutions, and
exposing APIs and plugins to help teams to achieve a
highly maintainable micro frontend solution.

Drawing a parallel between the approaches pre-
sented in this section, the first two demands that
teams implement their code to sustain an MFA, and
the last one follows the conventions and restrictions
of the frameworks. Although the multi-framework
approach has been discouraged (Geers, 2020), we
found architectural frameworks that enable the in-
tegration of MFAs built in different Web develop-
ment frameworks (e.g., React!), without high efforts
with API design and micro frontend implementation,
namely: (i) single-spa (Single-spa, 2016); (ii) giankun
(Qiankun, 2019); and (iii) Garfish (Garfish, 2021).

As related work, to the best of our knowledge,
there is no paper about software development based
on micro frontends that approaches the interests of in-

Uhttps://react.dev

vestigation reported in Section 3. To ensure the orig-
inality of our paper, we conducted a literature inves-
tigation to establish a solid and complete definition
of micro frontends, besides aspects related to the de-
velopment and real needs to adopt this architectural
style by the companies. The evidence revealed that
the studies available in the literature addressed differ-
ent aspects of the investigation, leaving gaps related
to the micro frontend architectural style itself and as-
pects associated with software development.

3 MICRO FRONTENDS

As reported in Section 1, we have adopted the SMS
technique to establish a fair and broad overview
of software development based on micro frontends.
To do so, we elaborated a research protocol based
on guidelines proposed by Kitchenham and Charters
(2007) and Petersen et al. (2015) that will not be pre-
sented in this paper for space reasons. Details of this
protocol and the final list of selected studies are pre-
sented in full in Moraes et al. (2023). Next, we report
the main findings of our investigation in Sections 3.1—
3.3, which can be considered for the software design
based on micro frontends.

3.1 What Is Micro Frontend?

An MFA is a microservices-inspired architectural
style that implements an application as a collection
of frontend applications decoupled that must be mod-
eled around a business domain, enabling the building
of micro applications as smaller, loosely coupled, and
independently deployable components. In an MFA,
each user interface (UI) portion can be treated as com-
ponents or pages and can become a new MFApp,
which is developed, tested, deployed independently,
and containerized in a unique UI. In parallel, one can
say that this modular organization enables the adop-
tion of small autonomous teams with different tech-
nological expertise (i.e., own technology stacks and
deployment pipelines), reduces the dependency be-
tween development teams, boosts the governance of
such teams, reduces business complexity, has the po-
tential to encourage innovation, and can optimize the
maintenance activity of these applications in the fu-
ture (Tilak et al., 2020; Noppadol and Limpiyakorn,
2021; Biihler et al., 2022; Pavlenko et al., 2020; Taibi
and Mezzalira, 2022; Yang et al., 2019).

Besides the established definition, our research
suggests to the stakeholders that the design of an ap-
plication based on micro frontend must be guided by
knowledge and decisions illustrated in Figure 1. In

177

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

(A), we show the organization of an MFApp in three
layers (i.e., frontend, backend, and database), where
each column represents a development team working
in full-stack mode (Oliveira et al., 2022; Yang et al.,
2019). Next, we present possible layout decisions in
(B), where the developers must define how the mi-
cro frontends will be organized. To do so, the devel-
opers can choose two layouts: (i) horizontal, which
enables multiple micro frontends per page; and verti-
cal, which enables one micro frontend per page. Re-
garding composition (C), an MFApp can be designed
in three ways, namely: client-side, edge-side, and
server-side. In the first, an application retrieves sev-
eral micro frontends from a Content Delivery Net-
work (CDN), typically using JavaScript or an HTML
file as the entry point for each micro frontend. The
second builds the view at the CDN level by fetching
your micro frontends from the origin and then deliver-
ing the outcome to the client. The micro frontends are
composed within a view in the third way, where they
are cached at the CDN level and ultimately served
to the client either at runtime or during compile time
(Taibi and Mezzalira, 2022).

Finally, after defining the composition of the mi-
cro frontends, it is important to define two additional
elements: routing and communication. Routing delin-
eates the route from one view to another, dictating the
traversal process. The communication outlines how
micro frontends interact with each other, once data
sharing is indispensable for both horizontal and verti-
cal divisions (Pavlenko et al., 2020). Section 3.2 dis-
cusses routing and communication, as these aspects
directly rely on the chosen approach and implementa-
tion strategies for this architectural style.

