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Abstract: The term code smell refers to sections of code that are not technically incorrect, do not prevent the software 
from functioning, but affect its quality. Code smells are considered a form of technical debt (TD). This study 
investigated the relationship between the personality types of software developers and the presence of code 
smells, which indicate potential problems in source code. Using the Myers-Briggs Type Indicator (MBTI) to 
classify personalities, the study examines whether specific profiles are more associated with creating or 
removing code smells. The goal is to assist software project managers in allocating tasks for refactoring and 
development. The research does not find a statistically significant correlation between the developer's 
personality and the creation of code smells. Still, it suggests that the Consul personality type (ESFJ) shows a 
greater tendency to resolve code smells. The study also highlights the importance of considering human 
factors such as personality types in software development to improve product quality. 

1 INTRODUCTION 

Software is a product resulting from human activities 
aimed at problem-solving, cognitive information 
processing, and social interaction (Sturdee et al., 
2022). The software provides instructions and data 
for a computer to execute a specific task or perform a 
desired function. Software is created by developers 
who use programming languages and development 
tools to design and create programs that can be 
executed on different platforms. 

Software, as a product distinctly originating from 
human activity, carries in its essence the marks of the 
capabilities, decisions, and peculiarities of the 
individuals who conceive and develop it. This 
intrinsic human nature of software means that its 
quality is directly affected by the characteristics and 
skills of the developers. Personality traits of 
individuals involved in the development process play 
a significant role in determining the final quality of 
the software  (Capretz, 2003), (Capretz et al., 2010). 
These personality traits can influence programming 
practices and design decisions, leading to robust, 
well-structured software or software prone to failures 
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and inefficiencies. Therefore, understanding these 
human nuances is essential for improving software 
development practices and product quality. Human 
nuance is understanding the complexities and 
varieties of human emotions, thoughts, and behaviors. 

The personality and experience of the developer 
can influence the quality of the software (Ronald 
Laughery et al., 1985), (Capretz et al., 2010), 
(Fernández-Sanz et al., 2011), (Dutra et al., 2021), 
and one of the indicators of poor software quality is 
the presence of code smells. 

The term code smell refers to sections of code that 
are not technically incorrect (Fowler et al., 2019), do 
not prevent the software from functioning, but affect 
its quality. Code smells are considered a form of 
technical debt (TD) of code smell. During the 
software development process, developers may 
inadvertently create code smells. 

Code smells can be identified through static code 
analysis tools. Such tools can be combined with 
mining source code repositories, allowing developers 
to perform refactoring, as the static code analysis tool 
has identified and quantified the code smells.  
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Several studies have been conducted on the most 
common causes of technical debt (TD) due to code 
smells, among which are human factors. The research 
by Rios et al. (2018) shows that developers' lack of 
knowledge and experience can cause TD. The study 
by Kruchten et al. (2012) points out that the causes 
include pressure for deadlines (schedule), lack of 
care, insufficient education (a situation where the 
education provided is inadequate to satisfy the basic 
learning and development needs of an individual or 
group), deficient processes, non-systematic quality 
verification, or basic incompetence (referring to the 
lack of fundamental skills or knowledge needed to 
perform a specific task or function). Rios et al. (2019) 
identified that 21.9% of the problems are related to 
development, where the code smell is linked to the 
non-adoption of good coding practices (7.8%). 

Code smells can indicate the need for additional 
training for the development team, communication 
problems within the group, or the need for better 
coding practices. Therefore, effective management of 
human factors can help minimize the occurrence of 
code smells, improve code quality, and, 
consequently, improve the quality of the software 
produced. 

Research conducted by Capretz (2003), Beecham 
et al. (2008), Feldt et al. (2010), Gilal et al. (2017), 
and  Sturdee et al. (2022) have investigated the 
personalities of software developers to understand 
how different personality characteristics and 
psychological traits can affect the development 
process and the quality of the code produced. 
However, there is no evidence of studies analyzing 
whether there is a relationship between technical debt 
from code smells and the developer's personality. 

This work investigates whether specific 
personality profiles are associated with the creation or 
removal of code smells to assist software 
development project managers in allocating tasks 
related to refactoring or developing new features to 
specific developer profiles, thereby maximizing the 
quality of the code produced and minimizing the 
accumulation of technical debt from code smell. 

