
Exploring Popular Software Repositories: A Study on Sentiment
Analysis and Commit Clustering

Bianca Puerta Rocha Vieira a and Rogério Eduardo Garcia b

Department of Mathematical and Computer Science, São Paulo State University (UNESP), R. Roberto Sı́monsen, 305,
Centro Educacional, Pres. Prudente, SP, Brazil

Keywords: Sentiment Analyses, Mining Software Repositories, Knowledge Discovery.

Abstract: The software repositories store data and metadata about the project development, including commits, which
record user modifications to projects and their metadata, such as the user responsible for the commit, date,
time, and others. The programmer can register a comment to inform the modification content, its purpose,
requester, motivation, and useful data. Focusing on those comments, this paper proposes using comments to
group the commits and construct a sentiment analysis regarding the messages. The main purpose is to analyze
those messages, both by the groups and the sentiments expressed, to understand them (what sort of sentiment
they express). Opinions are central to almost all human activities and are key influences on our behaviors.
Beliefs, perceptions of reality, and choices made are conditioned upon sentiments. Therefore, understanding
how the developers, especially programmers, feel about a task might be useful in analyzing progress and
interaction among people and artifacts (source code). In this paper, we present initial analyses of data and
metadata from the twenty most popular software repositories, written in five popular programming languages.
We stated five research questions and answered them, pointing out further investigations.

1 INTRODUCTION

The software repositories are valuable information
sources about the project’s development. The data
kept by repositories might be mined to supply infor-
mation to the project’s managers. Still, they are also
used to answer important research questions about
several perspectives (Zafar et al., 2019) such as deal-
ing with technical debt (de Lima et al., 2022), rec-
ommendation (Nguyen et al., 2023), and understand-
ing the time to first response in GitHub pull re-
quest (Hasan et al., 2023) or how software developers
use repository resources (Kinsman et al., 2021).

In software repositories based on Git version con-
trol, the commits store the modifications made by a
user at a particular moment, in a specific code spot,
and with a comment about the change made. This
comment characterizes a message for future analysis
– in this paper, the term message refers to these com-
ments. There is a convention of commit types1 to as-
sist the construction of automated tools that process
data collected in the repository. However, not all users
follow the convention when registering messages re-
lated to commits in a repository. Thus, Cosentino

a https://orcid.org/0000-0001-6006-6093
b https://orcid.org/0000-0003-1248-528X
1https://www.conventionalcommits.org/en/v1.0.0/

et al. (2017) argue that it is possible to find reposi-
tories with all messages according to the convention,
mixed or not. They also assert that GitHub is the best
platform that allows access to a repository of data and
its artifacts, as in addition to being one of the most
popular platforms, it provides an interface (API) to
get the data publicly. It has been widely used in stud-
ies and metadata analyses in project management and
software development research.

On the other hand, more and more analytical
methods have been applied to analyze data reposi-
tories. Data mining has been applied, generating a
research area: Mining Software Repositories (MSR).
MSR can be used to understand the team dynamics,
the developer’s behavior, and other purposes.

The repositories keep projects of several program-
ming languages, and the community evaluates them
according to the interest aroused in them (the project
number of stars). It also can be studied, in addi-
tion to the relationships between commit data grouped
by repository popularity and language used in the
project. Five of the most popular languages and
twenty of the most popular repositories from each
language (the best evaluated by the community) were
chosen for this study.

This paper aims to group commits, compare the
sentiments obtained from commit metadata inside the

Vieira, B. and Garcia, R.
Exploring Popular Software Repositories: A Study on Sentiment Analysis and Commit Clustering.
DOI: 10.5220/0012633400003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 297-304
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

297



groups generated, and compare with more data about
the commit and the repository it belongs to. Specific
goals: (1) Study the number of commits from each
group that belongs to the programming language stud-
ied, comparing the proportion of groups inside the
language. RQ1: Do programming languages influ-
ence the distribution and group proportions? (2)
Study the relationship between the generated groups
and the sentiments in the commit messages, analyzing
the percent of each Sentiment inside the groups, as the
groups represent a developing activity. RQ2: Does
the activity type influence the sentiments? (3) An-
alyze the sentiments expressed in the commits com-
ments inside the grouping by popularity (related to
the stars of each project). RQ3: Do the sentiments
in the commits reflect the popularity of the project
to which it belongs? (4) Study the relationship be-
tween the percentage of each Sentiment in the com-
mit messages and the programming languages used.
RQ4: What are the language’s influences on the
sentiments? (5) Relate the repository’s popularity
with the generated groups. RQ5: Do the activities
(groups) relate to repositories popularity?

