
Modernization of Legacy Systems to Microservice Architecture: A
Tertiary Study

Nathalia Rodrigues de Almeida, Gabriel Nagassaki Campos,
Fernando Rodrigues de Moraes and Frank José Affonso a

Department of Statistics, Applied Mathematics and Computation, São Paulo State University – UNESP,
PO Box 178, Rio Claro, São Paulo, 13506-900, Brazil

Keywords: Modernization, Monolithic System, Microservice Architecture, Systematic Mapping Study.

Abstract: Modernization of legacy systems to Microservice Architecture (MSA) has been a subject of interest in both
academia and industry. MSA facilitates the development of systems by composing them as a collection of
small, loosely coupled, and independent services. Despite the importance of this architectural style for system
modernization, there is a lack of comprehensive study of how the modernization process must be conducted,
regarding the main steps that must be executed, besides architectural patterns that may be used during this pro-
cess. The goal of this paper is to provide a panorama and analysis, providing a panorama on the modernization
of legacy systems to MSA. To do so, we conducted a tertiary study following the guidelines of a Systematic
Mapping Study, based on 20 secondary studies. Our overview reveals some evidence related to modernization,
such as the main motivations, the main architectural patterns, and the macro steps of a process. Moreover, a
discussion of the main findings is addressed in our study. As the study presented in this paper addresses a
research theme that is constantly evolving, the presented panorama may be an important guide for researchers
and practitioners in the development of future work to advance and consolidate such theme.

1 INTRODUCTION

Nowadays, software systems have played an impor-
tant role in our society, operating in various seg-
ments, such as public and private institutions, air-
ports, and communication systems. In parallel, a no-
table increase in the complexity of these systems and
their computational environments has been observed
in recent years (Lewis and Fowler, 2014). In a sce-
nario not far, system integration was a feasible alter-
native to expand the accessibility of legacy systems
to a larger user base, achieved simply by moderniz-
ing its interface. According to Pressman and Maxim
(2019), legacy can be understood as a system devel-
oped with obsolete computing resources (e.g., archi-
tectural models, programming languages, databases,
among others) for the current computing scenario.
Regarding operation, these systems have been contin-
ually maintained to meet changing business require-
ments and computing platforms. In this paper, this
concept is restricted to systems designed based on
a monolithic architecture built on logical units (e.g.,
client-side, server-side, and database). Thus, any

a https://orcid.org/0000-0002-5784-6248

changes to the system involve building and deploy-
ing a new version of the application (e.g., server-
side) (Lewis and Fowler, 2014).

In a short period ago, integration techniques based
on API (Application Programming Interface) have
been used as a feasible alternative adopted by com-
panies to provide new functionalities to their users
from a legacy system (Erl et al., 2012). Over time,
this type of system does not meet the most current
requirements, besides beginning to present execution
adversities (Grubb and Takang, 2003; Newman, 2019;
Colanzi et al., 2021). In these systems, monolithic ar-
chitectures encompass functionalities in large individ-
ual components, rising to inherent limitations in terms
of scalability, maintenance, and deployment perfor-
mance (Abgaz et al., 2023).

Based on the exposed context, software modern-
ization has been an alternative adopted by companies
to make their systems available to their users, consid-
ering recent technologies, architectural models, and
computing scenarios (Lewis and Fowler, 2014). The
Microservices Architecture (MSA) has been adopted
because it enables the achievement of structural, func-
tional, and data decoupling. MSA enables us to meet

Almeida, N., Campos, G., Moraes, F. and Affonso, F.
Modernization of Legacy Systems to Microservice Architecture: A Tertiary Study.
DOI: 10.5220/0012633300003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 2, pages 581-592
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

581

new recent trends of development (e.g. DevOps – De-
velopment and Operations) that demand ever-faster
release cycles through partitioning systems into sepa-
rately compilable services (Abgaz et al., 2023).

In this paper, modernization is a process starting
from the legacy system (e.g., monolithic) to MSA.
Some approaches, techniques, and methods for guid-
ing modernization activities have been proposed in
the literature, focusing on some aspects (e.g., the
legacy’s modules and their dependencies) and ne-
glecting others (e.g., the data model structure). Re-
searchers and practitioners have also focused their ef-
forts on establishing panoramas or state-of-the-art on
this research topic in secondary studies. However,
these studies lack guidance on aspects that perme-
ate the activities and interests related to the modern-
ization of the system. Therefore, to the best of our
knowledge, there is no tertiary study on the modern-
ization of legacy systems to MSA.

According to Kitchenham et al. (2010); Petersen
et al. (2015), a tertiary study aims to synthesize
knowledge from secondary studies, providing a wide
view of a research area. Therefore, a better under-
standing concerning the modernization of legacy sys-
tems to MSA can contribute to the development of
new solutions (e.g., approaches, methods, and tools).
Aiming to contribute to this research area, we present
in this paper a Systematic Mapping Study (SMS) on
modernization of legacy systems to MSA. Our anal-
yses were based on 20 secondary studies, where we
sought to explore aspects related to the studies them-
selves, the motivation to modernize, the patterns used
in modernization, and the main activities of a mod-
ernization process itself.

The remainder of this paper is organized as fol-
lows. Section 2 presents background about microser-
vice and software modernization and an overview of
related work. Section 3 addresses the main findings of
our study. A discussion of these findings is reported in
Section 4. Finally, Section 5 presents our conclusions
and perspectives for future work.