This paper is organized as follows: Section 2 
presents the theoretical background and Section 3 the 
related works; Section 4 describes the research 
method; Section 5 presents the results, which are 
discussed in Section 6; Section 7 presents the threats 
to validity; Section 8 concludes the article with 
perspectives for future work. 

 
 
 
 

2 BACKGROUND  

2.1 Code Smell 

The concept of code smell was popularized by Kent 
Beck in the 1990s and explored in depth by Martin 
Fowler (Fowler et al., 2019). In Fowler et al. (2019), 
authors describe a series of patterns that can indicate 
problems in the code and offer strategies to deal with 
these problems. The term code smell describes code 
structures that, although technically correct, 
negatively affect the quality of the software. 
According to Kruchten et al. (2012), code smell is a 
technical debt (TD) encountered in software 
development. If addressed immediately, code smell 
can be easily avoided during implementation, but this 
depends on the developer's technical knowledge. 
According to  Fowler et al. (2019), code smells are 
code structures that violate design and programming 
principles and indicate software problems that will 
require future maintenance activities through 
refactoring. Code smells are characteristics or signs 
that indicate potential problems or deficiencies in 
software's source code. They suggest something 
might be wrong with the code's design, structure, or 
implementation. Martin (2014) and Fowler et al. 
(2019) present examples of code smells, including 
code duplication, long methods, and God classes. 
These code smells can be detected through static code 
analysis tools. 

According to McConnell (2013), technical debt 
(TD) can be classified as intentional or unintentional. 
Intentional TD is consciously assumed as a strategic 
tool where the benefits outweigh the consequences of 
the incurred TD at the time. Unintentional TD, on the 
other hand, is when technical debt is incurred 
accidentally and unconsciously. 

Although a low quantity of code smells may not be 
considered a problem when they accumulate, they can 
lead to difficulties in the maintenance and evolution 
of the software (Fowler et al., 2019). They can 
increase the complexity of the source code, make 
changes difficult or risky to perform, and hinder the 
understanding of the source code. Thus, it is essential 
to be aware of code smells and address them 
appropriately to ensure that the source code remains 
easy to maintain and evolves over time. One of the 
ways to ensure the maintainability of source code is 
through refactoring (Fowler et al., 2019). 

Refactoring is a disciplined way of cleaning up 
source code to minimize the chances of introducing 
bugs. According to Fowler et al. (2019), refactoring 
is the process of changing a software system so that it 
does not alter the external behavior of the source code 
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but improves its internal structure. Refactoring the 
source code is paying technical debt or removing 
code smells. It requires developer time to correct, 
leading to rework effort. According to Bourque et al. 
(2014), 40 to 60% of maintenance tasks are dedicated 
to understanding the source code in which 
maintenance is performed. This understanding is 
directly associated with code design problems and 
code smells. 

Some static analysis tools quantify code smells 
intending to demonstrate the total effort required to 
solve the problems. There are various static analysis 
tools, with SonarQube being the most well-known in 
the software industry. The study by Guaman et al. 
(2017) identifies SonarQube as a comprehensive tool 
for static code analysis, mainly because it adheres to 
the SQALE method. The SQALE method presented 
by Letouzey et al. (2012) uses the ISO/IEC 
25010:2011 standard (ISO, 2011) as a reference. Each 
capability pointed out in the SQALE method is 
associated with a characteristic or sub-characteristics 
of the standard. A code smell is part of the 
maintainability index of the code SQI (Software 
Quality Index), addressed in SQALE. This index is 
available in SonarQube through the sum of the code 
smell's remediation effort (time). 

In Silveira Neto et al. (2021), the authors apply 
data mining techniques to a source code repository to 
identify code smells, defining a process called 
TDMining. However, they do not recognize a data 
dimension for the developer's personality. The 
execution of the TDMining process enables the 
acquisition of code smell data by each developer from 
the utilized source code repositories. The process 
provides SQL and Python scripts for analyzing 
association rules, moving averages, and time series of 
code smell data using data obtained from SonarQube 
(Guaman et al., 2017) and PyDriller (Spadini et al., 
2018). The TDMining process, in addition to 
observing code smells by project, also provides a 
dimensional data model with which it is possible to 
analyze data by the developer. 

