
Architecture for Stablecoins with Cross-Chain Interoperability

Éric Bastos Costa Machado, Juliana de Melo Bezerra a and Celso Massaki Hirata b

Department of Computing Science, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, Brazil

Keywords: Stablecoin, Blockchain, Smart Contract, Cross-Chain Interoperability, Architecture for Stablecoin Service.

Abstract: Blockchain is the enabling technology that implements the operations of cryptocurrencies. Stablecoin is a type
of cryptocurrency designed to reduce price volatility. This stability is achieved by tethering the value of the
stablecoin to a reserve of assets, often in the form of a fiat currency like the US dollar. Implementing a stable-
coin involves various technical challenges related to the design and architecture, which include smart contract
complexity and cross-chain interoperability. This work presents an architecture for the backend of stablecoin
services that address these two challenges. In the architecture, the bridge component enables seamless cross-
chain interoperability, allowing to move of stablecoins from one blockchain to another without the need to be
reverted to fiat currency. We developed a proof of concept, using the stablecoins deployed on both Ethereum
and Polygon testnets. The proof of concept demonstrated that the architecture offers a design reference to
implement other similar stablecoin systems.

1 INTRODUCTION

Blockchain technology has made an impact across
various sectors, including supply chain management,
healthcare, real estate, government and public ser-
vices, and financial services. Blockchain’s key ele-
ments are decentralization, cryptography, distributed
ledger, and chained blocks (Yaga et al., 2018). It has
been shown that this technology can provide trust,
transparency, and shareable information without re-
sorting to intermediaries. Security is provided by the
use of cryptography and the consensus mechanisms
maintain the integrity of the blockchain and record’s
immutability.

Bitcoin (Nakamoto, 2008) laid the way for
many other cryptocurrencies, such as Litecoin and
Ethereum. These currencies offer the advantages of
decentralization, security, and transparency; however,
their values can fluctuate significantly, which poses
challenges for day-to-day transactions and store-of-
value purposes. Stablecoins (Phillips, 2020) address
the currency volatility by pegging their values to an
underlying asset, such as a fiat currency like the US
dollar or a commodity like gold.

Stablecoins built on blockchain technology can fa-
cilitate fast and low-cost cross-border transactions,
and businesses can benefit from faster settlement

a https://orcid.org/0000-0003-4456-8565
b https://orcid.org/0000-0002-9746-7605

times, lower fees, and improved cash flow manage-
ment. The idea behind stablecoins of creating pro-
grammable tokens pegged to an asset (tokenization)
has shown huge potential. For instance, the Fed-
eral Reserve (the central bank of the United States)
is studying the implications of a Central Bank Digi-
tal Currency (CBDC) (Infante et al., 2022). Brazil’s
Central Bank is currently developing the Digital Real
(Banco Central do Brasil, 2023).

Fulfilling the stablecoins’ potential is not a simple
task. Stablecoins need to be properly designed and
regulated to offer a compliant and transparent solution
for digital transactions. Regulatory frameworks for
stablecoins are evolving (Bains et al., 2022), and busi-
nesses that operate within established legal frame-
works can gain credibility and build trust with reg-
ulators, financial institutions, and customers.

Two technical challenges that deserve attention in-
clude smart contract complexity and cross-chain in-
teroperability. The majority of stablecoins operate on
blockchain platforms and utilize smart contracts. De-
signing and implementing complex smart contracts to
manage collateral, stability mechanisms, and gover-
nance is challenging and requires careful considera-
tion. Besides, stablecoins face technical challenges in
ensuring seamless integration and communication be-
tween different blockchain networks. This is achieved
by cross-chain interoperability mechanisms.

In this paper, we propose a general architecture to

Machado, É., Bezerra, J. and Hirata, C.
Architecture for Stablecoins with Cross-Chain Interoperability.
DOI: 10.5220/0012628300003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 273-280
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

273



support the implementation of key functionalities of
stablecoins, dealing with smart contract complexity
and cross-chain interoperability. The key function-
alities include keeping the peg and providing trans-
actions of purchase and sale of tokens. Although
the proposal is agnostic to the currency to which it
is pegged, we choose the Brazilian currency Real
(BRL) as the fiat currency backing the stablecoin re-
serve. The smart contracts are described as consid-
ering Ethereum-virtual-machine (EVM) compatible
chains, for instance, Polygon and Ethereum.