3.2 How Should the Development of
MFApps Be Managed?

Before we introduce any appoint to this question, it
is important to highlight some aspects related to de-
velopment based on micro frontends, since the focus
here is large-scope and distributed Web/Mobile ap-
plications. In this direction, aligning concepts and
best practices between microservices and micro fron-
tend reported in Section 2 enables us to establish a
modular organization of development teams around
the application’s business capabilities. In short, such
capabilities are smaller, specific features that can
boost application scalability, optimize the reuse of
features/components, and facilitate the reduction of
development complexity. Moreover, the findings of
our SMS have revealed some evidence regarding the
management of software development based on mi-
cro frontends. As MFA is an architectural style that

178

comes from industrial environments, we can also
mention the following benefits related to the decou-
pled development process, namely: (i) governance,
which enables us to organize teams in autonomous
vertical teams with capabilities in incremental up-
dates; and (ii) agile behavior, which allows us to de-
velop applications part of the MFA without causing
negative impacts on other parts of the software, while
optimizing the delivery process of a software product.
Based on the content exposed in this section and
the evidence identified in our mapping studies, it is
suggested the management of applications based on
micro frontends can be guided based on two essen-
tial elements: company organization and architecture.
Next, we addressed a description of each element.
Company Organization. As emphasized by Jackson
(2019), it is essential to establish an organizational
approach within the Software Development Life Cy-
cle (SDLC) to achieve success with MFA. The main
purpose of an organizational approach is to soften
operational complexity through specific measures re-
lated to the following items: (i) automation, the de-
velopment of decoupled applications requires auto-
mated processes to reduce complexity concerning the
team setup. In parallel, such processes must also sup-
port the deployment of these micro applications, since
the proposed architecture (MFA) increases infrastruc-
ture complexity in both: development and deploy-
ment (Taibi and Mezzalira, 2022); (ii) process, a mi-
cro frontend team must deal with the development,
testing, and release of applications in short cycles of
continuous delivery of software using a pipeline or-
ganized into a “production-like environment”. To do
so, the software engineers must plan and organize an
SDLC process to scale the teams concerning an ar-
chitecture (Pavlenko et al., 2020; Taibi and Mezza-
lira, 2022); (iii) practices, an MFA requires decen-
tralized processes and tools so that an organization
(i.e. development teams) feels comfortable adjust-
ing itself as an autonomous vertical team (Jackson,
2019); and (iv) quality, decentralized codebases and
teams can represent a challenge for an organization
that intends to maintain software quality. In general,
it is harder to keep quality in multiple and decentral-
ized processes in SDLC, even considering that micro
applications and smaller teams cause less impact in a
software ecosystem than in a monolith system.
Regarding operational complexity, we can define
organizational processes to reduce possible problems
and increase architectural reliability. In this direction,
pipelines to deliver and integrate software can be a
feasible alternative to overcome such complexity be-
cause they automate all the integration processes and
software deployment to the codebases of each appli-

Micro Frontend-Based Development: Concepts, Motivations, Implementation Principles, and an Experience Report

(A) Micro frontend Team A Team B Team C (C) Composing
O
w || o | Fromend . . X - . ; .lO |. Orgin
Micro Frontend s s O | (server)
P % 5 Backend - -
Aplication 3 2] : : . ! !
= = Database S SR
(B) Split Team A (MFA 1) Team B (MFA 2)
o O~ con
| _______ H eader| | Header | | Header | we) O
MFA1 |i| MFA2 Team A: || Team A: Team B: DC1
(Team A) |:|(Team B) DC1 DC2 Team B: DC2
--------------------- O o --- Client
| Footer | | Footer | | Footer | wpP) O
. - i . J - - - -
Horiontal split Vertical split [Client-side Edge-side Server-side]

CDN: Content Delivery Network

DC: Domain Components

MFA: Micro Frontend Aplication WP: Web Pages

Figure 1: Definitions and decisions about MFApps.

cation (Taibi and Mezzalira, 2022). Furthermore, mi-
cro frontend-based development can be defined as the
ideal scenario for setting up vertical teams that own
different small frontend applications. This organiza-
tional model provides these teams greater freedom to
develop tools and processes, alleviating architectural
complexity and addressing concerns regarding decen-
tralized development practices and team quality stan-
dards. Finally, it is recommended that the division
of micro frontends be carried out around the business
domain to keep each micro frontend in its specialized
domain, besides ensuring its decoupling, increasing
the quality level, and decentralized practices.