2.2 Psychological Personality Types 

Gulati et al. (2015), the authors investigate the use of 
the Myers-Briggs Type Indicator (MBTI) (Myers et 
al., 1988) and Five-Factor Model (FFM) (Tupes et al., 
1992) personality models in software engineering. 
The MBTI categorizes personalities based on four 
dimensions, aiding in understanding approaches to 
problem-solving and communication. At the same 
time, the FFM focuses on five main traits to 
understand their impact on developers' performance 

and satisfaction. The research by Gulati et al. (2015) 
highlights the importance of these models in 
identifying personality traits favorable to specific 
roles in industry, contributing to better performance 
and effectiveness in teamwork. They emphasize the 
need for more studies in this area to enhance 
effectiveness in software engineering continually. 

The MBTI model will be used in this research 
once it is the most utilized model in software 
engineering research for personality analysis, as 
presented by Cruz et al. (2015). Their systematic 
mapping aimed to explore the influence and role of 
personality in software engineering. The systematic 
mapping does not address why the MBTI is the most 
used test in the selected articles. 

The study conducted by Delgado et al. (2022) 
explores the impact of personality on software 
development, highlighting that personality has a 
positive effect on various tasks and processes in this 
area. However, the lack of consistency in the results 
of these studies raises questions about their validity, 
emphasizing the importance of more rigorous studies 
with the aid of human behavior experts. The research 
identifies the most used and reliable psychological 
models and instruments for assessing the 
personalities of software developers. MBTI is 
recognized as the most popular. However, in recent 
years, the FFM and its psychometric tools, such as the 
Big Five Inventory (BFI) (John, 1991) and NEO Five-
Factor Inventory (NEO-FFI)  (Costa et al., 1992), 
have gained more relevance in the field. The study 
points to the need for a more in-depth and 
comparative investigation between these different 
instruments and models. This is essential to reduce 
contradictions in future research, allowing for a more 
precise evaluation of the personality of engineers and 
software developers from a psychological 
perspective. 

MBTI is a tool presented by Myers et al. (1988) 
as a self-report instrument designed to identify, 
through a questionnaire, how a person perceives the 
world and makes decisions. The questionnaire was 
based on the typological theory proposed by Carl 
Gustav Jung. MBTI divides psychological types into 
16 distinct types, each represented by a four-letter 
code that describes a person's main preferences in 
four dimensions, resulting from the combination of 
four pairs of characteristics or psychological traits: 

• Extraversion (E) vs. Introversion (I), where 
Extraversion (E) refers to people who prefer to 
energize by interacting with others and the external 
world, and Introversion (I) relates to people who like 
to energize by spending time alone or with a small 
group of close people. 
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• Sensing (S) vs. Intuition (N), where Sensing (S) 
refers to people who rely on concrete and tangible 
information perceived through the five senses, and 
Intuition (N) refers to people who rely on instincts 
and abstract or theoretical knowledge, looking at the 
whole picture. 

• Thinking (T) vs. Feeling (F), where Thinking 
(T) refers to people who make decisions based on 
logic and objective analysis, and Feeling (F) refers to 
people who make decisions based on personal values 
and how decisions will affect others. 

• Judging (J) vs. Perceiving (P), where Judging (J) 
refers to people who prefer a structured and decided 
lifestyle, and Perceiving (P) refers to people who 
prefer a flexible and adaptable lifestyle. 

The MBTI presents the dichotomy between the 
Introverted and Extroverted psychological traits as a 
spectrum. At the extreme of Introversion (I), someone 
might be very reserved and private, while at the 
extreme of Extroversion (E), someone might be 
exceptionally open and gregarious. Most people are 
not at the extremes but somewhere in the middle of 
the spectrum, showing traits of both preferences in 
different situations. Concerning the other 
psychological characteristics of the MBTI, such as 
Sensing-Intuition, Thinking-Feeling, and Judging-
Perceiving, they are also seen as spectrums. Each 
person may lean towards one preference over the 
other but often exhibits characteristics of both sides, 
depending on the context. This complexity reflects 
the dynamic nature of personality. 

