
Can Personality Types Be Blamed for Code Smells?

Manoel Valerio da Silveira Neto a, Andreia Malucelli b and Sheila Reinehr c
Graduate Program in Informatics (PPGIa), Pontifical Catholic University of Paraná, Block 8, Technological Park,

2nd floor, Imaculada Conceição Street, 1155 Prado Velho, Zip Code 80215-901, Curitiba - Paraná, Brazil

Keywords: Technical Debt, Code Smell, Personality Type, MBTI.

Abstract: The term code smell refers to sections of code that are not technically incorrect, do not prevent the software
from functioning, but affect its quality. Code smells are considered a form of technical debt (TD). This study
investigated the relationship between the personality types of software developers and the presence of code
smells, which indicate potential problems in source code. Using the Myers-Briggs Type Indicator (MBTI) to
classify personalities, the study examines whether specific profiles are more associated with creating or
removing code smells. The goal is to assist software project managers in allocating tasks for refactoring and
development. The research does not find a statistically significant correlation between the developer's
personality and the creation of code smells. Still, it suggests that the Consul personality type (ESFJ) shows a
greater tendency to resolve code smells. The study also highlights the importance of considering human
factors such as personality types in software development to improve product quality.

1 INTRODUCTION

Software is a product resulting from human activities
aimed at problem-solving, cognitive information
processing, and social interaction (Sturdee et al.,
2022). The software provides instructions and data
for a computer to execute a specific task or perform a
desired function. Software is created by developers
who use programming languages and development
tools to design and create programs that can be
executed on different platforms.

Software, as a product distinctly originating from
human activity, carries in its essence the marks of the
capabilities, decisions, and peculiarities of the
individuals who conceive and develop it. This
intrinsic human nature of software means that its
quality is directly affected by the characteristics and
skills of the developers. Personality traits of
individuals involved in the development process play
a significant role in determining the final quality of
the software (Capretz, 2003), (Capretz et al., 2010).
These personality traits can influence programming
practices and design decisions, leading to robust,
well-structured software or software prone to failures

a https://orcid.org/0000-0003-0470-5350
b https://orcid.org/0000-0002-0929-1874
c https://orcid.org/0000-0001-9430-7713

and inefficiencies. Therefore, understanding these
human nuances is essential for improving software
development practices and product quality. Human
nuance is understanding the complexities and
varieties of human emotions, thoughts, and behaviors.

The personality and experience of the developer
can influence the quality of the software (Ronald
Laughery et al., 1985), (Capretz et al., 2010),
(Fernández-Sanz et al., 2011), (Dutra et al., 2021),
and one of the indicators of poor software quality is
the presence of code smells.

The term code smell refers to sections of code that
are not technically incorrect (Fowler et al., 2019), do
not prevent the software from functioning, but affect
its quality. Code smells are considered a form of
technical debt (TD) of code smell. During the
software development process, developers may
inadvertently create code smells.

Code smells can be identified through static code
analysis tools. Such tools can be combined with
mining source code repositories, allowing developers
to perform refactoring, as the static code analysis tool
has identified and quantified the code smells.

196
Silveira Neto, M., Malucelli, A. and Reinehr, S.
Can Personality Types Be Blamed for Code Smells?.
DOI: 10.5220/0012634700003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 2, pages 196-205
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

Several studies have been conducted on the most
common causes of technical debt (TD) due to code
smells, among which are human factors. The research
by Rios et al. (2018) shows that developers' lack of
knowledge and experience can cause TD. The study
by Kruchten et al. (2012) points out that the causes
include pressure for deadlines (schedule), lack of
care, insufficient education (a situation where the
education provided is inadequate to satisfy the basic
learning and development needs of an individual or
group), deficient processes, non-systematic quality
verification, or basic incompetence (referring to the
lack of fundamental skills or knowledge needed to
perform a specific task or function). Rios et al. (2019)
identified that 21.9% of the problems are related to
development, where the code smell is linked to the
non-adoption of good coding practices (7.8%).

