
APOENA: Towards a Cloud Dimensioning Approach for Executing
SQL-like Workloads Using Machine Learning and Provenance

Raslan Ribeiro1, Rafaelli Coutinho2 a and Daniel de Oliveira1 b

1Institute of Computing, Universidade Federal Fluminense, Niterói, Brazil
2Federal Center for Technological Education Celso Suckow da Fonseca, Brazil

Keywords: Cloud Dimensioning, Query Execution Time, Machine Learning, Provenance Data, Big Data.

Abstract: Over the past decade, data production has accelerated at a fast pace, posing challenges in processing, query-
ing, and analyzing huge volumes of data. Several platforms and frameworks have emerged to assist users in
handling large-scale data processing through distributed and HPC environments, including clouds. Such plat-
forms offer a plethora of cloud-based services for executing workloads efficiently in the cloud. Among these
workloads are SQL-like queries, the focus of this paper. However, leveraging these platforms usually requires
users to specify the type and number of virtual machines (VMs) to be deployed in the cloud. This task is not
straightforward, even for expert users, as they must choose the VM type and number from several options avail-
able in a cloud provider’s catalog. Although autoscaling mechanisms can be available, non-expert users may
find it challenging to configure them. To assist non-expert users in dimensioning the cloud environment for
executing SQL-like workloads in such platforms, e.g., Databricks, this paper introduces a middleware named
APOENA, which is designed to dimension the cloud for specific SQL-like workloads by collecting provenance
data. These data are used to train Machine Learning (ML) models capable of predicting query performance
for a particular combination of query characteristics and VM configuration.

1 INTRODUCTION

In recent years, many approaches have been proposed
for processing and querying the so-called Big Data,
and they aim to support the user in the decision-
making process (Meredino et al., 2018). Some of
these approaches are designed for local or cloud-
based deployment and usage, such as Apache Spark1

and Apache Hive 2, while others are inherently cloud-
based, like the services provided by major cloud
providers. Despite representing a step forward, these
approaches have limitations for some types of us-
age, e.g., certain approaches lack support for complex
queries or are unsuitable for transactional workloads.

Nevertheless, other solutions like Databricks (Za-
haria, 2019), a data analytics platform, offers sev-
eral advantages such as support for complex queries,
transactional workloads, and autoscaling of work-
loads. Despite the appeal of these features, it is

a https://orcid.org/0000-0002-1735-1718
b https://orcid.org/0000-0001-9346-7651
1https://spark.apache.org/
2https://hive.apache.org/

worth noticing that Databricks is not provided free
of charge, i.e., the financial cost of its services can
be substantial depending on the usage scenario. For
instance, Databricks provides a query engine named
Photon, optimized for accessing and querying data
in a Data Lake (Nargesian et al., 2023). As of
December 23rd, 2023, the financial cost3 of using
Photon (i.e., DLT Advanced Compute Photon) on
an m5dn.4xlarge AWS virtual machine (VM) (with
16vCPUs and 32GiB RAM) for just one hour per day
over 30 days amounts to US$102.10. This value can
increase in a real-world production environment.

The problem is that most cloud providers offer an
extensive variety of VM types, often more than a hun-
dred. Each VM type has its specific characteristics,
including the number of vCPUs, memory in GiBs,
and financial cost in US dollars. Choosing the ap-
propriate VM type based on the specific characteris-
tics of a SQL-like query can pose a challenge. For
instance, consider a SQL-like query containing the
predicate PERSON ID = 44311, which restricts the

3https://www.databricks.com/br/product/pricing/
product-pricing/instance-types

Ribeiro, R., Coutinho, R. and de Oliveira, D.
APOENA: Towards a Cloud Dimensioning Approach for Executing SQL-like Workloads Using Machine Learning and Provenance.
DOI: 10.5220/0012633000003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 289-296
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

289

possible values of the PERSON ID attribute to a sin-
gle value. This condition establishes a specific selec-
tivity factor4. Introducing a different predicate, such
as PERSON ID IN (44311, 44556, 33245), can al-
ter the selectivity factor and consequently affect the
query execution time. Additionally, the number of
tuples in one or more tables probably impacts the
query execution time. Therefore, determining the
suitable VM type for executing a specific query (or
a set of queries) is far from trivial. Poor execu-
tion of this task may result in financial costs due to
over-dimensioning or performance issues stemming
from under-dimensioning of the cloud environment.
Although Databricks offers autoscaling mechanisms,
it can be a tricky task to be accomplished by non-
experts.