2 BACKGROUND AND RELATED
WORK

In this section we present the background and related
work that contributed to the development of our study.
Initially concepts of microservice and software mod-
ernization are reported. Next, related work (i.e., ter-
tiary studies) on modernization of legacy system to
microservices is addressed.
Microservices. MSA has emerged as a dominant
architectural style in recent years. Although count-

less studies have been conducted on the subject, there
is no precise definition of this style. However, it
is defined by shared features, including but not lim-
ited to, scalable services, organization around busi-
ness capabilities, automated deployment, and a de-
centralized approach to languages and data. Accord-
ing to Lewis and Fowler (2014), “the term “Microser-
vice Architecture” has sprung up over the last few
years to describe a particular way of designing soft-
ware applications as suites of independently deploy-
able services”. This approach enables each com-
ponent to be updated, modified, or replaced with-
out disrupting the functionality of others, offering in-
creased adaptability in the development process. As
explained by Richardson (2018), “Microservices are
a way of breaking up large monolithic applications
into a set of small, loosely coupled, and independently
deployable services that enable organizations to de-
liver software more quickly”. Within an MSA, ser-
vices are fine-grained, and communication protocols
are lightweight, which enhances modularity, making
applications easier to comprehend, develop, test, and
more resilient. Additionally, services can be devel-
oped and deployed independently, providing flexibil-
ity and scalability.
Modernization. The monolith was the primary ar-
chitectural approach used for years in the industry,
as it was easy to develop, deploy, and offer inherent
benefits, such as simplified codebase management,
streamlined debugging processes, and direct scalabil-
ity within a single software unit. However, over time
and with its increasing size, it presents various is-
sues, impacting productivity, deliveries, and including
challenges related to codebase complexity, difficulties
in accommodating evolving technologies, and the po-
tential for slower development cycles and releases.
With these drawbacks and the emerging success of
microservices, numerous companies set their sights
on this new architecture, sparking widespread inter-
est and prompting various organizations to consider
migrating. Migrating or modernizing from a legacy
system to a microservice-based one is not a trivial
task. Many academic studies have been conducted
to comprehend and discover the best techniques for
optimizing this process. However, similar to the mi-
croservices themselves, the migration/modernization
processes lack a consolidated definition and a sin-
gle and solid step-by-step guide, providing companies
with an array of options (Colanzi et al., 2021).

As related work, to the best of our knowledge,
there is no tertiary study about the modernization of
legacy systems to MSA. To do so, we combined the
terms “tertiary study” and “microservices” with their
synonyms and executed the search string in the same

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

582

publication databases of this study (Almeida et al.,
2023). As presented in Section 3, the secondary stud-
ies available in the literature address different aspects
of the investigation, leaving gaps related to the mod-
ernization process itself and its associated aspects.

3 A PANORAMA ON
MODERNIZATION OF LEGACY
SYSTEMS TO MSA

This section presents the main findings of our ter-
tiary study, which provides a panorama on the mod-
ernization of legacy systems to MSA. To do so, we
elaborated a research protocol based on guidelines
proposed by Kitchenham et al. (2010) and Petersen
et al. (2015), which can be found in full in Almeida
et al. (2023). We conducted our study from August
31 to November 30, 2023, and involved four people:
two software engineering researchers and two mi-
croservice researchers/practitioners with strong pro-
fessional experience in the area.

After strictly following the guidelines of our re-
search protocol, 20 studies were selected to compose
the final list of our investigation, as shown in Table 1.
The first column shows the ID for each study, and the
second one is the reference for each study. Each ref-
erence is composed of the author’s name(s), and the
publication title with an external link where the sec-
ondary study was published. The third column shows
the publication year of each study. Next, we report
the main findings of our study in Sections 3.1 – 3.4
based on Research Questions (RQ) defined in our pro-
tocol (Almeida et al., 2023).

3.1 Overview of Secondary Studies

The results reported in this section are related to RQ1,
which describes the relationship between the studies’
publication venues, publication year, studies’ nature,
and types of each secondary study. Figure 1 illus-
trates the distribution of studies relating the interests
of RQs 1.1 and 1.2. The columns illustrate the distri-
bution of studies in relation to the publication venues
identified in our study (i.e., Conference, Journal, and
Symposium) for each year. We limited our analysis
to the last six full years and aimed to get the most
up-to-date and recent data. Thus, 55% of the studies
were published in Journals (S3, S4, S7, S8, S10, S11,
S12, S13, S16, S18, and S19), 30% in Conferences
(S6, S9, S14, S15, S17, and S20), and only 15% in
Symposium (S1, S2, and S5). This information alone
provides solid data that reveals a wider concentration

of studies in publication venues with a high rigor of
evaluation (i.e., Journal). Moreover, it can be said that
studies published in venues with a lower level of ma-
turity (i.e., Symposium and Conference) are moving
towards becoming more solid studies for interested
scientific and practitioner communities.

0

1

2

3

4

5

2017 2018 2019 2020 2021 2022 2023

Symposium Journal Conference

Figure 1: Yearly distribution of publications.

The nature and type of studies reveal the research
interests of the scientific and industry communities in
understanding aspects related to the modernization of
legacy systems to MSA. Concerning the studies’ na-
ture (RQ 1.3), we elaborated three categories, namely:
(i) Academic, a category that covers studies conducted
mainly by academic researchers, focusing only on
theoretical and experimental investigations, without
direct emphasis on industrial application; (ii) Indus-
trial, a category that covers studies led by researchers
with a focus on applications aimed at industry and
without academic bias; and (iii) Mixed, a category
that covers studies conducted in a hybrid way, involv-
ing researchers and practitioners, with content aimed
at industry and/or academia. Regarding the studies’
type (RQ 1.4), we categorized the secondary stud-
ies in three categories: Systematic Literature Review
(SLR); SMS, and Survey. Figure 2 illustrates the dis-
tribution of the publications per nature and type.

With 10 studies (50%), “Survey” was the most
recurrent type of study in our investigation. “SMS”
with 6 studies (30%) and “SLR” with 4 studies (20%)
complete our distribution. Drawing a parallel be-
tween this information and the nature of the stud-
ies, it is observed a balance between studies consid-
ered academic (i.e., Academic category) and studies
with industry participation (i.e., Industrial and Mixed
categories). This relationship reveals the interest of
academia and industry in the modernization of legacy
systems to MSA. From the academic side, it is noted
an interest in understanding the industry’s pains in
modernizing such systems and developing solutions
(e.g., processes, methodologies, frameworks) that can
minimize the impacts related to this type of activity.
On the industry side, evidence shows interest in so-

Modernization of Legacy Systems to Microservice Architecture: A Tertiary Study

583

Table 1: List of studies analyzed in our study.