In general, to achieve the specific goals, the fol-
lowing activities were performed: data extraction,
data cleaning and normalization, clustering model de-
velopment for grouping commit messages, sentiment
analysis in commit groups, and related to the lan-
guages used and presentation of helpful information
to establish the patterns that were found.

This paper is organized as follows: the related
works are presented in Section 2. Next, in Section 3,
the theoretical reference used to develop this project
is presented. The methodology is presented in Sec-
tion 4, describing the step-by-step activities devel-
oped. The analysis of results obtained is presented
in Section 5. Finally, final considerations related to
the objectives achieved are given in Section 6.

All queries, datasets and code used in this paper
are available in the author’s GitHub repository2.

2 RELATED WORK

Ji et al. (2018) presents an analysis of bug-fix commits
related to bug reports and secondary bug-fix commits
that complement or adjust primary commits (primary
because they were the first commits trying to solve
the bug). They point out that secondary commits are
often neglected, although their analysis can be ben-
eficial. To classify complementary commits, a neu-
ral network is trained with commits related to pulling

2https://github.com/BiancaPuertaRocha/Explore
PopularRepos

requests containing keywords related to bug-fix. Af-
ter detecting the bug-fix commits, the relevance be-
tween commits is analyzed. The relevance shows if
they share the same goal.

Amaral et al. (2020) analyze the relationship be-
tween co-changes and defect density (modifications
in the same file) and merge conflicts with the propen-
sity for commits that introduce bugs. The study was
conducted based on 29 Apache Java projects. They ar-
gue that in many studies, these relationships are men-
tioned, but the research shows that merge commits are
not more prone to introducing bugs than regular com-
mits. Additionally, they point out that co-changes do
not show a considerable interdependence relationship
with code defect density.

Meng et al. (2021) employ Convolutional Neural
Networks (CNN) to classify commits based on the
modifications recorded in the commits and their re-
lationships. In the reported study, the CNN method
is applied to five open-source Java repositories; cate-
gorizing commits into bug-fix commits, feature inser-
tions, and others (those that do not fit into the previous
two classes). The authors compare the performance of
the developed classifier with classifiers that use com-
mit comments. Despite not making classifications
into more detailed classes, only into the three men-
tioned, the CClassifier outperforms in performance.

The cited works aim, among other things, to ob-
tain bug-fix commits for some purpose, whether asso-
ciating them with complementary commits or predict-
ing code issues. The present study uses commit com-
ments for clustering and discovering activities per-
formed, hoping to find the fixed activity among the
discoveries. The analysis and discovery of patterns
among commit comments are distinctive, as senti-
ment analysis within commits is used, which is not
employed in other works.

Another point is that the present study performs
commit clustering using clustering techniques, unlike
the cited works, as most use classifiers for this activity
with pre-labeled data.

3 THEORETICAL FRAMEWORK

In this section, the theoretical frameworks necessary
for the development of this project are presented.
Given that it involves more than one area (software
repository, mining, data analysis) and their technolo-
gies, the theoretical framework is organized into sub-
sections: Software Repository Mining (SRM), Data
Mining Process, and Sentiment Analysis.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

298



3.1 Software Repository Mining (SRM)

Software Repository Mining (SRM) is a research area
that supports the improvement of the software de-
velopment process, maintenance, and prediction of
tasks to be carried out in the project through the data
made available by the platform that ships the reposi-
tory(Keivanloo et al., 2012).

Therefore, SRM is the application of the concepts
of data mining, discovery of patterns and/or associa-
tive rules in a software repository that contains histor-
ical records (metadata) of project modifications and
public records about project collaborators.

For Cosentino et al. (2017), GitHub is the best
platform to obtain data on activity in repositories as it
provides public data for analysis of activities, which
can lead to understanding the dynamics of software
development communities and, therefore, has been
used is the target of many studies and analyzes of
metadata in research on online project management
and software development.