As observed in this section (Architecture Ele-
ment), the adoption of micro frontend as an architec-
tural style can be facilitated by considering trade-offs.
The pros and cons analysis of any software project
must be mindful of the inherent aspects of any ar-
chitectural style. Therefore, based on the MFA pre-
sented in this paper (see Figure 1), it can be said in-
dustrial cases denote that a well-executed implemen-
tation of micro frontends, with clearly defined pro-
cesses, contributes to a more efficient organizational
scale in frontend applications (Yang et al., 2019).
Architecture. As we define the company’s organiza-
tional structure, it is mandatory to establish a develop-
ment approach. Choosing from different architectural
implementations, including the innovative concept of
micro frontends, enables us to make this decision by
considering the features of each approach. The matu-
rity evaluation of the development team and parame-
ters related to the project’s scalability must also guide
this decision.

As reported in Section 2, the main choice that has
to be defined in an MFA is an integration approach
(see Development approaches item), namely: Build-
time (BT), Frameworkless (FL), and Framework-
based (FB). In this architecture type exists an entry-

point application, which can be called an application
container so that it can render the initial elements. In
short, these elements are used by the user’s applica-
tion to access other pages and elements that can be
different micro frontends. Based on the distinct trade-
offs associated with each approach, we recommend
that each development team conduct a self-analysis
to determine the most optimal choice for each project
and the organizational context of each company. Ta-
ble 1 provides a tabular representation of the main fea-
tures identified in the BT, FL, and FB approaches.

Table 1: Comparison of development approaches.

Features BT
Modeled around domain v
Decentralized governance v
Automation culture v
Incremental upgrades v
Independent deploy

Failure isolation

Architectural boundaries

eS|
=

ES
SNRNRNENENEN e

SNENENENENENEN

Analyzing the distribution presented in Table 1,
the FB approach has shown full compliance with the
set of features identified in our investigation (Moraes
et al., 2023). The FL approach failed to address only
one feature, while the Build-time (BT) approach did
not cover three features (Jackson, 2019). As a re-
sult, this analysis can guide a team to make a more
assertive decision about choosing a development ap-
proach, especially for teams that intend to adopt the
use of frameworks (i.e., trade-offs for frameworks) to
support the development of MFApps.

As reported in Section 3.1, an MFA can work as
a component, element, or an entire page. Concern-
ing the organization, the layout is a decision that the
development teams must make before starting the de-
velopment tasks (see Figure 1 — Split area). A micro
frontend as an individual component or element can

179

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

not be a trivial choice, since it will usually be cou-
pled on a page and will cause increased complexity in
terms of maintainability. Therefore, defining the dis-
tributed impact on the team responsible for a micro
frontend across different pages becomes challenging.
A traditional solution that enables the use of compo-
nents on different pages to share common elements,
components, and even domains in a library can be a
better strategy than using a coupled micro frontend
on multiple pages. Therefore, a (micro) frontend will
share a style guide that makes it visually consistent.
The split strategy is an important decision to cre-
ate composable decoupled micro frontends, as de-
scribed in Section 3.1. Although we have highlighted
two strategies (i.e., horizontal split, and vertical split)
in our definition, a third called hybrid split can be used
too. In synthesis, the hybrid split enables the combi-
nation of both strategies (i.e., horizontal and vertical
split). In this sense, we can highlight the composition
of a micro frontend via hybrid split due to a micro
frontend that needs a horizontal split on the page.
Regarding the development, Module Federation,
Web Components, and iFrames have been the tech-
nological resources used to create an application con-
tainer that will provide an entry point to render a user
interface and routing strategy to other pages (Wang
et al., 2020; Poloskei and Bub, 2021; Stefanovska
and Trajkovik, 2022). Since MFApps need to com-
municate with each other, data-sharing approaches
must be used in isolated or combined ways, namely
(Nishizu and Kamina, 2022): (i) event-driven uses
the publication and subscription of events to han-
dle state between micro frontends; (ii) signals work
with the emission of signals between micro frontends,
using reactive programming principles (Nishizu and
Kamina, 2022); (iii) global stores are libraries that
use shared and global states for data management;
(iv) query parameters and local storage enable to shar-
ing of small data as query parameters in the micro
frontend URL, as well as transport a larger data load
shared by the browser’s local storage; and (v) con-
text (or technology’s history) stores information about
the stack of previously loaded interfaces, accessed
by the container application and distributed among
different micro frontends. Of the three integration
approaches mentioned in this section (BT, FL, and
FB), framework-based implements some data-sharing
approaches by default, which can be an important
decision-making factor when selecting a framework.