These 16 psychological traits are often grouped 
into four categories of personality known as the four 
temperaments of the MBTI, based on shared 
characteristics: 

Sentinels (SJ) value security, stability, tradition, 
and being practical, organized, and responsible. ISTJ 
- Logistician: practical, reliable, and systematic. ISFJ - 
Defender: dedicated, warm, and careful. ESTJ - 
Executive: organized, assertive, and efficient. ESFJ - 
Consul: sociable, caring, and popular. 

Diplomats (NF) are motivated by values and 
vision, seeking meaning and possibilities. They tend 
to be empathetic, compassionate, and creative. INFJ - 
Advocate: idealistic, mystical, and people-oriented. 
INFP - Mediator: idealistic, curious, and ethical. 
ENFJ - Protagonist: charismatic, inspiring, and 
selfless. ENFP - Activist: enthusiastic, creative, and 
sociable. 

Analysts (NT) are oriented towards knowledge 
and competence. They tend to be innovative, 
strategic, and logical. INTJ - Architect: strategic, 
logical, and innovative. INTP - Logician: innovative, 
curious, and theoretical. ENTJ - Commander: 

charismatic, leader, and assertive. ENTP - Debater: 
inventive, intelligent, and insightful. 

Explorers (SP): are realistic and action-oriented. 
They tend to be adaptable, spontaneous, and focused 
on the present moment. ISTP - Virtuoso: 
experimental, bold, and practical. ISFP - Adventurer: 
artistic, curious, and exploratory. ESTP - Entrepreneur: 
energetic, perceptive, and direct. ESFP - Entertainer: 
spontaneous, energetic, and enthusiastic.  

The study by Capretz et al. (2010) concludes that 
there is a correlation between personality types and 
software development and that understanding the 
personality types of software developers can be 
helpful to team formation, task allocation, and project 
management. Moreover, the paper indicates that 
specific software development tasks may be more 
suitable for certain personality types. The importance 
of considering personality types in software 
development is also emphasized in the article as 
something that can contribute to more effective and 
efficient development processes. The report further 
highlights that most programmers possess 
characteristics of Introversion (I), Sensing (S), and 
Thinking (T) and concludes that analyzing these 
psychological characteristics when assigning people 
to stages of the software life cycle increases the 
chances of a successful project outcome. 
Additionally, the paper points out that the Sensing (S) 
and Perceiving (P) personality types are more suited 
for detail-oriented tasks and dealing with the constant 
changes inherent in software maintenance. 

The study presented by Barroso et al. (2016) 
concludes that evidence suggests that the MBTI can 
be applied to software developers to understand how 
human personality influences the work of 
professionals. The research found that developers 
with MBTI type INTJ showed lower levels of Depth 
of Inheritance Tree (DIT) and slightly smaller 
methods (LOC). However, the paper also suggests 
that more research is needed to understand the 
relationship between personality and object-oriented 
software metrics. 

3 RELATED WORK 

To understand related works, an exploratory, semi-
structured search was conducted on the scientific 
databases Scopus, IEEE, ACM, and SpringerLink 
with the search string: ("SOFTWARE 
ENGINEERING") AND ("PERSONALITY" OR 
"MBTI" OR "Briggs MYERS" or "Briggs-MYERS") 
AND ("CODESMELL" OR "TECHNICAL DEBT"). 
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The search returned two articles: (Graf-Vlachy et al., 
2023) and (Huang et al., 2021). 

Graf-Vlachy et al. (2023) analyzed how the 
developer's personality affects the accumulation of 
technical debt (TD), suggesting a correlation between 
personality traits and decisions leading to TD. The 
article does not mention the MBTI concerning the 
developer's personality and technical debt. Still, it 
examines the relationship between technical debt and 
various characteristics of the developers' 
personalities, using the Five Factor Model (FFM), 
regulatory focus, and narcissism. These personality 
characteristics were evaluated in a software 
engineering context to understand their influence on 
introducing and removing technical debt. 

The article by Huang et al. (2021) addresses 
developers' feelings about community smell, which is 
unrelated to the present research. 