This paper is organized as follows. The next sec-
tion describes the related work. Section 3 introduces
the proposed architecture. The proof of concept is de-
scribed in Section 4. Section 5 concludes our work.

2 RELATED WORK

A comprehensive reference for blockchain can be
found in (Antonopoulos, 2017). In (Yaga et al.,
2018), the general functionality of the blockchain is
described, which includes categories of blockchain,
its core components, such as the blocks and the en-
cryption, and consensus mechanisms.

Blockchain is a decentralized and distributed
ledger technology that enables secure and transpar-
ent record-keeping of transactions across a network
of computers. Consisting of a chain of blocks, each
containing a cryptographic link to the previous block,
this technology ensures the immutability and integrity
of the data stored within. Utilizing consensus mech-
anisms among network participants, such as Proof
of Work (PoW) or Proof of Stake (PoS), blockchain
eliminates the need for a central authority, fostering
trust in the system. Transactions, once added to the
blockchain, become permanent and tamper-resistant,
providing a transparent and verifiable history of all in-
teractions. Beyond its association with cryptocurren-
cies, blockchain finds applications in various indus-
tries, offering solutions for secure data management,
smart contracts, and decentralized applications.

On the topic of stablecoins, the current literature
emphasizes much more on definitions and presents a
more economic view of the subject. In (Baughman
et al., 2022), the authors explain the role of stable-
coins and the rules for the issuance and redeeming of
tokens. Stabilization mechanisms are discussed to-
gether with the most common collateralization mech-
anisms: on-chain collateralized, off-chain collateral-
ized and algorithmic stablecoins.

In (Mell and Yaga, 2022), the authors present
many considerations regarding the security and the
trust of the reserves and bring attention to funds

movement in the secondary market of centralized and
decentralized exchanges, where users trade tokens
amongst themselves and are subject to certain attacks,
such as malicious smart contracts or other exploits.

Regarding technical implementation, in
(Nageswaran et al., 2019), the authors present a
minimum viable product for the implementation of
a custom stablecoin named Digipound. The authors
design the token in the blockchain, a web application
to interact with an API that handles the interaction
with the blockchain and Stripe (Stripe, 2010), a
payment processing system, and also covers an au-
diting mechanism that crosses the information of the
current reserve backing the stablecoin and the current
circulating supply in the blockchain. Their work
touches on some of the necessary steps to implement
and release the custom stablecoin, considering the
implementation of a trading service, constructing the
smart contract, running a local blockchain node, and
potential security concerns. We go a step further
by diving deeper into the smart contract details,
proposing and designing a complete non-monolithic
system architecture, and implementing a cross-chain
solution for deploying and integrating the token
across multiple blockchains.

Finally, on the subject of cross-chain interoper-
ability, in (Pillai et al., 2020), the authors comment
about how different blockchains have different trade-
offs and how the notion of “one blockchain to rule
them all” is simply unreal. The work further discusses
the different strategies for chain interoperation, such
as sidechains (systems inside a blockchain that can
read the state of other blockchains) or hash-locking
(operations set to trigger after the revelation of some
kind of secret), and the theory and implementation
of these techniques from a computer science point of
view.

On more practical terms, a particularly interest-
ing and technical solution is exhibited by (Xie et al.,
2022): a blockchain bridge based on zero-knowledge
proofs (a way of proving the validity of a statement
without revealing the statement itself), focusing on
decentralization and the efficiency of proof valida-
tion. The solution is validated even in a scenario of a
non-EVM-compatible chain (Cosmos) bridging infor-
mation to an EVM-compatible chain (Ethereum). In
our work, we implement a simpler centralized bridge,
since the token issuer entity is naturally centralized in
the case of fiat-backed stablecoins.

Our work aims to contribute to the stablecoin lit-
erature by presenting a technical approach to the sub-
ject. In general, the broader part of the current liter-
ature addresses a more economic perspective on this
topic, focusing on the definitions, implications, and

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

274



use cases whereas our proposal includes the cross-
chain interoperability mechanism and can serve as
the technical reference for developing stablecoin so-
lutions.