3.3 Do You Need Micro Frontends?

As mentioned in Sections 3.1 and 3.2, the devel-
opment of applications based on the micro frontend

180

architectural style brings with it a series of impli-
cations. Initially, we identified in our investigation
that the successful cases (i.e., developing new ap-
plications and/or modernizing the monolith to micro
frontends) expressed having more solid knowledge
about concepts of micro frontends with strong evi-
dence about the pros and cons of this architectural
style (Bian et al., 2022; Wang et al., 2020; Poloskei
and Bub, 2021; Mannisto et al., 2023; Shakil and
Zoitl, 2020). These successful cases also reported
having a solid understanding of the application being
developed and/or modernized and its suitability in the
organization of decision-making teams regarding the
organization of development teams, layout division,
and composition (Biihler et al., 2022).

Through our mapping process, we identified a set
of advantages and disadvantages of the use of mi-
cro frontends in different organizations, which differ
in terms of size and development domain. Lessons
learned, benefits, challenges, pros, cons, advantages,
disadvantages, trade-offs, limitations, and pitfalls
were the most recurrent terms found in our mapping
to express the opposing sides of the theme (i.e., micro
frontend). In this sense, we grouped a set of features
concerning the development teams and company or-
ganization that must be taken into consideration when
adopting the micro frontend architectural style.

In the MFA, we can organize the development
teams around the business domain, which must make
local decisions about technology and design choices.
Next, we addressed some benefits arising from this
modular organization: dynamic teams concerning
communication, ease of maintenance (small software
units), fault isolation, incremental adoption, indepen-
dent deployment, modular organization, reusability,
scalability, and technology flexibility. Otherwise, the
modular organization of the development teams can
result in conflicting scenarios related to the company
organization and the system, namely:

Scenario 1. Distributed teams are more complicated
to manage, as well as being more complex to
attribute responsibilities and coordinate activi-
ties. In this sense, implementation of cross-
system concerns, communication between teams,
and sharing of data are the most recurring chal-
lenging adversities concerning the company/team
organization.

Scenario 2. The modular organization can be related
to a series of challenges. For instance, organizing
into smaller software units requires special care
in managing dependencies between micro fron-
tends. In parallel, communication between micro
frontends can significantly increase the complex-
ity of the application with the routing and orches-

Micro Frontend-Based Development: Concepts, Motivations, Implementation Principles, and an Experience Report

tration of the micro frontends so that functionality
can be executed. Another aspect inherent to com-
munication, which may be combined with other
factors (e.g., data sharing) is performance over-
head. Sharing data between an application’s mi-
cro frontends may require an excessive number
of message exchanges, which will cause system
overload.

Scenario 3. The development of a decoupled appli-
cation may suffer arising from differences in the
development environment since a micro frontend
operates within a user interface context that in-
herits stylization and shared data (optional). This
bottleneck implies the adoption of processes to
ensure that the micro frontend developed main-
tains visual consistency across the entire frontend.

Although the evidence gathered in this section
does not reveal a silver bullet solution as a tool
for decision-making regarding the need to adopt the
MPFA, the issues addressed can serve as an important
reference for the adoption of this architectural style
by concepts presented in Section 3.1, by the sugges-
tions on managing MFApps reported in Section 3.2,
and by the arguments about the real need for this ar-
chitectural style discussed in this section.