ID Reference Year
S1 Luz, Welder and Agilar, Everton and de Oliveira, Marcos César and de Melo, Carlos Eduardo R.

and Pinto, Gustavo and Bonifácio, Rodrigo, An Experience Report on the Adoption of Microser-
vices in Three Brazilian Government Institutions

2018

S2 Colanzi, Thelma and Amaral, Aline and Assunção, Wesley and Zavadski, Arthur and Tanno,
Douglas and Garcia, Alessandro and Lucena, Carlos, Are We Speaking the Industry Language?
The Practice and Literature of Modernizing Legacy Systems with Microservices

2021

S3 Velepucha, Victor and Flores, Pamela, A Survey on Microservices Architecture: Principles, Pat-
terns and Migration Challenges

2023

S4 Razzaq, Abdul and Ghayyur, Shahbaz A. K., A systematic mapping study: The new age of
software architecture from monolithic to microservice architecture—awareness and challenges

2023

S5 Cojocaru, Michel-Daniel and Uta, Alexandru and Oprescu, Ana-Maria, Attributes Assessing the
Quality of Microservices Automatically Decomposed from Monolithic Applications

2019

S6 Kalske, Miika and Mäkitalo, Niko and Mikkonen, Tommi, Challenges When Moving from
Monolith to Microservice Architecture

2018

S7 Abgaz, Yalemisew and McCarren, Andrew and Elger, Peter and Solan, David and Lapuz, Neil
and Bivol, Marin and Jackson, Glenn and Yilmaz, Murat and Buckley, Jim and Clarke, Paul, De-
composition of Monolith Applications Into Microservices Architectures: A Systematic Review

2023

S8 Knoche, Holger and Hasselbring, Wilhelm, Drivers and Barriers for Microservice Adoption – A
Survey among Professionals in Germany

2019

S9 Carvalho, Luiz and Garcia, Alessandro and Assunção, Wesley K. G. and Bonifácio, Rodrigo
and Tizzei, Leonardo P. and Colanzi, Thelma Elita, Extraction of Configurable and Reusable
Microservices from Legacy Systems: An Exploratory Study

2019

S10 Muhammad Hafiz Hasan and Mohd Hafeez Osman and Novia Indriaty Admodisastro and
Muhamad Sufri Muhammad, Legacy systems to cloud migration: A review from the architec-
tural perspective

2023

S11 Ghayyur, Shahbaz Ahmed Khan and Razzaq, Abdul and Ullah, Saeed and Ahmed, Salman,
Matrix clustering based migration of system application to microservices architecture

2018

S12 Hassan, Sara and Bahsoon, Rami and Kazman, Rick, Microservice transition and its granularity
problem: A systematic mapping study

2020

S13 Bamberger, Burkhard and Körber, Bastian, Migrating Monoliths to Microservices Integrating
Robotic Process Automation into the Migration Approach

2022

S14 Salii, Sh. and Ajdari, J. and Zenuni, Xh., Migrating to a microservice architecture: benefits and
challenges

2023

S15 Di Francesco, Paolo and Lago, Patricia and Malavolta, Ivano, Migrating Towards Microservice
Architectures: An Industrial Survey

2018

S16 Velepucha, Victor and Flores, Pamela and Torres, Jenny, Migration of Monolithic Applications
Towards Microservices Under the Vision of the Information Hiding Principle: A Systematic
Mapping Study

2020

S17 Velepucha, Victor and Flores, Pamela, Monoliths to microservices-Migration Problems and
Challenges: A SMS

2021

S18 Taibi, Davide and Lenarduzzi, Valentina and Pahl, Claus, Processes, Motivations, and Issues for
Migrating to Microservices Architectures: An Empirical Investigation

2017

S19 Weerasinghe, Sidath and Perera, Indika, Taxonomical Classification and Systematic Review on
Microservices

2022

S20 Michael Ayas, Hamdy and Leitner, Philipp and Hebig, Regina, The Migration Journey Towards
Microservices

2021

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

584

S7 S19

S4

S12

S16

S17

S5

S3

S6S2

S14

S15

S18

S20

S1

S8

S9

M
ixed

Industrial

Mixed

S13S10

Academic

SLR

SMS

Survey

Academic

Academic

S11

Figure 2: Publications’ distribution per nature and type.

lutions that suit their needs without bringing major
technological impacts or high learning curves.

3.2 Motivations

The motivations outlined in each secondary study
were analyzed to address RQ2, as shown in Table 2.
The first column presents all motivations identified in
our investigation, while the other columns correspond
to studies that presented some evidence for such mo-
tivations. Next, we addressed a description of each
motivation concerning each study.

Before presenting our analysis of the motivations
extracted from secondary studies, it is worth high-
lighting that seven of the twenty studies did not
present motivational evidence about the moderniza-
tion activity (S3, S7, S9, S12, S13, S16, and S17).
According to our analysis, identified modernization
motivations can be classified into two categories,
namely: (i) pre-modernization, which represents
studies that highlighted some adversity in legacy sys-
tems and proposed software modernization to address
it; and (ii) post-modernization, which encompasses
the studies that reported interest in achieving the mod-
ernization advantages.

Regarding pre-modernization motivations, six
studies (S1, S4, S5, S8, S14, and S20) reported dif-
ficulties in carrying out frequent deployments (“De-
ployment frequency”), impacting their ability to stay
updated with market innovations and reducing com-
petitive advantage. “Adding new functionalities” was
addressed by two studies (S6 and S15). This moti-
vation reveals the complexity of integrating new fea-
tures because of the legacy nature of systems, imped-

ing agility in modifications. Adverse issues related
to integrating new developers were also highlighted
by two studies (S1 and S5), which reported extended
adaptation time (“Developer onboarding”), delaying
the effective commencement of development.