This paper introduces APOENA (word from the
Tupi language that means “the one who sees fur-
ther”), a middleware designed to dimension the cloud
to specific SQL-like workloads in platforms like
Databricks. APOENA collects a set of metadata, includ-
ing provenance data (Herschel1 et al., 2017) — i.e.,
the historical record of previously executed queries.
The goal is to use this information to train Machine
Learning (ML) models capable of predicting the exe-
cution time of an SQL-like query in a specific config-
uration of the virtual cluster to help the user config-
ure the platform. Through learning from provenance,
APOENA aims to prevent both over-dimensioning and
under-dimensioning of the cloud environment. It is
worth noting that APOENA is complementary to the
Databricks platform and is not designed to replace ex-
isting mechanisms.

This paper is structured into four sections, besides
this introduction. Section 2 discusses the background
and delves into related work. Section 3 introduces
APOENA, while Section 4 evaluates the proposed ap-
proach. Lastly, Section 5 concludes the paper, sum-
marizing key findings and highlighting future work.

2 BACKGROUND

2.1 Databricks Platform

The Databricks platform is designed for processing
large-scale data using big data frameworks such as
Apache Spark and storing these data in a Delta Lake
(Armbrust et al., 2020) as depicted in Figure 1. The
software stack available for this data processing is
called Databricks Runtime. The data manipulation

4The ratio of qualifying tuples to the total number of
tuples in the query.

can be performed using Apache Spark, an engine
designed for processing data in both single nodes
and distributed clusters, but Databricks runtime also
incorporates other components, e.g., Photon (Behm
et al., 2022). Photon serves as a specialized query en-
gine designed for Lakehouse environments (Zaharia
et al., 2021). Photon leverages the advantages of
Delta Lake (Armbrust et al., 2020), which stores files
in delta type. Delta files, built on top of parquet files,
offer features such as data versioning and support for
upsert operations (i.e., update and insert). The Unity
Catalog in this software ecosystem also plays a piv-
otal role by centralizing data control, simplifying ac-
cess, and easing auditing processes.

Databricks offers Delta Live Tables (DLT), en-
abling pipeline construction by defining data transfor-
mations using SQL or Python. DLT automates lin-
eage generation, linking tables to their data depen-
dencies, and ensuring each table is generated after its
predecessors. With all workloads planned for cloud
processing (e.g., AWS or Azure), sizing the virtual
cluster appropriately is crucial for performance and
cost. Databricks provides autoscaling mechanisms
for dynamic cluster sizing, though it relies on reac-
tive algorithms based on performance metrics. Deter-
mining resource needs can be complex, especially for
non-expert users unfamiliar with autoscaling config-
urations. This paper’s approach aims to guide non-
expert users in determining an effective initial cluster
size to avoid under or over-sizing or minimize adjust-
ments from default autoscaling configurations, rather
than achieving globally optimal sizing or catering to
expert optimization efforts.

2.2 Provenance Data

Provenance is commonly defined as “the history of
data” (Herschel1 et al., 2017). This term denotes the
metadata that explains the process of generating a spe-
cific piece of data. Its purpose is to systematically
record, in a structured and queryable format, the data
derivation path within a particular context. Initially
used for assessing quality and fostering reproducibil-
ity in scientific experiments, its application extends
beyond its original purpose. In the context of this
paper, it serves as a rich source of information, en-
compassing consumed parameter values and execu-
tion times of SQL-like queries submitted by users. In
this regard, provenance data can be employed for di-
mensioning the cloud environment, which is the pri-
mary focus of this paper.

While various methods exist for representing and
storing provenance data, the W3C recommendation,
known as PROV (Groth and Moreau, 2013), defines

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

290

a data model for this purpose. PROV conceptualizes
provenance with Entities, Agents, Activities, and var-
ious relationship types. An Entity represents a tan-
gible object or concept, such as a SQL-like query or
a database table with parameter values. Activities are
actions within Databricks affecting entities, like query
execution, with associated times and errors. Lastly,
an Agent is a user executing activities. Despite being
domain-agnostic, PROV can extend to various fields,
including those addressed in this paper.