3.2 Data Mining Process

The primary pre-processing goal is to make the data
more suitable for data mining. It is a set of tasks to be
performed on the dataset, but not all tasks are manda-
tory for every dataset. Thus, the database must be
analyzed, and the necessary tasks should be defined
(Tan et al., 2019).

Generally, the pre-processing transformations in-
volve selecting or transforming the data. For this pur-
pose, the following tasks are proposed (Tan et al.,
2019): Aggregation, Sampling, Dimensionality re-
duction, Feature Subset Selecion, Discretization and
binarization and Variable transformation.

For text databases, some concerns should be
considered when preparing the dataset. Hickman
et al. (2022) explain the pre-processing techniques
and their benefits in data mining: (1) Lowercasing:
This involves converting all letters to lowercase to
ensure consistency and avoid treating variations of
the same word with different letter cases as distinct.
For instance, ”Translation” and ”translation” would
be treated as the same word (2) Removal of Non-
alphabetic Characters: This step eliminates all punc-
tuation and non-alphabetic characters. It is common
to remove only numbers and punctuation, preserv-
ing other characters if needed for specific analyses
(3) Stemming: Removing word affixes to retain only
the word’s root. For instance, ”happiness,” ”happy,”
and ”happily” might all stem from the root ”happi”.
Emoticon Recognition, Lemmatization, Spell Correc-
tion, and Handling Negation were not used.

Subsequently, Feature Selection must be per-
formed. This selection is a challenging task be-
fore mining; it requires processing words and assign-
ing weights to them that represent their importance.
Among several possible techniques is TF-IDF, which
was employed in the study. This technique allows as-
signing weights to words based on their frequency and
rarity in the dataset. Thus, if a word is ubiquitous, it
is only considered important if it has sufficient weight
to differentiate records. TF represents the frequency
of the word in the document, while IDF is the inverse
of the word’s frequency in the same document (Qaiser
and Ali, 2018).

Inside data mining, there is a specific concept
of text mining. The text mining techniques allow
knowledge extraction in non-structured data (Allah-
yari et al., 2017). After all the pre-process, consider-
ing the rules of the domain to which the data belongs
and the question one aims to answer, it is possible
to develop models capable of classifying or grouping
collected and treated text data in categories.

When using documents, the intention is to group
documents with the same subject, such as emails, ar-
ticles, and text documents. When using paragraphs or
sentences, the analysis involves sentences from dif-
ferent documents from the same source, for example,
social media posts and comments. Finally, words as-
sociated with the same theme are grouped when ana-
lyzing words or terms.

For the model construction, the most common
types of algorithms for clustering text data are: Hi-
erarchical, partitioning, and density-based. Among
them, the density-based was chosen to build the
model in this paper, using the DBSCAN algorithm.

The decision to use the DBSCAN was moved by
its capacity for automatic cluster number detection –
a fundamental characteristic because the number of
clusters in the dataset used is unknown. The DB-
SCAN can determine this number based on the data
density, providing an effective solution that saves time
and effort in defining the number of clusters.

In addition, the DBSCAN can also handle clus-
ters of different shapes and sizes, an important char-
acteristic of the studied dataset. Unlike other cluster-
ing algorithms, which assume clusters with uniform
geometries, DBSCAN has flexibility when identify-
ing clusters with different shapes, whether compact
or more elongated. This flexibility allows for bet-
ter identification of the clusters under analysis (Khan
et al., 2014).

DBSCAN’s ability to not be sensitive to the pres-
ence of outliers also played a crucial role in the de-
cision to adopt it. The studied dataset contains out-
lier data points from most data, and DBSCAN can

Exploring Popular Software Repositories: A Study on Sentiment Analysis and Commit Clustering

299



deal with these outliers effectively. These points were
classified as ”noise” and excluded from the clusters,
avoiding distortions in forming clusters and allowing
the identified clusters to represent actual data patterns
(Khan et al., 2014).

Considering the study of the set presented in Sec-
tion 4, the characteristics mentioned were very impor-
tant, with clusters of elongated shapes, non-uniform
sizes, and outliers present.