Concerning post-modernization motivations,
“Maintainability” and “Scalability” with seven
studies (S2, S8, S10, S14, S18, S19, and S20) in
common were the main motivational factors related to
post-modernization. Individually, these motivational
factors were identified in S4 (Maintainability) and
S11 (Scalability). Therefore, the need for scalable,
adaptable, and maintainable systems emerged as a
significant priority in the aforementioned studies.
“Flexibility” was identified in three studies (S1, S4,
and S10). This feature enables independent updates
of system components, promoting agility, and facili-
tating incremental innovations during the transition to
MSA. “Cost and time savings” were factors detected
in two studies (S4 and S14). This is attributed to the
modular nature of MSA, enabling precise updates
on specific components and reducing overall main-
tenance costs. Additionally, shorter development
cycles and agile deployments lead to cost savings
and financial benefits. “Polyglot”, motivational
factor identified in two studies (S4 and S8), refers
to microservices’ flexibility in supporting multiple
programming languages, expanding development
options, and preserving developers’ knowledge.
“Team responsibilities”, feature identified in one
study (S18), represents the effective task and respon-
sibility distribution among teams during the system
transition to MSA. This feature enables greater au-
tonomy and agility in development decisions, driving
independent improvements in each microservice.
We identified three core motivations in study S14,
namely: “Performance”, “Fault tolerance”, and
“Agility”. The first relates to operational efficiency,
the second addresses the system’s ability to handle
issues without significant interruptions, and the third
refers to the capability of quick adaptation-essential
elements in pursuing MSA. S19 underscores that
modernization offers opportunities for more granular
and flexible security policies, safeguarding individual
services and reducing breach impacts, strengthening
overall system resilience (“Security”).

Drawing a counterpoint concerning moderniza-
tion, two studies (S6, S18) highlighted the use of “De-
vOps practices” as an essential factor for the continu-
ous delivery of software. Considering the scenario of
constant innovations, companies are avoiding distanc-
ing themselves from modernization (or technological
transformation). In this direction, S18 mentioned an
important jargon “Because everybody does it” as a

Modernization of Legacy Systems to Microservice Architecture: A Tertiary Study

585

Table 2: An overview of the motivations found in our study.

Motivation S1 S2 S4 S5 S6 S8 S10 S11 S14 S15 S18 S19 S20
Adding new functionalities D D
Agility D
Because everybody does it D
Cost and time savings D D
Deployment frequency D D D D D D
Developer onboarding D D
DevOps practices D D
Fault tolerance D
Flexibility D D D
Maintainability D D D D D D D D
Performance D
Polyglot D D
Scalability D D D D D D D D
Security D
Team responsibilities D

motivational factor, highlighting the desire to keep up
to date, even though these companies fail because of
the lack of minimum knowledge to conduct a mod-
ernization activity.

3.3 Patterns Addressed in
Modernization

As found in our investigation, we must follow a step
set to guarantee the success of the modernization of
legacy systems to MSA. This recommendation is es-
sential to avoid the feature perpetuation of legacy sys-
tems in the new systems. Moreover, it is also im-
portant to apply specific patterns in each moderniza-
tion phase, as these patterns significantly contribute to
transitioning from a legacy system to MSA.

To answer RQ3, we analyzed the patterns reported
by each secondary study. Of the 20 studies, 14 studies
(70%) reported some evidence of the use of patterns
during the modernization process. S4, S7, S9, S10,
S11, and S16 were the studies that did not present
concrete evidence on the investigation subject of this
RQ. To organize such patterns and their applicabil-
ity, we adopted and extended the structure presented
in the study S19, as illustrated in Figure 3. Next, a
description of the main patterns of each category is
addressed for reasons of space and scope.

Service decomposition is a category that encom-
passes a pattern set related to the system’s ability
to operate independently across multiple connected
services. These patterns play important roles in the
breakdown of a legacy system into microservices,
creating smaller services, and optimizing application

performance. Effective use of these patterns requires
architects to have solid business domain knowledge,
combined with a deep and specific technical under-
standing of it (S19). We found evidence of the Stran-
gler pattern in five studies (S1, S2, S14, S15, and
S18) and we elect it as the main pattern in this cat-
egory. During the transition phase, the Strangler pat-
tern facilitates the gradual replacement of the old sys-
tem with the new architecture (S1).

Data management encompasses different pat-
terns for organizing and structuring system data. The
pattern selection in this category must be guided
by specific business demands, enabling architects
to choose those that best meet the identified re-
quirements (i.e., MSA). According to our analyses,
the Database per Service pattern can be considered
one of the most important in this category, since
it provides that each service maintains its exclusive
database, which is only accessed through its API. The
strategy behind this pattern enables independence be-
tween services, giving each one full control over its
persistent data, without direct sharing with other ser-
vices. This pattern also allows the use of different
databases, according to the specific needs of each ser-
vice (Richardson, 2018).

Microservices deployment is a category that
deals with deploying services independently, en-
abling seamless updates and scalability for microser-
vices. By deploying these microservices across var-
ious servers, it becomes feasible to scale the system
and optimize performance as required. To do so, it is
recommended to maintain a dependable deployment
environment and implement ongoing monitoring. Of

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

586

MSA

Service
Decomposi t ion

Self-contained
service

S19

Decompose b y
business capabi l i ty

S5
S19

Strangler

S1
S2
S14
S15
S18

DDD
S3
S5
S17

Data
Management

Database p e r
service

S19

Shared database S19
Event sourcing S19

Shared Data
Microservice Design

S3

Data f low-driven S13
Data-Driven

Design
S3

Dep loyment

Mult ip le service
instances p e r hos t

S19

Serverless
dep loyment

S19

ContainerizedS19
Backend f o r

Frontend
S3

API BasesAPI GatewayS19

Service
Discovery

Client-side
discovery

S19

Server-side
service discovery

S3
S19

Resiliency

Circuit
Breaker

S6
S8

S12
S19

Bulkhead
S6
S8

S12

Figure 3: Taxonomy of architectural patterns for modernization of legacy systems to MSA.

the four patterns of this category, Serverless deploy-
ment (S19) represents a solution that hides any server
concept (i.e. reserved or allocated resources), hosts,
or containers. In short, the server cloud receives a ser-
vice code and runs it transparently. The customers are
charged by the requests for the resources consumed.