The research presented in this article aligns with 
the study of Capretz et al. (2010), as it aims to 
investigate the psychological traits of the developer 
concerning the creation and removal of code smells. 
The investigation becomes necessary to collaborate in 
identifying the profiles of creators or non-creators of 
code smell, thus adapting developers to specific 
activities of refactoring or new developments. 

4 RESEARCH METHOD  

The research was operationalized following the steps 
presented in Figure 1, described below. 

 
Figure 1: Research steps. 

(1) Define the research goal, questions/hypothesis, 
and metrics: the research goal was defined according 
to the Goal-Question-Metric (GQM) approach  
(Basili et al., 1988) as follows: 
Goal: Identify if there is a statistical correlation 
between the quality of source code measured by code 
smells and the personality types of developers, based 
on the MBTI, to investigate whether specific types or 

categories of personality tend to create, or not, code 
smells, concerning the quality of source code, from 
the perspective of software developers, in the context 
of personality types in software development. 
Question: Is there a statistical correlation between the 
quality of source code (code smell) and the 
personality types of developers (MBTI)? 
The null hypothesis H0 is that there is no correlation 
between the quality of the source code and the 
developer's personality. The alternative hypothesis 
HA is that there is a correlation between the quality 
of source code and the developer's personality. 
Metric: This involves statistically evaluating the 
correlation between code smell and the developer's 
personality. In the case of the relationship between the 
quality of source code and the developer's personality, 
the null hypothesis suggests that there is no correlation 
between the variables of interest (the quality of source 
code and developer's personality) and that any 
observed difference in the data is due to chance or 
other factors not related to the variables of interest. 
(2) Develop and administer a survey: To conduct the 
research, it was necessary to collect the personality 
type of software developers. Therefore, a survey was 
designed, including questions aimed at discovering 
the MBTI profile of the professional. Additionally, 
information was collected to characterize the 
developers through questions, as shown in Table 1.  

Table 1: Survey Questionnaire. 

Question Possible 
Answers 

What type of development do you work 
in? (Developer_Specialty)? 

BackEnd, 
FrontEnd, 
Mobile, 

FullStack, Other.
What is your career level? 
(Developer_Level)? 

Junior, middle, 
senior, specialist,

Other. 
How many months of experience do you 
have with software development? 
(Developer_Month_Experience)? 

Months 

How many months have you been 
working at the company? 
(Developer_Month_In_Company)?  

Months 

What is your profile on the website 
https://www.16personalities.com/ 
(MBTI)? On the website, developers 
answer questions to identify their MBTI 
profile. Upon completing the 
questionnaire, developers attach an 
image showing their MBTI profile to 
the form. 

Personality 
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Data regarding the developers' profiles were extracted 
from the questionnaire. The questionnaire was 
electronically sent to 50 software developers from a 
financial institution. Voluntarily, 40 developers 
responded to the questionnaire. 

All developers participated voluntarily and signed 
an Informed Consent Form (ICF). 

(3) Execute the TDMining process: This step 
involves mining the source code repository following 
the TDMining process Silveira Neto et al. (2021). The 
source code was mined from four years across 163 
repositories. The mining process was not aimed at 
analyzing the types of code smells created by 
developers but at quantifying the occurrence of code 
smells created and removed. There were 216 
developers in the entire source code versioning 
history. At the time of the research, the company had 
50 developers. We analyzed the code smells of the 
company's active developers when the study was 
conducted. 

(4) Create a dataset for data analysis: In this stage, 
the questionnaire data containing developer 
personality traits and the data from the mining of code 
smells created and removed by the developer were 
merged for potential analysis. The merged data were 
organized into two types of variables: numerical and 
categorical. 

The numerical variables are: 
• Developer_Month_Experience 
• Developer_Month_In_Company 
• Code_Smell_Created 
• Code_Smell_Removed 
• Code_Smell_Balance 
• Developer Age 

The dataset is available at https://doi.org/10. 
5281/zenodo.10072712. The variables that make up 
the dataset are: 

• Type_MBTI: Developer's MBTI personality 
type. 