The specification of a query can be viewed as
Prospective Provenance (p-prov), a form of prove-
nance data that logs the steps carried out during data
processing. Another category of provenance is Retro-
spective Provenance (r-prov), which captures details
related to the execution process. This includes infor-
mation such as when a query is submitted and exe-
cuted, the duration of its execution, the parameters
used, any errors encountered, etc.

2.3 Related Work

Several papers have previously proposed methods for
dimensioning the virtual cluster or predicting SQL
query execution time in specific environments us-
ing different big data frameworks (de Oliveira et al.,
2021; Mustafa et al., 2018; Burdakov et al., 2020).
Singhal and Nambiar (2016) introduce an analytical
model that dynamically adjusts the query execution
plan according to some performance metrics. This is
achieved by constructing individual ML models to es-
timate the database and operating system’s cache, as
well as the execution time of each SQL operator in
the query plan. Such individual models are further
combined into one. Mustafa et al. (2018) propose an
ML model capable of predicting the execution time
of Spark jobs. The evaluation of the proposed model
is based on metrics such as R-Squared, Adjusted R-
Squared and Mean Squared Error. The authors con-
sider the dataflow created by Spark to be composed
of multiple tasks and each stage is based on data par-
titioning. After each task, various features, such as
input and output data sizes, are used to train the ML
model. Following each stage (composed of multiple
tasks), the number of transformations is used as in-
put for the prediction model. Although this approach
represents a step forward, it is focused on Spark jobs,
as it consumes features specific to Spark, such as data
partitions in RDD and dataframes.

Burdakov et al. (2020) propose a cost model for
query time estimation for use in Database as a Ser-
vice (DaaS) platforms. The approach proposes em-
ploying a Bloom filter and duplicating small tables
across multiple nodes to reduce query execution time.

The cost model assumes as a promise that there is a
uniform distribution of attribute values, independence
of attributed values, and that keys from a small do-
main can be found in large domains. Ahmed et al.
(2022) compare various analytical and ML models
for the estimation of runtime in big data jobs. The
authors conclude that the choice of the most suitable
machine learning or analytical approach depends on
the specific type of job and the environment in which
it is submitted to. Öztürk (2023) introduces a multi-
objective optimization method for tuning Spark-based
jobs. The author demonstrates that incorporating data
compression and memory usage features enhances the
effectiveness of multi-objective optimization methods
specifically designed for Spark. Likewise, de Oliveira
et al. (2021) propose the usage of Decision Trees clas-
sifiers for predicting the execution time of Spark jobs,
aiming to assist in parameter tuning. Also, Filho et al.
(2021) propose an approach for Hadoop tuning that
can provide good performance for Hive queries.

While the aforementioned approaches represent a
step forward, they primarily focus on specific DBMSs
or big data frameworks. To the best of the authors’
knowledge, there is no specific approach tailored to
recommending the suitable amount of resources for
SQL-like queries in platforms like Databricks.

3 THE APOENA MIDDLEWARE

This section introduces APOENA, a middleware inte-
grated into the Databricks runtime service, specif-
ically designed for cloud environment dimension-
ing for SQL-like query workloads. APOENA com-
prises five key components, as presented in Figure
1: (i) Crawler, (ii) Workload Generator, (iii) Statistics
Database, (iv) Model Trainer, and (v) Dimensioner.
Subsequently, we delve into the specifics of each of
these components.

To execute, APOENA requires a series of queries to
have been previously submitted and executed. These
queries can range from simple ones like “SELECT
* FROM t1” to complex queries involving multiple
tables, aggregation functions, DLT, and the usage
of Photon. The Crawler is responsible for collect-
ing all information related to the previously executed
queries. It accesses the logs in Databricks platform
to extract the provenance associated with the queries,
e.g., execution time, Photon usage, the number of in-
put tuples, worker type, the number of workers etc.