4 CASE STUDY: AN
EXPERIENCE REPORT

To evaluate the applicability, strengths, and weak-
nesses of our study, a case study was conducted.
As subject application for our empirical analysis, we
have selected an application addressed to the manage-
ment of product inventory, which will be referenced
from this point onwards as MfaWebApp?. Next, a
brief description of our subject application and the
empirical strategies is presented.

Subject Application. MfaWebApp is a Web applica-
tion that was developed to meet customers who need
to control product inventory. We organized the in-
terface of this application into three pages, one for
each MFA, namely: (i) Dashboard, used to visu-
alize graphs that enable the user to check the prod-
uct inventory input and output data; (ii) Products,
used for registering, listing, changing, and deleting
products that the user intends to control the entry
and exit of inventory in a store; (iii) Inventory,
used to register the entry and exit of products from
the store, the user can view the list of operations,
such as an inventory extract. Figure 2 illustrates

Zhttps://github.com/fernandormoraes/mfa-cs

@ Inventory

@ Movement

@ User

olong id
o double amount

olong id

o String description

olong id
o String username
o String password

o String email

o Inventory()

ﬁﬁ o User()
Y has Y manager
1 *|
N 1..
@ Product @InventoryMovement
olong id

olong id

o double amount

o Date movement
o Movement mType

o String description
odouble price

o String unit

o String sku

e Product()

»has 1 *

o InventoryMovement()

Figure 2: MfaWebApp’s UML class diagram.

the complete UML model of our case study. Al-
though our application does not have an extensive
scope of functionality, we consider it a feasible sys-
tem to show the development of MFApps follow-
ing the Build Time, Frameworkless, and Framework-
based approaches (see Sections 2 and 3.2). Draw-
ing a parallel between the model and the MFA afore-
mentioned, the Dashboard MFA deals with the
InventoryMovement class, the Products MFA
deals with the Product class, and the Inventory
MFA deals with the Inventory class.

Empirical Research Strategy. Figure 3 illus-
trates the implementation of the MfaWebApp ap-
plication using the three development approaches:
Build Time, Frameworkless, and Framework-based.
Initially, we conducted technology-agnostic model-
ing of that application (i.e., MfaWebApp) so that
MFApps were identified (Dashboard, Products,
Inventory). These applications follow the same
organization (i.e., Frontend, Backend, and Database)
as a MFApp illustrated in Figure 1 (Area A).

{ Bulid-time] [Frameworkless | [Framework-based }-

== MFA1
H:P2

]
(FRONTEND RENDERIZATION]
CTR: Container FA: Framework Approach IA: Implementation Approach
H: Host P: Port PM: Package Manager

Figure 3: Organization of the MFApp implementations.

Before starting the description of each ap-
proach, we referenced the MFApps Dashboard,
Products, Inventory as MFAI, MFA2, and

181

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

MFA3 in Figure 3, respectively. Moreover, MAIN
(i.e., a container application) must be the first appli-
cation to be developed for each approach, regardless
of the development approach (i.e., Build-time, Frame-
workless, Framework-based). This application is re-
sponsible for the initial rendering, acting as a commu-
nication bridge between the frontend and the elements
for access to the application’s other micro frontends.
Next, we addressed a description of each approach.

In the Build-time approach, the technology de-
cisions do not represent a major impact on architec-
tural development. In short, the development focuses
on the process of dividing micro applications into dif-
ferent packages/libraries (MFA1, MFA2, and MFA3),
which will be imported into the container applica-
tion (MAIN) so that it can execute the application
entry point. Moreover, It is worth noting that man-
agement of MFApps is carried out by the PACKAGE
MANAGER element (e.g., Maven?). The selection of
dependency management is at the discretion of each
software engineer responsible for the application. Fi-
nally, it is worth highlighting that communication be-
tween the main application and the MFApps occurs
by calling classes and methods exported from the mi-
cro applications. In this sense, it can be said that the
application routing does not change, since the routes
will direct to method calls or exported instances. Fur-
thermore, data sharing between micro applications is
done via parameter passing or global state sharing.