• Developer_Gender: Developer's gender. 
• Developer_Specialty: Developer's specialty. 
• Developer_Level: Developer's experience 

level in the company. 
• Developer_Month_Experience: Number of 

months of developer's experience. 
• Developer_Month_In_Company: Number of 

months the developer has been with the 
company. 

• Developer Age: Age of developer. 
• MBTI: Detailed information about 

Type_MBTI. 
• E_I: Extroversion/Introversion dimension of 

MBTI. 

• S_I: Sensing/Intuition dimension of MBTI. 
• T_F: Thinking/Feeling dimension of MBTI. 
• J_P: Judging/Perceiving dimension of MBTI. 
• Code_Smell_Created: Number of code smells 

created by the developer. 
• Code_Smell_Removed: Number of code 

smells removed by the developer. 
• Code_Smell_Balance: Code smells balance, 

i.e., the difference between code smells 
created and removed. 

• Code_Smell_Action: Classification of the 
developer as a creator, neutral, or remover of 
code smells. 

While creating the dataset, data anonymization 
was carried out, which consisted of removing names 
and data that could identify the developers. 

(5) Apply statistical tests: Descriptive statistics 
were used to characterize the developers, and the chi-
squared test was used to analyze the correlation 
between the variables. The chi-squared test is a 
standard statistical tool for analyzing contingency 
tables. It is often used to assess whether observed 
patterns or outcomes are due to chance or a real 
relationship, which is necessary when seeking 
associations in categorical data. In addition to the chi-
squared test, Cramer's V, a measure of association 
between two nominal (categorical) variables based on 
the chi-squared test, was used. It helps determine the 
strength and significance of the association between 
two categorical variables. Regarding the 
interpretation of Cramer's V values, a measure close 
to 0 suggests either no or very little association 
between the variables, and a value close to 1 indicates 
a strong association between the variables. 

The correlation between Code_Smell_Action and 
Type_MBTI, Developer_Gender, 
Developer_Specialty, Developer_Level, MBTI, E_I, 
S_I, T_F, and J_P was analyzed. 

(6) Analyze the results: Examine the statistical test 
results and either confirm or reject the hypotheses 
based on these results. 

5 RESULTS 

The results are organized based on participant 
characteristics, the statistical correlation between 
code smell action (Code_Smell_Action) and 
personality, and developers' personality concerning 
code smell action. 
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5.1 Characterization of the Developers  

Table 2 presents the characterization results of the 
software developers who participated in the research. 
The first column of Table 2 displays the name of the 
analyzed variable, as obtained in the dataset. In 
contrast, the second column shows the mean, 
followed by the minimum and maximum values for 
the variable. 

Table 2: Characterization of the developers.  

Feature Mean Min Max STD 

Developer Month 
Experience 98.5 5 252 69.3 

Developer Month 
In Company 23.5 2 140 22.5 

Code Smell 
Created 188.2 0 4767 754.13 

Code Smell 
Removed 27.8 0 325 57.8 

Code_Smell 
Balance 160.3 185 4609 732 

Developer Age 30.6 21 45 6.1 
 

It can be observed that, on average, developers 
have 98.5 months of experience, and the time these 
developers have been with the researched company is 
23.5 months. Developers, on average, created 188.22 
code smells and removed an average of 27.87 code 
smells. The average age of developers is 30 years. 

Out of the 40 developer records available in the 
dataset, 14 psychological traits out of 16 possible 
were identified. The two unidentifiable traits were the 
Activist (ENFP) and Entrepreneur (ESTP), and the 
most frequent psychological trait is ESFJ (Consul), 
accounting for 8 cases, which represents 20% of the 
developers. 

Regarding the gender of the developers 
(Developer_Gender), out of the 40 developers, 33 
(82.5%) are male. Regarding the specialty of the 
developers (Developer_Specialty), out of the 40 
developers, 29 work with Backend, 3 with FrontEnd, 
4 with Mobile development, and 4 with FullStack 
development. Analyzing the developer's level 
(Developer_Level), out of the 40 developers, 3 are 
specialists, 3 are interns, 2 are juniors, 13 are 
intermediate (middle), and 19 are senior developers. 