After model construction, post-processing is
done to visualize and interpret the patterns found af-
ter data mining, which has to be done before the inte-
gration with any system that will make available the
discoveries made by the model developed (Tan et al.,
2019). In this phase, a measurement of the model’s
quality and performance should also be conducted,
and a thorough analysis of the grouped data should
be conducted to identify patterns within the clusters.

To validate the developed model, various evalua-
tion metrics, both internal and external, are employed.
External evaluation occurs only when there is a pre-
defined definition of clusters, enabling an assessment
of the agreement between the groupings created by
the model and the original clusters.

In internal evaluation, the relationship within and
between clusters is studied. For this purpose, spe-
cific metrics are used, including the silhouette index,
Davies-Bouldin index, and Calinski-Harabasz index.
These indices are employed to assess the model com-
pared to others and can also be used for refining hy-
perparameters to improve the model.

For the analysis of the created groups, this work
employs the following measures: visualization of
clusters through PCA (Principal Component Analy-
sis) and analysis of keyword patterns within the clus-
ters.

The visualization of clusters through PCA
(Principal Component Analysis) enables the represen-
tation of the dataset in two dimensions, facilitating
analysis of cluster separation. For that, it is necessary
to generate two principal components using the data
from existing features (Tan et al., 2019). In textual
data, this application involves vectorizing the set of
words for all records - each word corresponds to a col-
umn, and TF-IDF is used to calculate the frequency in
the text. Thus, PCA can be applied to these numerical
data, summarizing all the characteristics of the gen-
erated vectors into just two components (Indasari and
Tjahyanto, 2023).

By analyzing the keywords of the clusters, it is
possible to examine the most frequent words in each
cluster to understand the purpose of the text group
and the semantics that can be detected in the present
phrases. For this identification, arranging the words

in order of importance within the clusters is necessary
based on the frequency metric used.

3.3 Sentiment Analysis

A text register group’s sentiment analysis is more than
searching for positive or negative sentiments. With
this technique, it is possible to perform some anal-
ysis, called ”tasks” (Wankhade et al., 2022): Senti-
ments classification, Subjectivity classification, Opin-
ion summary, Opinion retrieval, and Sarcasm and
irony. In this paper, the task of Sentiments classifica-
tion is performed. It considers the sentiment of those
who wrote the object of study, categorizing them as
negative, positive, and neutral.

Machine learning can be used to categorize ob-
jects into classes of sentiments using natural language
processing techniques and computational text analy-
sis. The categorization model can be built in a super-
vised or unsupervised manner. In supervised models,
it is necessary to have a dataset with their labels to be
used to train and validate the model. In unsupervised
methods, object grouping occurs by analyzing prior
knowledge bases of words, language, and ontologies
that were previously constructed to assist in sentiment
analysis (Wankhade et al., 2022).

4 METHODOLOGY

Figure 1: Clustering using DBSCAN.

Data Acquisition. The data was collected using
Google’s BigQuery tool, which allows SQL queries to
GitHub’s public dataset regarding open source reposi-
tories. First, twenty relevant repositories were chosen
from five languages with the most popular reposito-
ries available on GitHub. Then, using the list of repos-
itories, all commits from the selected repositories
were consulted. According to their use on GitHub,
from the most to the least popular, the five most popu-
lar languages are JavaScript, Ruby, Python, PHP, and
Java. The list of languages, projects, and commits is
also available in the author’s GitHub repository.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

300



Figure 2: Sentiments in each cluster.

Figure 3: Cluster distribution by language.

Pre-Processing. Pre-processing consists of preparing
data for data mining, whether for classification, clus-
tering, or regression techniques. The first step was
removing empty values as the other pre-processing
steps cannot occur on empty values – and are also not
interesting for analysis. Removal can only happen if
the number of records with empty values is relatively
small compared to the total, thus not interfering with
the result and still allowing data mining with relevant
and representative data. Then, according to the tech-
niques discussed in Section 3, it was necessary to put
all words in lowercase letters so that they are not con-
sidered different just because they are written in cap-
ital letters.

In this process, so-called stopwords are also un-
necessary for the analysis. Therefore, Python’s natu-
ral language processing library, NLTK (Natural Lan-
guage Toolkit), was used to remove stopwords. The
necessary next step was removing non-alphabetic
characters because, when carrying out sentiment anal-
ysis, these characters tend to get in the way as they
are not words with intrinsic sentiments. The NLTK
library was also used for this processing.