Similar to Build-time, the Frameworkless ap-
proach also does not rely on technologies, since the
development of MFApps is guided by the indepen-
dence of the programming language or framework. In
this sense, we can highlight the following implemen-
tation resources for composing MFApps: (i) iFrames,
which can be included in any technology as an HTML
element; (ii) Web Components, which represents a
set of technologies based on component reuse de-
coupled from code; and (iii) Module Federation, de-
spite being a library developed for Webpack with
JavaScript, Module Federation loads a remote ap-
plication in JavaScript by importing code, so it is
also possible to implement it in any other language.
We used Web Components and Module Federation
in JavaScript micro applications to implement the
MfaWebApp application. Therefore, our implemen-
tation in React had an adaptation in routing, using an
interface for loading remotely hosted Web Compo-
nents. To do so, the interface imports a Web Compo-
nent and uses the browser’s window object, passing
the loaded component via a parameter. We use the
passing of query parameters and the React’s Context
API to share data between micro frontends.

3https://maven.apache.org

182

Finally, the Framework-based approach requires
the selection of frameworks for developing MFApps.
According to our experiences and evidence collected
in the gray literature Micro-frontend.dev (2023), we
suggest five criteria for selecting frameworks in a soft-
ware project, namely: learning curve, documenta-
tion quality, support quality, quality of the commu-
nity related to the Framework/Library, and level of
adherence concerning development approaches. Al-
though such criteria are easy to interpret, the analy-
ses are subjective to each individual. In this sense,
we recommend adopting some metric that can guide
decision-making. According to Micro-frontend.dev
(2023), the decision matrix can be an alternative to as-
sist any stakeholders in choosing a framework. Based
on the aforementioned criteria, we made the following
choices for the development MfaWebApp based on
the Framework-based approach. A JavaScript frame-
work called Garfish (2021) to manage MFApps was
selected. This framework enables employing the con-
cepts of Module Federation were used to compile mi-
cro applications into a final application. The selected
framework (Garfish) manages the decision regarding
routing and data, therefore data-sharing routing im-
plementations are abstracted, enabling greater focus
on the development of micro applications.

S DISCUSSION OF RESULTS

This section summarizes the main findings of our pa-
per. As reported in Section 3, our investigation aimed
to establish an important panorama on software devel-
opment based on micro frontend, providing a more
precise and complete definition of micro frontends
(see Section 3.1), as well as guidelines (i.e., com-
pany and architecture) on the development of this type
of software (see Section 3.2). Finally, Section 3.3,
we described three scenarios that can help any stake-
holder in decisions regarding the choice of this archi-
tectural style. Drawing a counterpoint between our
paper and the study conducted by Nishizu and Kam-
ina (2022), which presented an experience report for
small organizations, our investigation suggests that
the MFA can be applied to any type of software since
the organization features and technological restric-
tions of the development team are met. Undoubtedly,
it is simpler to manage problems/smaller teams; how-
ever, good practices and adequate infrastructure can
boost team productivity, besides enabling continuous
and valuable software delivery.

Concerning the case study reported in Section 4,
the possibilities of technologies and approaches that
can be used are notable since modern frontend de-

Micro Frontend-Based Development: Concepts, Motivations, Implementation Principles, and an Experience Report

velopment relies heavily on frameworks and libraries.
Furthermore, our case study also addressed opera-
tional complexity, since the entry point for adopt-
ing the MFA involves non-trivial decision-making re-
garding the use of approaches and implementation
techniques. Despite the ease of implementation, the
Build-time approach does not follow all the princi-
ples and advantages that MFA can provide. The
Frameworkless approach can be seen as an attrac-
tion for mature teams in technical terms, since there
are no mature and well-documented frameworks in
the literature, the micro frontend management it-
self can make the architectural implementation more
solid and robust with decisions to the approaches and
technologies. However, the agility seen in modern
software development encourages the use of frame-
works for less complexity, especially when bring-
ing new developers into teams, standardizing devel-
opment processes and quickly delivering software to
the user. Based on this scenario, it can be said that
the Framework-based approach is still at an incipient
stage with little content found in the developer com-
munity, besides the scarcity of documentation.

Drawing a trade-off of the MFA, different ap-
proaches can also present differences in results,
mainly in operational complexity and development
experience. Thus, it can be said that the MFA and
the three approaches presented in this paper should
not be considered as a “silver bullet” solution that can
be used in all development scenarios, leaving the deci-
sion for the development team to best path towards the
project to be developed. This evidence also reveals
the complexity level of this architectural style con-
cerning software development, especially considering
scenarios where there is a predominance of inexpe-
rienced teams and a lack of development infrastruc-
ture since the involuntary application of anti-patterns
in architectures that are not yet mature, can generate
severe negative impacts on software projects.