3 THE PROPOSED
ARCHITECTURE FOR
STABLECOIN SERVICE

Figure 1 shows the proposed architecture for the
stablecoin service. The architecture counts on mi-
croservices to encapsulate different responsibilities
and ways to communicate with those microservices.
Some components, such as banking as a service, are
outside the stablecoin service since they are seen as
third-party systems.

Since a stablecoin mainly acts as an infrastructure
for the blockchain ecosystem, we expect two main
types of users to consume the service. The first type
is the common user, who buys and sells their tokens.
To allow this access, it is necessary a front-end appli-
cation operating with a friendly wallet service (such
as MetaMask). The second type of user is the busi-
ness or technical user (intermediary). A business user
probably has his platform serving his clients, which
integrates with the stablecoin service.

As follows, we present the microservices of the
stablecoin service, dive deeper into the smart contract
details, and present the centralized bridge solution.

3.1 Stablecoin Service Breakdown

Below we break down the stablecoin service into its
microservices to better explain all the functionalities
and how they support minting and burning operations.

The API gateway exposes all the endpoints of the
stablecoin service, such as the endpoints for creating
accounts and logging in, the endpoints for minting,
burning, and bridging the stablecoins, and the end-
points to retrieve the historic information of opera-
tions. The API is RESTful, and it is the entry point
for all the operations that a user can execute. It is rec-
ommended that the API be public unless the system
has some specific restrictions on access.

The Banking Events Webhook is responsible for
listening to the events that come from the banking ser-
vice. To avoid having to poll the banking service for
information, it is common for the banking services to
allow their clients to register their own server in which
they can listen for real-time events. There are various
tasks executed by the Banking Events Webhook for the
stablecoin service. To describe some of the tasks, we

use the Pix (a real-time electronic funds transfer sys-
tem in Brazil). In September 2023, it reached 41% of
transactions carried out surpassing credit cards, debit
cards, and cash (EBC Agencia Gov, 2023). For in-
stance, a Pix transfer made by the user means that the
user has paid the order and the system must mint the
tokens from the blockchain to the user’s wallet ad-
dress. A Pix transfer event made by the system means
that the system has burned the tokens and the money
has been transferred successfully to the user’s bank-
ing account. Regardless of the event, the final action
usually is either minting or burning tokens.

The Smart Contract Interface is the touchpoint
with the blockchain. It is responsible for sending
the transactions to the blockchain and interacting with
the stablecoin token smart contract. The Smart Con-
tract Interface consumes a message queue in charge
of holding the blockchain interactions, so any other
microservice can enqueue an operation that will even-
tually be handled by this microservice. As important
as sending the transactions to the blockchain is veri-
fying if it executed successfully, if it failed, or if it is
hanging due to an insufficient amount of gas. This
is made by tracking each transaction and checking
its status in the blockchain. When the transaction is
mined, the system must check if it was a success.

The The Data Persistence is a persistent storage
that allows all transactions to be recorded in a way to
ensure the transaction’s durability. This safeguards
the stablecoin issuer against any claims of not de-
livering the tokens when minting, or not transferring
the money when burning. The events that must be
stored are all the blockchain operations and their re-
sults, events from the banking service (e.g. Pix trans-
fer), the entities taking part in the transactions (e.g.
the users), and requests for buying and selling the sta-
blecoin.

The The Communication Infrastructure permits
the internal services communicate by two means:
synchronous and asynchronous. The gRPC, a Re-
mote Procedure Call (RPC) framework implemented
by Google, is used for synchronous communication.
Its main use is querying the Smart Contract Interface
(for example, to check a user’s balance of a certain
token) or querying the Proof of Reserves for the most
recent data it has available. The Messaging Queues,
on the other hand, are used for asynchronous commu-
nication. They are especially important for provid-
ing a way to interact with the Smart Contract Inter-
face, which in turn interacts with the blockchain asyn-
chronously, increasing system’s overall performance,
reliability, and decoupling.

The Operation Events Webhook is useful only to
the users who consume the API through their tech-

Architecture for Stablecoins with Cross-Chain Interoperability

275



Figure 1: General architecture for developing stablecoin solutions considering interoperability mechanism.

nical implementation. Its responsibility is to act
the same way as the banking service acts, sending
real-time updates of events related to the user’s ac-
count. Similarly, the system sends real-time updates
of events related to the minting and the burning oper-
ations to any user that registers a server on which they
are listening.