Subsequently, it is necessary to remove no En-
glish words so that these words are not considered
when analyzing sentiments and clustering. Stemming
was applied to simplify the text by placing words
in their roots, which makes it easier to manipulate
large datasets and saves computational resources by
reducing the words in the dataset. Records consid-

ered outliers were removed according to the length
of the sentences – sentences with discrepant lengths.
The thresholds for removal were calculated using the
quartiles related to the size of the sentences.

Before applying the grouping technique through
clustering, we perform PCA calculation on the dataset
based on the TF-IDF related to the message column.
This step aims to reduce dimensionality since vec-
torization with TF-IDF generates a column for each
word, leading to a high set dimensionality.

By assigning weights to words based on their fre-
quency in the document and the corpus, TF-IDF helps
to diminish the weight of common words that may
provide little information about the content of the
message. This reduces noise in the clusters, enabling
them to focus on more meaningful words.

The need to reduce dimensionality is justified by
the fact that each vocabulary word becomes a dimen-
sion in the data set. As the number of dimensions
increases, the complexity of the feature space grows
exponentially, which can lead to problems such as
the “curse of dimensionality”, which affects effective-
ness, particularly in density algorithms.
Model Construction. Three clustering algorithms
were considered to build the clustering model: parti-
tioning, hierarchical, and density-based. Density was
the most suited to the data set studied; therefore, DB-
SCAN, one of the most used algorithms in this group,
was used.

The partitioning, hierarchical, and density-based
algorithms represent core classes of clustering algo-
rithms that address different aspects and challenges
of clustering analysis. This means they offer a good
coverage of available clustering techniques.

The DBSCAN algorithm relies on two main pa-
rameters: the minimum number of points inside the
radius to form the cluster (min samples) and the max-
imum distance between points considered belonging
to the same cluster (epsilon - eps), using Euclidean
distance. The proper choice of these parameters is
important to obtain good clustering results.

DBSCAN was used, changing the parameter val-
ues to identify it as the ideal combination. The goal
is to determine the parameters that would result in the

Exploring Popular Software Repositories: A Study on Sentiment Analysis and Commit Clustering

301



Figure 4: Frequent words inside clusters.

Figure 5: Sentiments in software repository according to
popularity.

Figure 6: Sentiment in each programming language.

best clustering model for this dataset. The almost per-
fect choice of eps and min samples was determined
based on the best silhouette value because this met-
ric evaluates the cohesion and separation of clusters.
This procedure allowed the identification of parame-
ters that generated the strong cluster structure to the
dataset (Scitovski and Sabo, 2020).

The set of test hyperparameters was chosen based
on manual testing, modifying the parameters until a
range of data that best grouped the data points was
identified. Thus, applying the described technique to
refine the chosen hyperparameters was possible.

By applying PCA, the data is transformed into a
smaller space, preserving the most relevant informa-
tion. Then, the DBSCAN clustering algorithm was
applied to this lower-dimensional space along with
the hyperparameters found in the analysis, facilitating
the identification of clustering patterns and improv-

ing the algorithm’s effectiveness. Figure 1 shows the
groups identified after PCA, removing data consid-
ered as outliers that do not belong to any group.
Post-Processing. It is essential to employ index
analysis to improve and compare algorithms. How-
ever, data visualization is equally crucial in observing
and evaluating the coherence of the clusters formed.
Therefore, the clusters were visualized with each hy-
perparameter change to validate the model used for
comparison with the other methods and the previous
execution. Also, a visual exploration of the groups
identified by the clustering model was carried out.
The most frequently used words and sentiments ex-
pressed in each group were studied for this work.

Figure 2 shows that the defined groups have some
more frequent words. The difference between the last
two groups seems like a slight difference. However,
it makes sense because in the merge/pull add group,
merges, and pull requests the elements have a greater
tendency to be updates, additions, or removals. The
elements in the merge/pull fix group tend to be fixes
(adjustments), errors, and tests. The fix/add group is
very well defined, with simple commits to add, edit,
or adjust features.