It is noteworthy that the Crawler also collects
metadata related to the ETL routines, the executed
queries and their respective executors, i.e., prove-
nance data. In many existing ETL routines, data are

APOENA: Towards a Cloud Dimensioning Approach for Executing SQL-like Workloads Using Machine Learning and Provenance

291

Figure 1: The Architecture of APOENA middleware. Gray components are the ones already provided by Databricks runtime
Service and Delta Lake while red components are part of APOENA.

organized into three layers: (i) Bronze Layer, (ii)
Silver Layer, and (iii) Gold Layer. The data in the
Bronze Layer does not differ significantly from the
raw data in the Lakehouse; the distinction lies only
in the representation, wherein data from different for-
mats are loaded into a table. Data in the Silver Layer
is already transformed and cleaned. Additionally, the
data can be enriched with more useful information,
such as replacing country name abbreviations with the
full name or obtaining the complete address of a place
based on its postal code. In the Gold Layer, data is
stored in data marts for decision-making.The layer as-
sociated with each query is captured by the Crawler.

Following this, the Crawler sends the captured
metadata to the Workload Generator. This compo-
nent is employed to generate representative queries in
case the number of past executions is small (e.g., less
than 500 past executions). Since we assume that most
of the executed queries will access data stored in the
Gold Layer, we can generate multiple representative
queries to increase the number of past executions for
APOENA. In this sense, we have adapted the algorithm
for workload generation previously proposed by Or-
tiz et al. (2015), outlined in Algorithm 1. The input
consists of a database following a star or snowflake
schema (i.e., the database in the Gold Layer), denoted
as D = { f ∪{dim1,dim2, ...,dimk}}, comprising one
fact table (f) and multiple dimension tables. It is
noteworthy that we assume the fact table has multiple
foreign keys to dimension tables. Each table ti ∈ D is
composed of a set of attributes Att(ti). The algorithm
produces a set of possible queries Q to be executed
and the associated performance metrics M collected
(the generated queries may not represent a real-world

analysis to be performed by users, but it can be used
as an example for training the ML models following).
Each qi ∈ Q is associated with a tuple (T q,Aq,eq))
where T q is the set of tables in the FROM clause (i.e.,
the fact table and one or more dimension tables), Aq

is the set of projected attributes in the SELECT clause,
and eq is the selectivity factor. As previously defined
by Ortiz et al. (2015), the algorithm keeps a list L with
all representative sets of tables T q. Initially, every sin-
gle table ti ∈ D is inserted into L (lines 4-6), then the
algorithm generates the joins (line 8). When all rep-
resentative queries are produced, the algorithm starts
executing each qz ∈Q using different cluster configu-
rations, i.e., different types of VMs (lines 26-28).

The collected provenance data for each query exe-
cution includes: (i) query ID, (ii) number of input tu-
ples, (iii) number of output tuples, (iv) number of vC-
PUs in the worker, (v) memory (in GB) of the worker,
(vi) selectivity factor, (vii) number of workers, (viii)
number of attributes, (ix) if the query was accelerated
using Photon, (x) if the query has an inner join, (xi) if
the query has a left join, (xii) the layer (i.e., bronze,
silver, or gold), (xiii) if the query has a GROUP BY
clause, and (xiv) the execution time. Once all prove-
nance data regarding the executed queries is available,
the Model Trainer can be invoked. The Model Trainer
uses the received provenance data to train ML models
for use in the cloud dimensioning task. In its current
version, APOENA uses Linear Regression (LiR), Logis-
tic Regression (LoR), Decision Tree Classifier (DTC),
and Random Forest Regression (RFR), all available in
scikit-learn5. LiR aims to fit the results into a linear

5https://scikit-learn.org/stable/

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

292

Algorithm 1: Workload Generation.