The API Bases category deals with the exposure
of microservices through API managers, which super-
vise and control the interfaces provided by such ser-
vices. From an operational viewpoint, it facilitates
the scaling of microservices based on demand, dy-
namically adjusting to changes in traffic. API Gate-
way, a pattern identified in the S19 study, enables cus-
tomers to access services centrally, directing requests
to specific services, simplifying access to microser-
vices, and adapting APIs according to the individual
needs of each customer. Thus, this pattern enables the
improvement of the user experience, isolating the cus-
tomer from the complexity of the microservices struc-
ture (Richardson, 2018).

Service Discovery is a category that covers
the discovery and communication of microservices.
Richardson (2018) emphasizes the importance of en-
abling dynamic and efficient communication among
microservices, facilitating automatic discovery and
interaction without dependence on static or manual
setups. We identified Server-side Service Discovery
pattern in two studies (S3 and S19) of our investi-
gation, which is a method of dynamic service dis-
covery in an MSA. To do so, it uses a router that
consults a service registry, directing requests to avail-
able instances. Although it simplifies client code and
some cloud platforms offer this feature, this pattern
requires the configuration of an additional component
(i.e., router), which may introduce more networking

steps compared to Client-side Discovery.
Resiliency encompasses different patterns for re-

covering and maintaining the operational stability of
a system in the face of internal or external failures.
Circuit Breaker was the most recurrent pattern in our
investigation, being found in 4 studies (S6, S8, S12,
and S19). In short, the goal of this pattern is to pre-
vent failures in services from affecting the stability
of the system. For instance, when a service is un-
available or has high latency, Circuit Breaker pauses
requests to that service, avoiding overloading the call-
ing service and, after a while, enabling the service to
be tested again. If the problematic service is work-
ing, requests are resumed, otherwise, the interruption
period remains (Richardson, 2018).

3.4 Modernization: Challenges,
Benefits, and Processes

The results reported in this section are related to
RQ4, which describes the relationship between the
challenges faced during modernization, the main ex-
pected benefits after the system’s modernization, and
the main steps recommended for a modernization pro-
cess. Next, we address each element of this relation-
ship in Sections 3.4.1 – 3.4.3.

3.4.1 Faced Challenges

To evaluate the RQ4.1, we compiled the extracted
data in Figure 4, which shows the challenges faced
during the modernization process of our study ac-
cording to the occurrence number. Of the 20 stud-
ies selected in our investigation, four (S5, S9, S16,
and S20) did not present concrete evidence regarding

Modernization of Legacy Systems to Microservice Architecture: A Tertiary Study

587

the faced challenges during the modernization pro-
cess. Next, a description of the main challenges is
addressed for space and scope reasons.

Figure 4: Challenges faced during the modernization pro-
cess of legacy systems to MSA.

According to our analysis, Decomposition, found
in 10 studies (S3, S4, S6, S7, S10, S11, S15, S17,
S18, and S19), was one of the biggest obstacles
faced by developers during the modernization pro-
cess. This activity consists of fragmenting legacy sys-
tems, complex systems, or services into smaller, more
manageable parts (i.e., microservices), facilitating the
system’s development, maintenance, and scalability.
In this direction, it is equally important to consider
granularity to avoid excessively detailed components,
which can harm system performance (S6).

Lack of knowledge/Learning curve was another
challenge identified in our analysis with seven stud-
ies (S1, S3, S4, S8, S15, S17, and S18). The lack of
knowledge can generate severe impacts during system
modernization, resulting in severe performance prob-
lems if the migration is not correctly conducted. In
parallel, the learning curve (S17) can further prolong
the duration of the process, making it take longer to
complete and generating other discomforts for com-
panies (e.g., continuous software delivery).

Data consistency and Data management were
the challenges mentioned in four (S2, S4, S8, and
S19) and two (S6 and S18) studies, respectively.
These issues can be considered first-class elements in
the microservice design, since the absence of ACID1

transactions between services is a limitation that can
result in severe problems, including the loss of es-
sential information. Therefore, maintaining data in-
tegrity when migrating to a microservice environment
is essential to ensuring that critical information is not
compromised during the modernization process (S8).

With three studies (S4, S6, S8), Automated test-

1An acronym that refers to four properties, namely:
Atomicity, Consistency, Isolation, and Durability.

ing also emerges as a challenge during the modern-
ization of legacy systems to MSA. To do so, requires
more comprehensive testing, considering complex in-
teractions between services. Adapting existing tests
to this structure involves time and effort, especially
because of the database separation, which demands
more careful data management to execute the tests.
These adversities highlight the importance and com-
plexity of automated testing during the modernization
process (S6).

Team training for DevOps practices has been
a challenge faced by companies, as identified in two
studies (S3 and S18). This activity includes perform-
ing tasks such as Continuous Integration and Contin-
uous Deployment (CI/CD), considerably reducing de-
velopment, testing, and distribution times in different
environments, such as pre-production and production.
Therefore, investing in DevOps training programs be-
comes necessary to equip teams with the competen-
cies to use DevOps tools, foster collaboration between
development and operations, and get a mindset of
continuous improvement.

Service Granularity was the challenge found in
two studies (S6 and S12). The granularity level de-
termines the size and functional scope of each ser-
vice in an MSA, impacting the efficiency and overall
functionality of the system. Therefore, early decid-
ing on this issue can make it difficult to analyze and
adapt microservices over time. Accurate and thought-
ful choice of granularity is essential to the modern-
ization success and the microservice’s effectiveness
throughout the software life cycle (S12).

Another significant challenge is Communication
among services, which was found in two studies (S13
and S18). Efficient communication between services
is vital for their integration and synchronization. Lack
of clear and consistent communication can result in
interoperability problems, leading to failures in the
system’s functioning. This challenge is especially
critical early in development, where the communica-
tion infrastructure must be established from the be-
ginning to ensure a smooth and effective transition to
the microservices’ environment (S18).