The Proof of Reserves is responsible for providing
transparency regarding the reserves backing the sta-
blecoin. The task it must accomplish is very simple:
just expose the total circulating supply of the token,
and the current money reserve in the bank, and show
that the reserve is greater than the circulating supply.
By itself, it is not enough. In general, it is a com-
mon practice to have a third-party company audit the
reserves since someone might fake the numbers.

The Cache is a common way to reduce the load on
the server and the database processing, being present
in many APIs in general, and the stablecoin service is
no exception. Some functions that are very usual to
call in the blockchain are the ones related to getting
the current gas price to pay for the transactions. This
is a value that does not change so quickly, so it makes
sense to cache it for multiple transactions instead of
re-evaluating it before each transaction.

When a user buys or sells stablecoins, the flow that
is executed inside the stablecoin service is indicated in
Figure 1 by the green M’s followed by a number and
the red B’s followed by a number. The M stands for
Mint, and the B stands for Burn, whereas the num-
bers indicate the order of the operations. Here we
explain each one of the steps for executing the mint
operation, when stablecoins are bought. The process
begins with input validation (M.0) to ensure the accu-

racy and integrity of the data. Subsequently, an entry
is created in the database (M.1), indicating the sys-
tem’s anticipation of a deposit from the user. Upon
payment of the invoice by the client, verified through
a deposit notification from the Banking Service, the
system verifies the received information (M.2) before
updating the deposit status to ‘paid’ and storing the
payment details (M.3). Following this, a mint opera-
tion is initiated and queued (M.4), and upon receipt,
the operation is executed (M.5). The system proceeds
to create, sign, and broadcast a mint transaction to
the blockchain (M.6) to interact with the Stablecoin
Smart Contract, awaiting confirmation of the transac-
tion’s success (M.7). Finally, the mint result is stored
in the database (M.8) for future reference and auditing
purposes.

3.2 The Stablecoin Smart Contract

This is the smart contract that represents the stable-
coin token in the blockchain. It must be secure, trans-
parent, compliant, and, at the same time, flexible. The
main features of the stablecoin smart contract are pre-
sented in Figure 2, mainly concerned with the ERC-
20 standard implementation. However, other func-
tions are also relevant and shall be incorporated in a
real scenario.

To make the smart contract an actual fungible to-
ken, we need to implement the ERC-20 standard and
that is what the imported libraries do. Regarding the
implemented functions, the mint function allows the
creation of more tokens when anyone buys the to-
ken. The burnFromWithPermit is the function respon-
sible for burning tokens, which is made when some-

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

276



Figure 2: Key features of the stablecoin smart contract.

one wants to sell the tokens.
Due to the way that ERC-20 tokens are imple-

mented, if another address (being a smart contract
or another actual wallet) wants to update the balance
of tokens, effectively subtracting any amount from
it, it must first send an approval transaction to the
blockchain, specifying which address can do so, and
at most how many tokens it can update. Such a feature
is troublesome because sending this approval transac-
tion to the blockchain costs gas, which means that the
user must hold a certain amount of the blockchain’s
native tokens, but we, as the stablecoin issuer, want to
minimize any barriers for our end user to buy and sell
our tokens.

To remove this barrier when the system has to
burn someone’s tokens, the system makes use of the
ERC-2612 standard (Lundfall, 2020). The main idea
behind it is to implement a way to delegate the ap-
proval transaction to someone else. This is made
by generating an off-chain (outside the blockchain)
signature which can be verified on-chain (inside the
blockchain). The function that validates this signature
and executes the approval is called permit. The burn-
FromWithPermit function is simply a concatenation of
a permit operation followed by a burn operation.

The implementation of the stablecoin smart con-
tract shall consider additional functions related to se-
curity, compliance, and upgradeability.

The security functions handle the access control of
the stablecoin smart contract. Only the issuer should
be able to mint and burn tokens, whereas any other
addresses should only be able to transfer tokens they
already have. So the mint and burn functions should
be protected by some logic that checks who is inter-
acting with the smart contract. We can go further and
better separate different concerns into different roles,
such as an Owner role (which grants the ability to
upgrade the smart contract), an Operator role (which
grants the ability to mint and burn tokens), a Pauser
role (which grants the ability to pause and unpause the
smart contract), and a Compliance role (which grants
the ability to blacklist and whitelist addresses).