6 CONCLUSIONS AND FUTURE
WORK

This paper presented an overview of software devel-
opment based on micro frontends, focusing on the
development approaches Build-time, Frameworkless,
and Framework-based. Based on the evidence of our
study, it can be said that micro frontend-based de-
velopment was inspired by the microservice architec-
tural style, borrowing several consolidated concepts
that can be applied to the development of micro ap-
plications such as decentralizing team governance,
maintaining high availability, low coupling, and en-

couraging independent delivery of micro applications.
Next, we report the main contributions of this paper:
(i) a panorama for the development area by establish-
ing concepts, motivations, architectural models, and
principles that can be applied in the development of
MFAs; (ii) a report for the researchers and practi-
tioners by presenting an experience of this architec-
tural style, which can be a reference important for the
new implementations of software systems based on
MFA. In this sense, it is worth highlighting the devel-
opment approaches, company’s organizational struc-
ture, architectural model, and good engineering prac-
tices for companies used in our case study; and (iii) a
case study for the Web development area by exploring
the use of the micro frontend approaches to scalable
Web application projects, permeating Web architec-
ture concepts, and the use of new frameworks for the
proposed architectures (see Figure 3).

As future work, we intend to conduct at least
four activities: (i) conduction a more specific inves-
tigation about this research theme, considering newer
technologies (e.g., frameworks), architectural styles,
and software architectures; (ii) conduction of a study
related to the decision-making on the architectural
choice of project development using MFA; (iii) con-
duction of more case studies using different frame-
works to evaluate the applicability and feasibility of
the development of micro frontends based on different
frameworks for the industry; and (iv) conduction of
comparative benchmark between micro frontend and
monolith approaches to evaluate the performance and
impact of these architectural models when an appli-
cation is developed. Therefore, based on the content
presented in this paper, a positive research scenario
can be established. Besides the effective contribution
of our paper to the software engineering community,
the industry can benefit from the analysis and experi-
ence reported as a trade-off for the MFA.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenagéo
de Aperfeicoamento de Pessoal de Nivel Superior -
Brasil (CAPES).

REFERENCES

Bian, Y., Ma, D., Zou, Q., and Yue, W. (2022). A multi-
way access portal website construction scheme. In
The 5th International Conference on Artificial Intel-
ligence and Big Data, ICAIBD 2022, page 589 — 592.
Institute of Electrical and Electronics Engineers Inc.

183

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

Biihler, F., Barzen, J., Harzenetter, L., Leymann, F., and
Wundrack, P. (2022). Combining the best of two
worlds: Microservices and micro frontends as basis
for a new plugin architecture. Communications in
Computer and Information Science, 1603 CCIS:3 —
23.

Frameworkless (2023). Frameworkless movement. on-line.
https://www.frameworklessmovement.org, acessed on
March 14, 2024.

Garfish (2021). Garfish. on-line. https://www.garfishjs.org,
acessed on March 14, 2024.

Geers, M. (2020). Micro frontends in action. Manning Pub-
lications, New York, NY.

Jackson, C. (2019). Micro frontends. on-line. https:
//martinfowler.com/articles/micro-frontends.html,
acessed on March 14, 2024.

Kitchenham, B. and Charters, S. (2007). Guidelines for per-
forming systematic literature reviews in software en-
gineering. Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report.

Lewis, J. and Fowler, M. (2014). Microservices. on-
line. https://martinfowler.com/articles/microservices.
html, acessed on March 14, 2024.

Mannisto, J., Tuovinen, A.-P., and Raatikainen, M. (2023).
Experiences on a frameworkless micro-frontend ar-
chitecture in a small organization. In Proceedings -
IEEE 20th International Conference on Software Ar-
chitecture Companion, ICSA-C 2023, page 61 — 67.
Institute of Electrical and Electronics Engineers Inc.

Mena, M., Corral, A., Iribarne, L., and Criado, J. (2019). A
progressive web application based on microservices
combining geospatial data and the internet of things.
IEEE Access, 7:104577-104590.