Finally, Logging and monitoring were critical
challenges cited by studies S6 and S8 during the
modernization process. Continuous monitoring and
event logs are essential elements used to identify and
solve problems, ensuring system performance and se-
curity. Without a comprehensive logging and mon-
itoring strategy, it becomes difficult to detect faults
and diagnose problems early, which compromises the
system’s stability and reliability (S6).

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

588

3.4.2 Expected Benefits

Regarding the expected benefits after modernization
(RQ4.2), we analyzed the collected data to delineate
and identify the achievements resulting from this tran-
sition. Our analyses centered on studies providing ex-
plicit and measurable data regarding the benefits re-
alized post-modernization completion (S1, S14, S17,
and S18). Three of the 20 studies reviewed did not
specify particular benefits (S5, S7, and S11), and the
remaining studies did not report an adequate explana-
tion of the real expected benefits. Next, a considera-
tion of our findings is addressed.

Scalability was a benefit identified in three studies
(S14, S17, and S18). It embodies the system’s capac-
ity for dynamic resource expansion or reduction, en-
suring the application can handle increased users or
workload without compromising performance (Lewis
and Fowler, 2014). For instance, microservices can
be flexible through horizontal scalability, enabling
business-driven expansion of the application using
seamless addition or removal of service instances as
necessary. In parallel, these studies also highlighted
an improvement in maintenance, suggesting that mi-
grating to microservices not only enhances scalability
but also streamlines system maintenance. This bene-
fit is tied to the modular nature of microservices, en-
abling the development, updating, and correction of
specific system parts without affecting others. Thus,
maintenance becomes more agile and less prone to
disruptions across the entire application (S18).

Performance enhancement was underscored by
two studies (S14 and S18) as a significant benefit of
migrating to microservices. This improvement stems
from the ability of microservices to distribute work-
loads more efficiently, resulting in faster response
times and an overall enhanced user experience. The
ability to optimize services individually enables the
swift resolution of specific bottlenecks (S14).

Continuous delivery was identified as a benefit in
two studies (S1 and S17). This emphasizes the impor-
tance of continuous and automated software deliver-
ies. The migration to microservices facilitates the ef-
ficient implementation of CI/CD practices, a basis of
DevOps, enabling incremental updates, quick adapta-
tion, and more reliable software delivery (S1).

Delving into specific gains, a reduction in time-
to-market emerged prominently in one particular
study (S1). Modernization enables quick product and
service launches to the market, aided by the microser-
vice’s modularity that facilitates independent work on
specific system parts. While highlighted in a specific
study, the reduction in the time to make functionali-
ties available to end-users significantly helps compa-
nies respond agilely to market demands, giving them

a competitive edge (S1).
Availability was underscored as a benefit in one

of the analyzed studies (S14). The modernization of
legacy systems to MSA establishes a more resilient
architecture, ensuring greater service availability. Mi-
croservices enable independent deployment and scal-
ing, reducing the likelihood of widespread failures
and enhancing resilience against interruptions (S14).

The S14 study revealed that team improvement
was a benefit highlighted after modernization because
the main purpose was increased productivity. Teams
can work independently on specific services using the
MSA. The modular organization of this architectural
style enables faster and more independent updates and
maintenance, enhancing the efficiency of the develop-
ment process (S14).

Modernization of legacy systems to MSA was
linked to better cost efficiency in one study (S14).
MSA enables more efficient resource allocation, scal-
ing services according to their specific demand. De-
spite potential initial high migration costs (S4), the
long-term flexibility and scalability can lead to sig-
nificant cost optimization (S14).

Finally, the use of new technologies emerged as a
post-modernization benefit in one study (S17). With
independent services using diverse technologies, or-
ganizations can employ advanced frameworks, pro-
gramming languages, and development tools, ensur-
ing they remain updated and innovative within their
technological environment (S17).

3.4.3 Modernization Process

Based on the evidence presented for RQs 4.1 and
4.2, understanding the phases of a modernization pro-
cess to minimize the impacts of this activity type and
aligning future expectations is still an issue that must
be investigated (RQ4.3). Of the 20 studies, only four
investigated this issue (S2, S15, S18, and S20). Thus,
a process for modernization was organized in three
macro steps, as illustrated in Figure 5. This pro-
cess should not be considered a silver bullet solution,
but an essential guide for any stakeholder to under-
stand the main steps for modernizing legacy systems
to MSA. By proposing this process, we aim to provide
these stakeholders with a clear and solid vision of the
tasks and knowledge that permeate this activity type
so that the challenges presented in RQ4.1 are met and
the expectations reported in RQ4.2 are fulfilled. Next,
we address a description of each step.

Understanding legacy systems (Step 1) from both
a logical (i.e., structural and behavioral) and organiza-
tional (i.e., architectural) viewpoint were key aspects
investigated and reported by studies S2, S15, and S20.
In short, this understanding can be gained through

Modernization of Legacy Systems to Microservice Architecture: A Tertiary Study

589

Microservice ArchitectureDevelopment and DeploymentLegacy System

Source Code

Models

Documentation
Artifacts

Source
Code

Models

Reverse
Engineering Monitoring

Tools

Deployment

Pattern Catalog

Knowledge/Experience

Configuration
and

Integration
tests

Strangler
Database per service

Circuit Breaker
API Gateway

Multiple service instances per host
Server-side service discovery

Concepts Infrastructure Technologies

1 2 3

Service
Decomposition

Decomposition

Structural
Analysis

DDD
Practices

Decisions Microservice

Automatic
execution of

unit tests

Dependency
Analysis

Decisions

Design

Figure 5: Modernization process of legacy systems to MSA.

pre-existing documentation of the legacy system (e.g.,
source code, test artifacts, documentation, and archi-
tectural artifacts) or reverse engineering techniques.
At this stage, software engineers must investigate
the motivating forces for system modernization (S2),
identifying operational gaps and limitations in the
legacy system (i.e., technical, operational, and orga-
nizational aspects). In deeper investigation, these en-
gineers must understand, at a minimum, the follow-
ing aspects of the legacy system: structures, behav-
iors, organization, and interactions between modules.
Therefore, it can be said that the conduction of this ac-
tivity emphasizes that understanding legacy systems
is not just informative, but also provides the basis for
microservice design in the new architecture.