The compliance functions are related to the neces-
sity of eventually complying with regulations since

the stablecoin is fiat-backed. Some functions are of
interest. The pause function completely stops the
smart contract, disabling any token transfer between
any addresses, and the unpause function returns it to
its operating state. The blockAddress and unblockAd-
dress are the blacklist and whitelist functions, effec-
tively working as the pause and unpause operation but
aimed at a specific address. Finally, the isWhiteListed
is a simple function that returns whether an address is
blacklisted or not.

The upgradeability functions refer to upgrading
the smart contract. When smart contracts are de-
ployed behind a proxy, so they can be upgraded,
they lose the constructor function (which is a func-
tion called as soon as the smart contract is created
and deployed). This is where the initialize function
comes into play. It is a special function that can be
called only once after linking the proxy to the exe-
cution smart contract, effectively acting as the con-
structor. The authorizeUpgrade is a function called
before upgrading the smart contract and should have
any logic regarding the authorization of this upgrade,
such as checking if the function called has the up-
grader role, for example.

3.3 The Centralized Bridge Design

Since implementing a decentralized bridge is much
more complicated and the API for minting and burn-
ing the stablecoins would already be considered a cen-
tralized way to buy the tokens, it makes sense to im-
plement a centralized design for the bridge.

The bridge, from the API point of view, is just an-
other operation, but it is fundamental to cover it apart
because it is the feature that enables cross-chain inter-
operability and allows the users to move their tokens
from one blockchain to another without first return-
ing to the asset backing the stablecoin, in this case,
the Brazilian Real.

Figure 3 shows, in very basic terms, how the
bridge operation is processed. A user creates a bridge
requisition in the API, and it is executed by first burn-
ing the user’s tokens in the input blockchain, and
minting the same amount in the output blockchain.
It is a two step process, but nothing more than a con-
catenation of two already implemented operations.

Since the mint operation in the output blockchain
must only be made once the burn operation is con-
firmed in the input blockchain, it is important to high-
light, again, the necessity of correctly handling reor-
ganizations in the input chain. If the API does not
properly wait for the finality of the mint operation, by
waiting for enough blocks to be mined after, a reor-
ganization can happen, and the user might have his

Architecture for Stablecoins with Cross-Chain Interoperability

277



tokens returned to his wallet in the input chain while
they were also minted in the output chain.

Figure 3: Centralized bridge operation.

4 A PROOF OF CONCEPT

For a proof of concept, a simpler version of the stable-
coin service and the smart contract was implemented.
The idea was to keep only the essential functionali-
ties related to the minting and burning of the stable-
coin. The supported blockchains were also restricted
to only Ethereum and Polygon to simulate bridge op-
erations. The simplified version of the stablecoin
service is based on the architecture shown in Fig-
ure 1, but without the complementary microservices
as Operation Events Webhook, Proof of Reserves and
Cache.

Interactions with the banking service were simu-
lated in the proof of concept. The simulated banking
service can receive a request for a bank transfer, re-
turn a result, and send events regarding Pix deposits.
This way, both the burning and minting of the tokens
can be properly implemented. We also assume that
the bank operations never fail to further simplify the
implementation. The smart contract was kept with the
essential functions as presented in Figure 2, in a way
to hold the basic functionalities of minting, burning,
and access control, without worrying about compli-
ance, security, and upgradeability.

The repository with all the code supporting the
implementation of this project is available in GitHub
(Bastos, 2023). The deployment of the system is
easy and pretty much plug-and-play due to the con-
tainerization technology (using Docker technology)
and can be customized to some extent by changing
the configurations. A user-friendly interface is avail-
able as a front-end application (written with Javascript
and CSS). The API itself is also fully documented,
using the OpenAPI 3.0 specification, and the stable-

coin smart contract is simple and ready to be de-
ployed in any EVM-compatible blockchain. The API,
Bank Webhook and Smart Contract Interface are writ-
ten in Go language. The Messaging Queues are im-
plemented with RabbitMQ (VMware, 2007), whereas
the Data Persistence uses PostgreSQL. To exemplify
the use of the developed application, we show the
mint, burn, and bridge operations below.