Micro-frontend.dev (2023). Micro-frontends and com-
posable frontend architectures. on-line. https:/
microfrontend.dev, acessed on March 14, 2024.

Mohammed, S., Fiaidhi, J., Sawyer, D., and Lamouchie, M.
(2022). Developing a graphql soap conversational mi-
cro frontends for the problem oriented medical record
(ql4pomr). In ACM International Conference Pro-
ceeding Series, page 52 — 60. Association for Com-
puting Machinery.

Moraes, F. R., Campos, G. N., de Almeida, N. R., and
Affonso, F. J. (2023). Systematic mapping protocol —
mapping study on. on-line. https://drive.google.com/
file/d/1CquhVgCo4cSuwBzWeBV2DvBIIM7-KZtn/
view?usp=sharing, accessed on March 14, 2024.

Nishizu, Y. and Kamina, T. (2022). Implementing micro
frontends using signal-based web components. Jour-
nal of Information Processing, 30:505 — 512.

Noppadol, N. and Limpiyakorn, Y. (2021). Application
of micro-frontends to legal search engine web de-
velopment. Lecture Notes in Electrical Engineering,
782:165 — 173.

Oliveira, D. S. M., Oliveira, F. C. M. B., Pernencar, C.
A. C., de Morais, B. S., Silva, J. W., Costa, A. R. B.,
Pereira, J. B. C., and Saboia, 1. F. (2022). Licor: Be-
yond the design system. a proposal to empower teams
to develop software in compliance with the principles
of accessibility, usability, and privacy by design in

184

the extreme contexts and challenging domains post-
covid-19. Communications in Computer and Infor-
mation Science, 1654 CCIS:139 — 147.

Pavlenko, A., Askarbekuly, N., Megha, S., and Mazzara,
M. (2020). Micro-frontends: Application of microser-
vices to web front-ends. Journal of Internet Services
and Information Security, 10(2):49 — 66.

Peltonen, S., Mezzalira, L., and Taibi, D. (2021). Mo-
tivations, benefits, and issues for adopting micro-
frontends: A multivocal literature review. Information
and Software Technology, 136:106571.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015).
Guidelines for conducting systematic mapping stud-
ies in software engineering: An update. Information
and Software Technology, 64:1-18.

Poloskei, 1. and Bub, U. (2021). Enterprise-level migra-
tion to micro frontends in a multi-vendor environment.
Acta Polytechnica Hungarica, 18(8):7 — 25.

Qiankun (2019). Qiankun. on-line. https://qiankun.umijs.
org, acessed on March 14, 2024.

Shakil, M. and Zoitl, A. (2020). Towards a modular archi-
tecture for industrial hmis. In 2020 25th IEEE Inter-
national Conference on Emerging Technologies and
Factory Automation (ETFA), volume 1, pages 1267—
1270.

Single-spa (2016). Single-spa. on-line. https://single-spa.
js.org, acessed on March 14, 2024.

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J.
(2018). The pains and gains of microservices: A sys-

tematic grey literature review. Journal of Systems and
Software, 146:215-232.

Stefanovska, E. and Trajkovik, V. (2022). Evaluating micro
frontend approaches for code reusability. Communi-
cations in Computer and Information Science, 1740
CCIS:93 - 106.

Taibi, D. and Mezzalira, L. (2022). Micro-frontends: Prin-
ciples, implementations, and pitfalls. SIGSOFT Softw.
Eng. Notes, 47(4):25-29.

Tilak, P. Y., Yadav, V., Dharmendra, S. D., and Bolloju,
N. (2020). A platform for enhancing application de-
veloper productivity using microservices and micro-
frontends. In 2020 IEEE-HYDCON, pages 1-4.

Wang, D., Yang, D., Zhou, H., Wang, Y., Hong, D,
Dong, Q., and Song, S. (2020). A novel applica-
tion of educational management information system
based on micro frontends. Procedia Computer Sci-
ence, 176:1567-1576.

Yang, C., Liu, C., and Su, Z. (2019). Research and appli-
cation of micro frontends. In IOP Conference Series:
Materials Science and Engineering, volume 490. In-
stitute of Physics Publishing.