As reported by studies S2, S15, S18, and S20,
conducting a modernization process involves the
transformation of existing implementation artifacts
with the system or recovered through reverse engi-
neering techniques, followed by the gradual integra-
tion of microservices with the legacy system until the
modernization is completed in full (S2). Thus, we
suggest that the Step 2 activities be conducted cycli-
cally based on the prior knowledge of the develop-
ment teams (Soldani et al., 2018) and supported by
the use of architectural patterns (Richardson, 2018).
According to a study conducted by Soldani et al.
(2018), developers’ lack of knowledge has been the
main cause of unsuccess in the adoption or any at-
tempt to transition an existing system to MSA. For
space and scope reasons, details about the framework
of MSA concepts will not be reported in this paper.
However, an overview of this research theme was pre-
sented in Section 2. Similarly, details concerning ar-
chitectural patterns are also not presented in this sec-
tion, with only the main ones from our investigation
being highlighted for each development phase. More
details about such patterns can be seen in Section 3.3.

As illustrated in Figure 5, Step 2 represents the de-

velopment and deployment of microservices, a macro
activity in the referred process that involves funda-
mental design decisions for modernization sprints in
an incremental/cyclical approach. Furthermore, it is
worth highlighting that this step should not be con-
fused with the final architecture (i.e., MSA), focusing
on both tasks: the decomposition of the legacy system
and the design of microservices. Next, we addressed
the details of each task.

The main purpose of decomposition is to pre-
pare the legacy system for the design of microser-
vices. To do so, software engineers must identify
services for the new architecture, which can be sup-
ported by the application of DDD (Domain-Driven
Design) practices (S15) or by the Stranger architec-
tural pattern, as suggested by S15 and S18. Accord-
ing to Di Francesco et al. (2018), decomposing the
legacy system into smaller components and immedi-
ate experimentation through gradual integration be-
tween the legacy and microservices has proven to be
a feasible strategy for monitoring the system’s evolu-
tion (S15 and S20). It is worth highlighting that the
structural analysis of the system, the definition of the
architecture, and the prioritization of service develop-
ment appear as important steps that can be achieved
in parallel to the decomposition. Finally, the possibil-
ity of inserting new functionalities into the system is
a way of modernizing the system to a new computa-
tional model, besides meeting new market demands.

Microservices design is based on the definition of
the MSA, including design decisions to meet func-
tional and non-functional requirements. In summary,
this task entails the creation or modification of soft-
ware and other necessary components, including mi-
croservices. During this stage, the use of practices
such as CI/CD, API definition, and DevOps practices,
mentioned in Sections 3.2 and 3.3 have proven essen-
tial to manage complexity and ensure transition effi-
ciency, offering the knowledge basis necessary for a

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

590

dynamic and adaptable architecture. Concerning the
development of microservices, the use of an incre-
mental/evolutionary approach with continuous soft-
ware delivery must be used so that tests and de-
pendencies between microservices can be conducted
gradually, considering redeployment of the system
from scratch or implementation gradually to elimi-
nate the existing legacy system. At this stage, it is
recommended to use automated processes (i.e., tools,
and frameworks) to better manage tasks. Finally, it
is worth highlighting that documentation of the new
architecture, especially through architectural, textual
documents and diagrams, has proven to be a funda-
mental element in the transition from the legacy sys-
tem to MSA, since it is an important source of infor-
mation to meet the real motivations for modernization
(see RQ2 – Section 3.2) and guarantee future expecta-
tions with the new system (see RQ4.2 – Section 3.4).

The MSA is finally introduced in Step 3, showcas-
ing three layers: (i) microservice; (ii) configuration;
and (iii) monitoring. Microservices are deployed in
the execution environment (Item i), and verification
and validation tasks of microservices ensure adequate
system integration, whether parts of the legacy sys-
tem are used as a reference for testing. At this stage,
microservices’ integration tests also occur as a way
of ensuring that the functionalities delivered are reli-
able and comply with the requirements established in
the previous stages. Configuring supporting artifacts
is crucial to preparing the DevOps environment (Item
ii), facilitating the transition from the legacy system
to the new MSA. Finally, continuous monitoring of
microservices and infrastructure enables to evaluation
of the success of modernization (Item iii), analyzing
factors such as service availability, performance, and
resource utilization (S2 and S20).

4 DISCUSSION OF RESULTS

This section provides a discussion of the results of our
study. Our investigation suggests that the moderniza-
tion of legacy systems to MSA is a complex activ-
ity that must be carefully conducted by experienced
teams and supported by development infrastructure.
The main findings and results are listed as follows.

Our in-depth analysis revealed critical aspects
concerning DDD in modernizing legacy systems to
MSA. The ambiguity surrounding DDD, whether
considered as a potential pattern (S3, S5, S17) or a
comprehensive set of concepts, guidelines, and prac-
tices, adds complexity to the modernization of these
legacy systems. Varied interpretations of DDD can
directly influence the strategies adopted by develop-

ment teams (i.e., practitioners), impacting the effec-
tiveness and scope of the modernization activities.

Alongside the conceptual complexity, the studies
selected in our investigation highlighted a significant
motivation for migrating to MSA: market pressure
based on the “everyone is doing it” phenomenon men-
tioned by the study S18. While this drive for upgrad-
ing is legitimate, it often leads to rushed approaches
and implementations without the required expertise
per this architectural style (see Section 3.4.2). Con-
sequently, this might inadvertently introduce inappro-
priate practices, creating anti-patterns that preserve
legacy features in the modernized systems.

Other important evidence found in our investiga-
tion reveals the close relationship between deploy-
ment frequency and time-to-market. Legacy systems
(or monoliths) unable to adapt quickly lose the abil-
ity to meet market changes, resulting in a disconnect
from user needs and competition. This adversity in
keeping pace with changes can partly be attributed to
the lack of experience and technical knowledge within
the involved teams, as evidenced in six studies of our
investigation (S1, S4, S5, S8, S14, and S20).