1 Q←{};
2 L←{};
3 M←{};
4 foreach ti ∈ D do
5 T q←{ti};
6 L← L∪T q;
7 if isFact(ti) then
8 SortDesc({dim1, ...,dimk}),1≤ i≤ k;
9 foreach j,1≤ j ≤ k do

10 Dq← first j tables from D;
11 T q← T q∪Dq;
12 L← L∪T q;
13 end
14 end
15 end
16 foreach T q ∈ L do
17 SortDesc(Att(T q)),Att j(T q)≤ j ≤ Att(T q);
18 foreach k,1≤ k ≤ Att(T q) do
19 Aq← first k attributes from Att(T q);
20 foreach eq ∈ ET q do
21 Q← Q∪ (T q,Aq,eq));
22 end
23 end
24 end
25 foreach qz ∈ Q do
26 foreach vmc ∈V M do
27 Pqz ← Per f (qz,vmc);
28 M←M∪Pqz ;
29 end
30 end

equation by minimizing the sum of the squared dif-
ferences between predicted and actual values (Russell
and Norvig, 2020). Unlike LiR, LoR works with one
or more independent variables based on finding a re-
lationship between them. DTC is based on learning
the final classification according to its features, devel-
oping a prediction model with rules based on previ-
ous results (Russell and Norvig, 2020). Finally, RFR
comprises sample groups of decision tree classifiers
that estimate an average classifier according to each
sample (Russell and Norvig, 2020).

Once the ML models are trained, the Dimensioner
can be invoked. The idea behind the Dimensioner
is that every time a new query is submitted, APOENA
identifies the characteristics of this query and com-
bines them with all possible virtual cluster configura-
tions (i.e., the types and number of VMs). Each com-
bination of query and environment setup is then sub-
mitted to each trained ML model for inference. The
ML model responds with the expected execution time
of the query for that specific virtual cluster config-
uration. The Dimensioner then orders and presents
the top K configurations that will execute the query
faster and/or with less financial cost, depending on the

goal defined by the user. The user can then dimen-
sion the environment by choosing the most suitable
virtual cluster configuration. It is worth mentioning
that APOENA does not replace any existing mechanism,
such as autoscaling. Instead, the idea is to avoid un-
necessary deployments and undeployments of VMs in
the process and to assist especially non-expert users.

4 EXPERIMENTAL EVALUATION

This section evaluates APOENA in a real production
scenario. First, we present the chosen evaluation met-
rics. Then, we discuss how the computational envi-
ronment was configured. Following that, we present
the data used in the experiments, and finally, we dis-
cuss the achieved results.

4.1 Metrics

Metrics must be employed to evaluate the perfor-
mance of trained ML models to predict the query ex-
ecution time for a specific query and virtual cluster
configuration. They include True Positive (TP), True
Negative (TN), False Positive (FP) and False Nega-
tive (FN). A TP is a result in which the model cor-
rectly predicts the correct class. Similarly, a TN is a
result in which the model correctly predicts the neg-
ative class. An FP is a result in which the model in-
correctly predicts the positive class. A FN is a result
in which the model incorrectly predicts the negative
class. Based on that, we can define the Accuracy as
the number of correct predictions (TP+TN) divided
by the total of predictions (TP+TN+FP+FN). We can
also use the F1 score, which represents the harmonic
mean between precision (Precision = T P

T P+FP) and re-
call (Recall = T P

T P+FN), as defined by F1 score =

2× Precision×Recall
Precision+Recall . However, the F1 score can in-

volve a micro, macro, or weighted average. Accord-
ing to Plaue, the micro average is a global metric
that considers the total of true positives, false nega-
tives, and false positives, as F1 micro = T P

T P+ FP+FN
2

.

On the other hand, the macro average is not a global
metric. It calculates the F1 score for each class i
and determines their unweighted mean, where n is
the number of classes as defined by F1 macro =
∑

n
i=1 F1 scorei

n . Thus, it ignores unbalanced data. Fi-
nally, the weighted average considers unbalanced
data, calculating a F1 score for each class i separately
and its respective weight wi (Kundu, 2022), such that:
wi =

Quantity o f samples in class i
Total quantity o f samples , thus F1 weighted =

∑
n
i=1 wi×F1 scorei.

APOENA: Towards a Cloud Dimensioning Approach for Executing SQL-like Workloads Using Machine Learning and Provenance

293

4.2 Environment Setup

When configuring the environment, the user has to
choose a plethora of parameters in Databricks plat-
form, such as the Databricks runtime version, Photon
acceleration, number of workers and VM types to be
deployed. Our experiments are based on Databricks
version 12.2 LTS (using Scala 2.12 and Spark 3.3.2).
The VM types used are a subset of the ones provided
by AWS6. We considered only the information about
the number of vCPUs, RAM (in GB) and storage size
(in GB) of each VM type. Among many options,
the chosen ones were selected based on the best cost-
benefit, as presented in Table 1.