With the user logged in and his MetaMask wallet
connected, he is ready to buy some amount of stable-
coins. This can be made in the Deposit tab, where
the user can input the amount in Brazilian centavos
(basically, amount × 100). The wallet address and
the blockchain are automatically fetched from Meta-
Mask, and he can just click the generate invoice but-
ton, which registers the purchase order in the Sta-
blecoin Service backend, and shows a QR code that
would contain the bank account information for the
user to pay the order. This process is demonstrated in
Figure 4.

Figure 4: Buying stablecoins.

Due to the simulation of the user’s payment in the
backend, after a couple of seconds, the invoice is con-
sidered to be paid and the minting process starts. In
no more than a couple of minutes, the tokens are de-
posited in the user’s wallet, and he is ready to use
them for anything he wants. In the Deposit History
tab, he can track the status of his transaction, includ-
ing the status of the operation in the blockchain. Fig-
ure 5 shows the just executed purchase operation. By
clicking the link in the Blockchain Hash column, the
user can see the actual blockchain transaction that was
responsible for minting his tokens.

With the user logged in and his MetaMask wal-
let connected, he is also able to sell some amount of

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

278



Figure 5: History of purchase operations.

stablecoins. This can be made in the Withdraw tab,
where the user can input the amount he wants to sell,
in Brazilian Centavos, and his Pix Key, which encodes
his bank account information. The wallet address and
the blockchain are automatically fetched from Meta-
Mask. So he can just click the withdraw button, which
starts the burning operation and, if successfully ex-
ecuted, the bank transaction, right after. Figure 6
presents the withdraw interface. After pressing the
withdraw button, MetaMask prompts the user to sign
the permit which is necessary for the API to burn the
user’s tokens. Only after accepting and signing the
message, the burn operation effectively starts. Like-
wise, the Withdraw History tab contains the tabulated
information of past sale transactions.

Figure 6: Selling stablecoins.

The last operation of the proof of concept is
the bridge operation. This operation involves two
blockchain transactions: burn in one blockchain and
mint in the other. It can be started in the Bridge tab,
and the history of past bridge operations can be ver-
ified in the Bridge History tab. Figure 7 presents the
bridge interface. An amount of stablecoins to bridge
is requested from the user, as well as the permit to
burn his tokens in the input chain. Since the API cur-
rently supports only two chains, the front end auto-
matically selects the input and output blockchain ac-
cording to the current blockchain selected in Meta-
Mask.

Figure 7: Bridging stablecoins.

5 CONCLUSIONS

We proposed an architecture for the backend of a sta-
blecoin service with cross-chain interoperability. We
presented the needed microservices and how they deal
with the client’s requests to orchestrate the steps of
the burn, mint, and bridge operations. We also de-
tailed how a stablecoin is created in blockchain by us-
ing a smart contract based on the ERC-20 standard.
Regarding the proof of concept, the proposed archi-
tecture was successfully implemented. The solution
made use of EVM-compatible blockchains, but there
are other types of blockchains with growing ecosys-
tems that could offer even cheaper and faster transac-
tions, being ideal for the development of stablecoins.

In addition to the proposed centralized bridge so-
lution, a promising avenue for future work is to allow
a trustless bridge solution. As the blockchain and de-
centralized finance ecosystems continue to grow, the
need for secure and seamless inter-connectivity be-
tween various blockchain networks becomes increas-
ingly critical. Ensuring transparent and tamper-proof
transactions between these networks, without relying
on centralized intermediaries, holds great potential
for enabling a more robust and decentralized digital
economy.

By simulating the banking service in the proof of
concept, we postponed an important part of the imple-
mentation which is correctly integration with a real
payment system, understanding the format of its re-

Architecture for Stablecoins with Cross-Chain Interoperability

279



sponses and its limitations. The possibility of errors
was not considered, but a real application would have
to be robust to errors in operations. For future work,
we suggest studying the challenges and risks of in-
tegrating other payment methods, such as debit and
credit cards. Pix is a system currently exclusive to
Brazil, and international cards are used in the entire
world, so this would be a great way to increase the
user base.