Although deep details of the modernization pro-
cess proposed in this paper have not been reported
in the Section 3.4.3 for space and scope reasons, our
view is that the macro activities of this referred pro-
cess can be considered a useful roadmap, offering a
structured guide for any stakeholder (i.e., researchers
and practitioners) interested in a process to modernize
a legacy system to MSA.

5 CONCLUSIONS AND FUTURE
WORK

Our study delved into a wide spectrum of existing re-
search, revealing that this research topic is still emer-
gent, and of common interest in both academia and
industry. By synthesizing insights from various sec-
ondary studies, we offered a comprehensive overview
of motivations, main architectural patterns organized
in a taxonomy, faced challenges, expected benefits,
and macro steps to conduct the modernization.

By analyzing motivations (see Section 3.2), we
uncovered a diversity of driving factors. Pre-
motivations highlighted challenges in legacy systems,
such as the need to incorporate new functionalities
and the difficulty in performing frequent updates be-
cause of the monolithic nature of these systems. In
contrast, post-motivations emphasized the pursuit of
maintainability, scalability, cost efficiency, and ben-
efits, such as enhanced operational performance and
flexibility in updating specific components.

Modernization of Legacy Systems to Microservice Architecture: A Tertiary Study

591

The detailed analysis revealed the extensive appli-
cation of specific patterns at each stage of the mod-
ernization process. One example is the “Strangler”
pattern, which provides a step-by-step for the iden-
tification of candidates for (micro)service, support-
ing a step of a modernization process of legacy sys-
tems to MSA. Similarly, the “Database per Service”
pattern, emerges as an effective solution for indepen-
dence among services and decoupled persistence data.
These and other patterns (see Section 3.3), when con-
sciously and systematically applied, play a critical
role in the success of modernization toward MSA.

Regarding the modernization process itself, a
challenging path involving several steps must be over-
come. For instance, “Service decomposition” de-
mands a careful approach to fragmenting legacy sys-
tems into smaller, manageable components (i.e., mi-
croservices). “Data management” plays a pivotal role
in this process, requiring specific strategies to main-
tain consistency and integrity of data when migrating
to a distributed architecture. By systematically and
comprehensively addressing the steps of the proposed
process in this paper (see Section 3.4.3) combined
with architectural patterns reported in Section 3.3, it is
possible to establish a cohesive and successful mod-
ernization guide, facilitating a smooth and efficient
transition from legacy systems to MSA.

As future work, we intend to conduct a more spe-
cific investigation of the research topic explored in
this paper. Despite various approaches being pro-
posed, a solid guide that details software moderniza-
tion comprehensively is still a subject to be investi-
gated in-depth. Therefore, our goal is to fill this gap
by creating a process that provides clear and practical
steps to assist organizations in the modernization of
legacy systems to MSA, considering a more dynamic
and efficient framework based on microservices. In
this sense, it is worth highlighting that the process
presented in Section 3.4.3 can be used as a basis for
elaboration of this process, as it brings together the
most recent evidence related to this research topic.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior -
Brasil (CAPES).

REFERENCES

Abgaz, Y., McCarren, A., Elger, P., Solan, D., Lapuz, N.,
Bivol, M., Jackson, G., Yilmaz, M., Buckley, J., and

Clarke, P. (2023). Decomposition of monolith appli-
cations into microservices architectures: A systematic
review. IEEE Transactions on Software Engineering,
49(8):4213–4242.

Almeida, N. R., Campos, G. N., Moraes, F. R., and Affonso,
F. J. (2023). Systematic mapping protocol – mapping
study on modernization of legacy systems to mi-
croservice architecture. on-line. https://drive.google.
com/file/d/1jwx27Noo8Ir zoBSA4xz8pbU8bjCKkza/
view?usp=sharing, accessed on March 19, 2024.

Colanzi, T., Amaral, A., Assunção, W., Zavadski, A.,
Tanno, D., Garcia, A., and Lucena, C. (2021). Are we
speaking the industry language? the practice and lit-
erature of modernizing legacy systems with microser-
vices. In The 15th Brazilian Symposium on Software
Components, Architectures, and Reuse, page 61–70,
New York, NY, USA. Association for Computing Ma-
chinery.

Di Francesco, P., Lago, P., and Malavolta, I. (2018). Migrat-
ing towards microservice architectures: An industrial
survey. In IEEE International Conference on Software
Architecture (ICSA), pages 29–2909.

Erl, T., Balasubramanian, R., Pautasso, C., Wilhelmsen, H.,
Carlyle, B., and Booth, D. R. (2012). SOA with REST
: principles, patterns & constraints for building en-
terprise solutions with REST. Prentice Hall, Philadel-
phia, PA.

Grubb, P. and Takang, A. A. (2003). Software Maintenance:
Concepts And Practice. World Scientific Publishing,
Singapore, Singapore, 2 edition.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P.,
Turner, M., Niazi, M., and Linkman, S. (2010). Sys-
tematic literature reviews in software engineering – a
tertiary study. Information and Software Technology,
52(8):792–805.

Lewis, J. and Fowler, M. (2014). Microservices. on-
line. https://martinfowler.com/articles/microservices.
html, acessed on March 19, 2024.

Newman, S. (2019). Monolith to Microservices: Evolution-
ary Patterns to Transform Your Monolith. O’Reilly
Media, Sebastopol, CA.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015).
Guidelines for conducting systematic mapping stud-
ies in software engineering: An update. Information
and Software Technology, 64:1–18.

Pressman, R. and Maxim, B. (2019). Software Engineering:
A Practitioner’s Approach. McGraw-Hill Education.
9th Edition.

Richardson, C. (2018). Microservices patterns. Manning
Publications Company.

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J.
(2018). The pains and gains of microservices: A sys-
tematic grey literature review. Journal of Systems and
Software, 146:215–232.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

592