Finally, after carrying out the data grouping and
clustering process, a crucial stage of analysis is car-
ried out, which is sentiment analysis. For this, the
TextBlob library in Python, a tool designed to eval-
uate the polarity and subjectivity of texts, was used.
The TextBlob library simplifies the sentiment analysis
process, allowing the evaluation of the polarity of the
text, which can be classified as positive, negative, or
neutral, and also of subjectivity, which indicates how
subjective or objective the text is. These metrics are
important for understanding the attitude expressed in
a text and categorizing information meaningfully.

5 RESULT ANALYSIS

we have answered the formulated research questions
in the following.

RQ1. Do programming languages influence
the distribution of group proportions? Figure 3

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

302



Figure 7: Repository groups in different popularities.

shows that the proportions of groups are similar in
all programming languages in the dataset. However,
merge/pull groups appear much less in Java reposito-
ries. A further study could explore why Java has more
direct commits than merge/pull commits.

RQ2. Does the type of development activity
influence the sentiments expressed in comments?
The analysis in Figure 4 concludes that sentiments are
predominantly neutral. However, in more direct activ-
ities, such as the fix/add group, sentiments are gener-
ally more positive than in other merge/pull activities,
although surprisingly, negative sentiments stand out
in merge/pull add (addition activities).

RQ3. Do sentiments expressed in commit com-
ments reflect the project’s popularity among de-
velopers? According to Figure 5, negative comments
stand out in more popular repositories. Thus, they do
not reflect what is expected of more popular reposi-
tories, which should have fewer errors and negative
comments. This event can be studied more deeply
later, as more popular repositories may have more de-
velopment time and, consequently, more adjustments
and errors due to the introduction of new features.

RQ4. Do the most used programming lan-
guages influence the sentiments expressed in com-
ments? Figure 6 shows the number of commits with
negative comments, which is prominent in JavaScript
projects. Future studies can explore the cause of this
phenomenon, possibly related to the high occurrence
of code smells, which are closely linked to code er-
rors (Johannes et al., 2019), resulting in more negative
comments about adjustments or errors.

RQ5. Do the most recurring activities within
the project have any relation to repository popu-
larity? Figure 7 shows the percentage of each activity
(group) found within repositories of three popularity
levels. However, no percentage stands out enough to
identify a difference pattern between them. There-
fore, the studied dataset has no pattern related to ac-
tivities and popularity.

6 CONCLUSIONS

The applied clustering model defined the activity
groups, through which three main activities were dis-
covered within the studied dataset. Subsequently, sen-
timent analysis was applied within these groups to
uncover the sentiments expressed in committed com-
ments while performing these activities. A graph was
also generated to analyze the sentiments related to
language groups and repository popularity, data ob-
tained from the BigQuery collection.

The research questions help the project manager
understand the developers’ feelings for the most re-
curring activities and what influences those feelings.
This understanding can be of great value for improv-
ing team management and function delegation by the
manager. From a second perspective, those answers
might be helpful to the team members, helping to
avoid mistakes that degrade internal software qual-
ity, considering that negative comments express how
badly a programmer found the source code and its is-
sues to fix. It is not a long shot to consider the diver-
sity of programming experience of those who modify
the source code as a factor that introduces problems
and the negative reaction of those tasked with fixing
them. Although we do not present an analysis for each
root word after stemming, it is clear that negative ones
are greater in high-popularity repositories.

An important point, posing a threat to the con-
clusions and requiring exploration by the interested
community, is the data acquisition for this study. The
challenge arises from the limitation of requests in the
GitHub API and the need for this data in the public
GitHub database on BigQuery. However, other stud-
ies have faced similar problems, with considerable re-
sults (de Lima et al., 2022; Nguyen et al., 2023).

Exploring Popular Software Repositories: A Study on Sentiment Analysis and Commit Clustering

303



ACKNOWLEDGMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior –
Brasil (CAPES).

REFERENCES

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S.,
Trippe, E. D., Gutierrez, J. B., and Kochut, K.
(2017). A brief survey of text mining: Classifi-
cation, clustering and extraction techniques. arXiv
preprint arXiv:1707.02919.

Amaral, L. et al. (2020). How (not) to find bugs: The
interplay between merge conflicts, co-changes, and
bugs. In 2020 IEEE Int. Conf. on Software Mainte-
nance and Evolution (ICSME), pages 441–452.