Table 1: Chosen AWS VM Types.

VM type vCPU RAM (GB) Storage (GB)
r5d.xlarge 4 32 1 x 150
r5d.2xlarge 8 64 1 x 300
i3.xlarge 32 32 1 x 950
m5d.4xlarge 64 64 2 x 300

4.3 Experiment Setup

All data used in the experiments were collected from
real-world SQL-like queries submitted to Databricks
in a large-scale company. The queries are associ-
ated with LinkedIn profile data and Internal Revenue
Service data. Such data sources provide rich infor-
mation that helps data analysts determine the profile
of companies and individuals based on the provided
content. The used database includes the following at-
tributes: (i) employer identification number, (ii) share
capital, (iii) address, (iv) number of employees, (v)
business segment, (vi) revenue, (viii) email, (ix) tele-
phone number, etc. It is worth mentioning that the
used data did not have sensitive information.

A set of provenance data associated with each
query execution was collected so it is possible to
conduct the evaluations and can be divided into four
classes: (i) query structure (i.e., p-prov), (ii) con-
sumed/produced data information (i.e., r-prov), (iii)
Databricks setup and (iv) computational environment
(i.e., r-prov). Metadata regarding the query struc-
ture was collected by analyzing each query indi-
vidually to retrieve information about the usage of
specific SQL statements, such as constraints, CTE,
CASE WHEN, joins (e.g., INNER JOIN, LEFT JOIN,
and RIGHT JOIN), GROUP BY, subqueries, EXPLODE
and the selectivity factor. The latter is calculated by
determining the proportion of the filtered data ana-
lyzed against the total number of tuples in the tables.

Metadata about the tables was collected, including

6https://aws.amazon.com/ec2/instance-types/

the number of input rows, input and output attributes
(i.e., projection). Concerning the computational en-
vironment and the number of vCPUs information in
each VM, the RAM amount (in GBs) in each VM and
the storage capacity (in GBs) in each VM were gath-
ered. Finally, concerning the Databricks setup, infor-
mation on the number of workers, the type of each
worker and whether the query used Photon for accel-
eration was collected.

We also specify the ML algorithms that will be
employed to train the ML models by APOENA. Since
we are using scikit-learn as the ML framework, we
have chosen the following algorithms: LiR, LoR,
DTC and RFR. Each trained ML model is submitted
to the 10-fold Cross-Validation method for evaluation
of the F1 weighted metric.

4.4 Results

Since in APOENA, we aim to predict the execution time
of a SQL-like query based on characteristics of the
query and the computational environment used, the
query execution time is our target class. As the execu-
tion time of queries is rarely the same, it is preferable
to discretize this class into a series of execution time
intervals. Our first task is to choose a suitable number
of intervals for query execution time. Table 2 presents
eight possible discretizations of the query execution
time that can be used by APOENA.

The dataset, containing query provenance and
Databricks environment features, becomes unbal-
anced depending on chosen execution time intervals.
Real-world data from a production system shows
the majority of queries execute in under 600 sec-
onds. Thus, fewer intervals lead to a more unbalanced
dataset, with most queries falling into the first inter-
val. Hence, we evaluate scenarios with six, seven, and
eight execution time intervals. Figure 2(a) shows the
percentage of examples per time interval for a sce-
nario with eight intervals.

After defining the number of execution time inter-
vals, we evaluated the importance of features in the
dataset. Selecting the most relevant features based
on their impact on the predicted result is essential for
APOENA. Measures based on the impurity reduction of
splits in DTC are common since they are simple and
fast to compute. Thus, we have chosen to use Gini im-
portance (Nembrini et al., 2018). Figure 2(b) presents
the importance of each feature.

Differently from what we expected, some features
presented low importance in the dataset, such as the
use of LEFT JOIN and INNER JOIN clauses in the
queries. This could be due to the fact that only one
query includes a LEFT JOIN, which reduces its global

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

294

Table 2: Intervals for Query Execution Time (in seconds).