Concerning standard deviation (STD), data reveals 
a comprehensive picture of the dynamics of 
developers and code quality in a company. On 
average, developers accumulate around 98.5 months 

of experience, with a moderate dispersion around this 
average, while their average stay in the company is 
approximately 23.5 months, with a relatively low 
variability. About code smells, the average creation is 
significantly high, with considerable dispersion, 
suggesting a wide range in the amount created per 
developer. In contrast, the average number of code 
smells removed is moderate, with a more controlled 
variation between developers. Finally, the average 
balance between "code smells" created and removed 
is positive, indicating a general trend towards 
accumulation, with considerable variability in the 
difference between developers. 

5.2 Examining the Impact of 
Personality on Code Smell:  
A Statistical Analysis 

Table 3 presents the result of all categorical variables 
concerning the variable Code_Smell_Action. For all 
categorical variables (column variable), the null 
hypothesis (column Rejected_H0) of no association 
was not rejected, which means that there is not 
enough evidence to assert a significant relationship 
between Code_Smell_Action and the other 
categorical variables. In other words, creating or 
removing code smells is unrelated to the developer's 
personality, specialty, or seniority. 

The data were also evaluated for correlation using 
Cramer's V test (Table 3, Cramer's V column), which 
indicated that rejecting the null hypothesis is 
 

Table 3: Statistical correlation between Code_Smell 
_Action and MBTI and other variables.  

Variable Cramer's 
V 

p_valu
e 

Rejected_
H0 

Chi_Squa
re 

Type_MBTI 0.000 0.954 False 15.152 
Developer_Gend
er 0.000 0.425 False 1.706 
Developer_Speci
alty 0.247 0.094 False 10.805 
Developer_Leve
l 0.233 0.136 False 12.351 
MBTI 0.000 0.954 False 15.152 
E_I 0.283 0.074 False 5.188 
S_I 0.000 0.438 False 1.646 
T_F 0.000 0.570 False 1.123 
J_P 0.273 0.083 False 4.976 
 
impossible. The Cramer's V result, being less than 0.3 
for all variables, suggests a weak association between 
all the variables and Code_Smell_Action. According 
to the chi-squared test, this means there is a weak 
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statistical relationship between the analyzed 
variables.  

The results shown in Table 3 were obtained using 
the IBM SPSS tool, where, in addition to the Cramer's 
V, p_value, Rejected_H0, and Chi_Square variables, 
it was possible to get contingency tables. Given this 
article's limited number of pages, the result can be 
replicated using the data available on Zenodo. 

5.3 Personality Types and Their Role 
in Code Smell Creation and 
Removal: Insights from MBTI 
Analysis 

Table 4 presents the quantitative result of personality 
types concerning code smell creation (creator, 
neutral, remover).  

It is noticeable that the MBTI type "Consul" 
stands out in code smell removal, with the highest 
count of three (3) developers as code smell removers. 
Additionally, two developers remained with 
Code_Smell_Action equal to "Neutral." Being 
classified as "Neutral" for code smell creation does 
not imply that they have not contributed code to the 
source code repository. It means the same amount of 
code smell created equals the amount removed.  

The TDMining process by Silveira Neto et al. 
(2021) requires source code analysis for each commit 
to the source code repository.  

Therefore, submitting code to the source code 
repository does not necessarily imply the presence or 
removal of code smell. 

Table 4: Type_MBTI x Code_Smell_Action. 

Type_MBTI Code_Smell_Action
 Creator Neutral Remover

Advocate (INFJ) 4  
Entertainer (ESFP) 1  
Architect (INTJ) 2  1
Adventurer (ISFP) 1  
Commander (ENTJ) 1  
Consul (ESFJ) 4 1 3
Defender (ISFJ) 4  2
Executive (ESTJ)   1
Debater (ENTP) 1  
Logician (INTP) 3  
Logistician (ISTJ) 2  1
Mediator (INFP) 2  
Protagonist (ENFJ) 2 1 2
Virtuoso (ISTP) 1  

 

6 DISCUSSIONS  

The results generally indicate no statistical 
correlation between a developer's personality and 
whether they are a code smell creator.  

However, the Consul personality type (ESFJ) 
appeared more attentive to resolving code smells. 