Cosentino, V., Izquierdo, J.-L. C., and Cabot, J.
(2017). A systematic mapping study of software
development with github. IEEE access, 5:7173–
7192.

de Lima, B. S., Garcia, R. E., and Eler, D. M.
(2022). Toward prioritization of self-admitted
technical debt: an approach to support decision
to payment. Software Quality J., pages 1–27.
https://doi.org/10.1007/s11219-021-09578-7.

Hasan, K., Macedo, M., Tian, Y., Adams, B., and
Ding, S. (2023). Understanding the time to first re-
sponse in github pull requests. In 2023 IEEE/ACM
20th Int. Conf. on Mining Software Repositories
(MSR), pages 1–11, Los Alamitos, CA, USA. IEEE
Computer Society.

Hickman, L., Thapa, S., Tay, L., Cao, M., and Srini-
vasan, P. (2022). Text preprocessing for text min-
ing in organizational research: Review and rec-
ommendations. Organizational Research Methods,
25(1):114–146.

Indasari, S. S. and Tjahyanto, A. (2023). Automatic
categorization of multi marketplace fmcgs products
using tf-idf and pca features. Jurnal Sisfokom (Sis-
tem Informasi dan Komputer), 12(2):198–204.

Ji, T., Pan, J., Chen, L., and Mao, X. (2018). Identify-
ing supplementary bug-fix commits. In 2018 IEEE
42nd Annual Computer Software and Applications
Conf. (COMPSAC), pages 184–193.

Johannes, D., Khomh, F., and Antoniol, G. (2019).
A large-scale empirical study of code smells in
javascript projects. Software Quality J., 27:1271–
1314.

Keivanloo, I., Forbes, C., Hmood, A., Erfani, M.,
Neal, C., Peristerakis, G., and Rilling, J. (2012).

A linked data platform for mining software reposi-
tories. In 2012 9th IEEE Working Conf. on Mining
Software Repositories (MSR), pages 32–35, Zurich,
Switzerland. IEEE.

Khan, K., Rehman, S. U., Aziz, K., Fong, S., and
Sarasvady, S. (2014). Dbscan: Past, present and
future. In The fifth Int. Conf. on the applica-
tions of digital information and web technologies
(ICADIWT 2014), pages 232–238. IEEE.

Kinsman, T., Wessel, M., Gerosa, M. A., and Treude,
C. (2021). How do software developers use github
actions to automate their workflows? In 2021
IEEE/ACM 18th Int. Conf. on Mining Software
Repositories (MSR), pages 420–431, Los Alamitos,
CA, USA. IEEE Computer Society.

Meng, N., Jiang, Z., and Zhong, H. (2021). Classi-
fying code commits with convolutional neural net-
works. In 2021 Int. Joint Conf. on Neural Networks
(IJCNN), pages 1–8. IEEE.

Nguyen, P. T., Rubei, R., Rocco, J. D., Sipio, C. D.,
Ruscio, D. D., and Penta, M. D. (2023). Deal-
ing with popularity bias in recommender systems
for third-party libraries: How far are we? In
2023 IEEE/ACM 20th Int. Conf. on Mining Soft-
ware Repositories (MSR), pages 12–24, Los Alami-
tos, CA, USA. IEEE Computer Society.

Qaiser, S. and Ali, R. (2018). Text mining: use of tf-
idf to examine the relevance of words to documents.
Int. J. of Computer Applications, 181(1):25–29.

Scitovski, R. and Sabo, K. (2020). Dbscan-like clus-
tering method for various data densities. Pattern
Analysis and Applications, 23(2):541–554.

Tan, P.-N., Steinbach, M., and Kumar, V. (2019). In-
troduction to Data Mining. Pearson, Boston, MA,
2nd edition.

Wankhade, M., Rao, A. C. S., and Kulkarni, C.
(2022). A survey on sentiment analysis methods,
applications, and challenges. Artificial Intelligence
Review, 55(7):5731–5780.

Zafar, S., Malik, M. Z., and Walia, G. S. (2019). To-
wards standardizing and improving classification of
bug-fix commits. In 2019 ACM/IEEE Int. Symp. on
Empirical Software Engineering and Measurement
(ESEM), pages 1–6.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

304