Number of Intervals Intervals (in seconds)
2 0-1800; > 1800
3 0-300; 300-3600; > 3600
4 0-300; 300-1800; 1800-7200; > 7200
5 0-300; 300-1800; 1800-7200; 7200-14400; > 14400
6 0-300; 300-1800; 1800-3600; 3600-7200; 7200-14400; > 14400
7 0-300; 300-600; 600-1800; 1800-3600, 3600-7200; 7200-14400; > 14400
8 0-30; 30-300; 300-600; 600-1800; 1800-3600; 3600-7200; 7200-14400; > 14400

Figure 2: (a) Percentage of examples per execution time interval (8 intervals). (b) Feature Importance.

importance despite adding to the complexity of that
query. However, as expected, the number of tuples
processed by the query and characteristics of the envi-
ronment, e.g., the number of vCPUs, and the number
of workers have an impact on the result. All features
with importance greater than zero were considered in
the following analyses.

We have executed each ML algorithm to train the
models for 6, 7, and 8 execution time intervals, eval-
uating the accuracy and the F1 weighted metrics of
each one. By analyzing Table 3, one can observe that
the DTC is the classifier that showed the highest ac-
curacy and F1 weighted for all three execution time
intervals. We have set the minimum accepted values
for accuracy and F1 weighted at 0.9 for both metrics.
Therefore, the DTC was the chosen ML model for use
in this dataset by APOENA. It is worth noting that a dif-
ferent classifier may be chosen if the query patterns
change drastically over time. Thus, the ML models
have to be retrained periodically in APOENA. The au-
tomatic retraining feature is still under development.

Table 3: Performance metrics according to time intervals.

Intervals Metric LiR LoR RFR DTC

6 Accuracy 0.70 0.36 0.88 0.94
F1 weighted 0.77 0.19 0.91 0.94

7 Accuracy 0.46 0.22 0.80 0.84
F1 weighted 0.57 0.08 0.81 0.84

8 Accuracy 0.42 0.22 0.64 0.76
F1 weighted 0.48 0.08 0.67 0.76

We also assessed the impact of correct and incor-
rect recommendations made by APOENA for two rep-
resentative queries (transformations from bronze to
the silver layer). The first one accessed 332,263,103
tuples, producing 41,041,580 tuples as output. This
query is executed in a virtual cluster composed of
two VMs r5d.2xlarge for 1,219 seconds. APOENA cor-
rectly classified it into the 300-1800 execution time
interval and the query was executed within the pre-
dicted time, costing US$ 4.87. On the contrary, the
second one accessed 1,327,822,307 tuples, producing
415,478,474.00 tuples as output. The optimal con-
figuration for a balance of performance and cost was
a virtual cluster composed of 10 VMs m5d.4xlarge,
running for 1,776.00 seconds and costing approxi-
mately US$ 35.52. However, APOENA classified the
execution time interval for this query as 14,400 sec-
onds, which may make the user choose a different
virtual cluster configuration. We only considered the
VM types presented in Table 1. If more powerful
VMs are available for APOENA, the user might choose
an over-dimensioned configuration incurring higher
financial costs. Finally, we evaluated the overhead
imposed by APOENA to dimension the virtual cluster.
On average, APOENA needed 100 seconds to train ML
models and less than a second for inference, which
can be considered an acceptable overhead.

APOENA: Towards a Cloud Dimensioning Approach for Executing SQL-like Workloads Using Machine Learning and Provenance

295

5 CONCLUSIONS

Several big data processing platforms have emerged,
with Databricks standing out as one of the most
prominent options. It offers a range of cloud-based
services for executing complex queries and transac-
tional workloads. However, it requires the dimen-
sioning of the cloud environment, demanding users to
specify the types and number of VMs for deployment,
a task that can be far from trivial. Identifying the
characteristics of a SQL-like workload and estimat-
ing the appropriate VM type from a selection of more
than 100 options poses a complex challenge. While
mechanisms like autoscaling exist in Databricks, they
are costly and may not be straightforward to con-
figure for non-expert users. Improperly dimension-
ing the cloud environment, either through over or
under-dimensioning, can impact both workload per-
formance and financial costs.