Our proposal considered a fiat-backed stablecoin,
but it could be extended to a stablecoin backed by
any asset acting as the collateral for the stablecoin re-
serves. Studying and developing stablecoins with a
different pegging mechanism, such as crypto-backed
stablecoins, is another topic to be researched. Algo-
rithmic stablecoins, in particular, still have proven to
be quite challenging to implement with a trusted peg-
ging algorithm.

Another topic of interest is to reason about the real
usage of the stablecoin. Although everything was de-
veloped in a test environment, to avoid any real costs
of using the blockchain, a real stablecoin ready to be
used in production would need many mechanisms to
incentive users to buy stablecoins. These mechanisms
could be anything, from offering forex exchange ca-
pabilities with other stablecoins to any activity that
uses real money, such as sports betting.

REFERENCES

Antonopoulos, A. M. (2017). Mastering Bitcoin: Unlocking
Digital Cryptocurrencies. O’Reilly Media.

Bains, P., Ismail, A., Melo, F., and Sugimoto, N. (2022).
Regulating the crypto ecosystem: the case of sta-
blecoins and arrangements. International Monetary
Fund.

Banco Central do Brasil (2023). BCB selected 14
institutions to collaborate with the development
of the piloto RD. Central Bank of Brazil.
https://www.bcb.gov.br/en/pressdetail/2481/nota Ac-
cessed on 2024-01-02.

Bastos, E. (2023). Project repository.
https://github.com/EricBastos/ProjetoTG Accessed
on 2024-01-02.

Baughman, G., Carapella, F., Gerszten, J., and Mills,
D. (2022). The stable in stablecoins. FEDS
Notes. https://doi.org/10.17016/2380-7172.3224 Ac-
cessed on 2024-01-02.

EBC Agencia Gov (2023). Pix reaches im-
pressive numbers in just three years.
https://agenciagov.ebc.com.br/noticias/202311/pix-
chega-a-numeros-expressivos-em-apenas-tres-anos
Accessed on 2024-01-02 In Portuguese.

Infante, S., Kim, K., Orlik, A., Silva, A. F., and Tetlow,
R. J. (2022). The macroeconomic implications of

CBDC: A review of the literature. Finance and
Economics Discussion Series 2022-076, Board
of Governors of the Federal Reserve System.
https://www.federalreserve.gov/econres/feds/the-
macroeconomic-implications-of-cbdc-a-review-of-
the-literature.htm Accessed on 2024-01-02.

Lundfall, M. (2020). Erc-2612: Permit extension for EIP-20
signed approvals. https://eips.ethereum.org/EIPS/eip-
2612 Accessed on 2024-01-02.

Mell, P. and Yaga, D. (2022). Understanding stablecoin
technology and related security considerations. Tech-
nical report, National Institute of Standards and Tech-
nology. https://nvlpubs.nist.gov/nistpubs/ir/2023/
NIST.IR.8408.pdf Accessed on 2024-01-02.

Nageswaran, S., Knottenbelt, W., and Leung, K. (2019).
Digipound: A proof-of-concept stablecoin audited in
real time.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system. Decentralized business review, page
21260. https://bitcoin.org/bitcoin.pdf Accessed on
2024-01-02.

Phillips, K. (2020). How stable are stablecoins
and what factors affect volatility? Lukka.
https://lukka.tech/how-stable-are-stablecoins-
and-what-factors-affect-volatility/ Accessed on
2024-01-02.

Pillai, B., Biswas, K., and Muthukkumarasamy, V. (2020).
Cross-chain interoperability among blockchain-based
systems using transactions. The Knowledge Engineer-
ing Review, 35:e23.

Stripe, I. (2010). Stripe. https://stripe.com/ Accessed on
2024-01-02 In Portuguese.

VMware (2007). Rabbitmq. https://www.rabbitmq.com/
Accessed on 2024-01-02.

Xie, T., Zhang, J., Cheng, Z., Zhang, F., Zhang, Y.,
Jia, Y., Boneh, D., and Song, D. (2022). zk-
Bridge: Trustless cross-chain bridges made practi-
cal. https://arxiv.org/pdf/2210.00264.pdf Accessed on
2024-01-02.

Yaga, D., Mell, P., Roby, N., and Scarfone, K.
(2018). Blockchain technology overview NIS-
TIR 8202. https://nvlpubs.nist.gov/nistpubs/ir/2018/
NIST.IR.8202.pdf Accessed on 2024-01-02.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

280