While this article focuses on the absence of a direct 
correlation between code smells and personality, 
related studies suggest that the influence of 
personality extends far beyond, affecting aspects such 
as technical debt, team effectiveness, and 
development process efficiency.  

This indicates that, despite the specific findings of 
the article, the relationship between personality and 
software development is diverse and deserves further 
investigation, especially in the context of human 
factors in software engineering. 

Graf-Vlachy et al. (2023) investigated the 
relationship between developers' personality traits 
(focusing on narcissism, using the FFM) and their 
influence on technical debt. The study examined 
2,145 source code commits from 19 developers and 
aimed to answer how a developer's personality relates 
to introducing and removing technical debt.  

The authors concluded that personality influences 
the introduction of technical debt, but they noted that 
the sample size was insufficient. 

For the present study, there were no issues 
regarding the validity of the research since there were 
23,628 commits, including 31,754 code smells 
involving 216 developers. Of these 216 developers, 
50 were active in the company at the time of the 
research, and 40 responded to the personality survey.  

Among the 40 developers who responded to the 
survey, 38 created or removed code smells (the other 
two developers neither created nor removed code 
smells, indicating a neutral role). These 38 developers 
accounted for 7,529 code smells created and 1,115 
code smells removed in 5,046 commits. 

Regarding Silveira Neto et al. (2021) work, the 
authors do not address the developer's personality as 
an additional dimension in the TDMining data model. 
Their work is limited to the relationship between code 
smells and personality, unlike the research presented 
in this article, which adds a data dimension for 
developer personality to the TDMining data model to 
correlate personality information. 

The study by Capretz et al. (2010) demonstrates a 
correlation between personality types and software 
development, emphasizing the importance of 
personality in team formation and project 
management.  
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Capretz expands this discussion, suggesting that 
personalities can significantly influence the 
efficiency and effectiveness of software 
development. However, the provided sources did not 
mention specific details about the number of 
developers involved in the research or the study's 
evidence and weaknesses. 

The research conducted by Dutra et al. (2021) does 
not find a direct correlation between code smells and 
personality profiles. Still, it suggests that the 
influence of personality in software development 
should be explored, particularly concerning human 
factors in software engineering.  

Like Dutra et al. (2021), the present article 
suggests that software organizations, researchers, and 
professionals can benefit from understanding human 
factors to improve software quality. 

7 THREATS TO VALIDITY  

Regarding internal validity, given the size of the 
target population, with 40 developers representing 
80% of the developers in the researched company, it 
is considered that the research is valid, primarily due 
to the difficulty in finding companies with a 
significant number of developers willing to respond 
to the questionnaire and possessing source code 
repositories for code smell mining and static code 
analysis tools. 

Regarding external validity, it cannot be asserted 
that the results will be the same in other companies. 
About the conclusion validity, for the analyzed 
context and the population of developers, it is 
possible to state that the obtained results fulfill the 
objective within the scope of addressing the research 
question and hypotheses presented.  

Concerning the construct validity, the result 
cannot be generalized; however, the applied approach 
can be replicated in other contexts. 

Finally, concerning reliability, the research is 
reliable as it aligns with the body of work on 
personality in software engineering, using the MBTI, 
which Capretz has studied for decades. All the 
necessary steps for executing the process, along with 
anonymized data, have been provided, and the 
TDMining process is also available on GitHub. 

8 CONCLUSIONS 

Since there is not enough evidence to reject the null 
hypothesis, it is concluded that there is no significant 

association between MBTI profile variables and the 
action of creating code smells, meaning that 
personality types cannot be held accountable for code 
smells. 

However, when examining the dataset and the 
sample size and conducting quantitative comparisons 
between profile groups, there are indications that the 
Consul profile type (ESFJ) shows concern regarding 
code smells. This research can help identify suitable 
personality profiles to assist project managers in 
assigning tasks related to refactoring or new 
functionalities to specific profiles. 

Despite statistical tests showing no correlation, the 
profile identification procedure (survey) and the 
TDMining process can be used by other companies, 
and the provided data can be utilized for comparisons. 

As prospects for future work, we are replicating 
the research with a more significant number of 
developers to enable potential results generalization. 
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