This paper proposes a middleware named APOENA,
designed to dimension the cloud environment for spe-
cific workloads, i.e., SQL-like queries. APOENA col-
lects provenance data and employs this historical data
to train ML models capable of predicting query per-
formance for a particular combination of a query and
virtual cluster configuration. This configuration in-
cludes the type and number of VMs involved in the
execution. Although APOENA focused on Databricks
in this paper, it could be extended to work with other
big data frameworks such as Apache Spark.

Experiments with real-world workloads demon-
strated that APOENA classified query execution times
with over 90% accuracy and F1 weighted met-
rics. Future work involves implementing a retraining
mechanism for APOENA, as the current version does
not perform retraining automatically. Additionally,
we plan to evaluate APOENA using a broader range of
real-world workloads.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior
- Brasil (CAPES) - Finance Code 001. This pa-
per was also partially financed by CNPq (grant
no 311898/2021-1) and FAPERJ (grant no E-
26/202.806/2019).

REFERENCES

Ahmed, N. et al. (2022). Runtime prediction of big data
jobs: performance comparison of machine learning al-

gorithms and analytical models. J. Big Data, 9(1):67.
Armbrust, M. et al. (2020). Delta lake: High-performance

ACID table storage over cloud object stores. Proc.
VLDB Endow., 13(12):3411–3424.

Behm, A. et al. (2022). Photon: A fast query engine for
lakehouse systems. In SIGMOD’22, pages 2326–
2339. ACM.

Burdakov, A. et al. (2020). Predicting sql query execu-
tion time with a cost model for spark platform. In
IoTBDS’20, pages 279–287. INSTICC, SciTePress.

de Oliveira, D. E. M. et al. (2021). Towards optimizing the
execution of spark scientific workflows using machine
learning-based parameter tuning. Concurr. Comput.
Pract. Exp., 33(5).

Filho, E. R. L., de Almeida, E. C., Scherzinger, S., and
Herodotou, H. (2021). Investigating automatic param-
eter tuning for sql-on-hadoop systems. Big Data Res.,
25:100204.

Groth, P. and Moreau, L. (2013). W3C PROV - An
Overview of the PROV Family of Documents. Avail-
able at https://www.w3.org/TR/prov-overview/.

Herschel1, M., Diestelkämper1, R., and Lahmar, H. B.
(2017). A survey on provenance: What for? what
form? what from? The VLDB Journal.

Kundu, R. (2022). F1 score in machine learning: Intro &
calculation.

Meredino, A. et al. (2018). Big data, big decisions: The im-
pact of big data on board level decision-making. Jour-
nal of Business Research.

Mustafa, S., Elghandour, I., and Ismail, M. A. (2018). A
machine learning approach for predicting execution
time of spark jobs. Alexandria Engineering Journal,
57(4):3767–3778.

Nargesian, F., Pu, K. Q., Bashardoost, B. G., Zhu, E., and
Miller, R. J. (2023). Data lake organization. IEEE
Trans. Knowl. Data Eng., 35(1):237–250.

Nembrini, S., König, I. R., and Wright, M. N. (2018).
The revival of the gini importance? Bioinform.,
34(21):3711–3718.

Ortiz, J., de Almeida, V. T., and Balazinska, M. (2015).
Changing the face of database cloud services with per-
sonalized service level agreements. In CIDR’15.

Öztürk, M. M. (2023). Tuning parameters of apache
spark with gauss–pareto-based multi-objective opti-
mization. Knowledge and Information Systems.

Plaue, M. (2020). Data Science - An Introduction to Statis-
tics and Machine Learning. Springer.

Russell, S. J. and Norvig, P. (2020). Artificial Intelligence:
A Modern Approach (4th Edition). Pearson.

Singhal, R. and Nambiar, M. (2016). Predicting sql query
execution time for large data volume. In IDEAD’16,
page 378–385, New York, NY, USA. Association for
Computing Machinery.

Zaharia, M. (2019). Lessons from large-scale software as a
service at databricks. In SoCC’19, page 101.

Zaharia, M. et al. (2021). Lakehouse: A new generation
of open platforms that unify data warehousing and ad-
vanced analytics. In CIDR’21. www.cidrdb.org.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

296