Code smells can indicate the need for additional
training for the development team, communication
problems within the group, or the need for better
coding practices. Therefore, effective management of
human factors can help minimize the occurrence of
code smells, improve code quality, and,
consequently, improve the quality of the software
produced.

Research conducted by Capretz (2003), Beecham
et al. (2008), Feldt et al. (2010), Gilal et al. (2017),
and Sturdee et al. (2022) have investigated the
personalities of software developers to understand
how different personality characteristics and
psychological traits can affect the development
process and the quality of the code produced.
However, there is no evidence of studies analyzing
whether there is a relationship between technical debt
from code smells and the developer's personality.

This work investigates whether specific
personality profiles are associated with the creation or
removal of code smells to assist software
development project managers in allocating tasks
related to refactoring or developing new features to
specific developer profiles, thereby maximizing the
quality of the code produced and minimizing the
accumulation of technical debt from code smell.

This paper is organized as follows: Section 2
presents the theoretical background and Section 3 the
related works; Section 4 describes the research
method; Section 5 presents the results, which are
discussed in Section 6; Section 7 presents the threats
to validity; Section 8 concludes the article with
perspectives for future work.

2 BACKGROUND

2.1 Code Smell

The concept of code smell was popularized by Kent
Beck in the 1990s and explored in depth by Martin
Fowler (Fowler et al., 2019). In Fowler et al. (2019),
authors describe a series of patterns that can indicate
problems in the code and offer strategies to deal with
these problems. The term code smell describes code
structures that, although technically correct,
negatively affect the quality of the software.
According to Kruchten et al. (2012), code smell is a
technical debt (TD) encountered in software
development. If addressed immediately, code smell
can be easily avoided during implementation, but this
depends on the developer's technical knowledge.
According to Fowler et al. (2019), code smells are
code structures that violate design and programming
principles and indicate software problems that will
require future maintenance activities through
refactoring. Code smells are characteristics or signs
that indicate potential problems or deficiencies in
software's source code. They suggest something
might be wrong with the code's design, structure, or
implementation. Martin (2014) and Fowler et al.
(2019) present examples of code smells, including
code duplication, long methods, and God classes.
These code smells can be detected through static code
analysis tools.

According to McConnell (2013), technical debt
(TD) can be classified as intentional or unintentional.
Intentional TD is consciously assumed as a strategic
tool where the benefits outweigh the consequences of
the incurred TD at the time. Unintentional TD, on the
other hand, is when technical debt is incurred
accidentally and unconsciously.

Although a low quantity of code smells may not be
considered a problem when they accumulate, they can
lead to difficulties in the maintenance and evolution
of the software (Fowler et al., 2019). They can
increase the complexity of the source code, make
changes difficult or risky to perform, and hinder the
understanding of the source code. Thus, it is essential
to be aware of code smells and address them
appropriately to ensure that the source code remains
easy to maintain and evolves over time. One of the
ways to ensure the maintainability of source code is
through refactoring (Fowler et al., 2019).

Refactoring is a disciplined way of cleaning up
source code to minimize the chances of introducing
bugs. According to Fowler et al. (2019), refactoring
is the process of changing a software system so that it
does not alter the external behavior of the source code

Can Personality Types Be Blamed for Code Smells?

197

but improves its internal structure. Refactoring the
source code is paying technical debt or removing
code smells. It requires developer time to correct,
leading to rework effort. According to Bourque et al.
(2014), 40 to 60% of maintenance tasks are dedicated
to understanding the source code in which
maintenance is performed. This understanding is
directly associated with code design problems and
code smells.

Some static analysis tools quantify code smells
intending to demonstrate the total effort required to
solve the problems. There are various static analysis
tools, with SonarQube being the most well-known in
the software industry. The study by Guaman et al.
(2017) identifies SonarQube as a comprehensive tool
for static code analysis, mainly because it adheres to
the SQALE method. The SQALE method presented
by Letouzey et al. (2012) uses the ISO/IEC
25010:2011 standard (ISO, 2011) as a reference. Each
capability pointed out in the SQALE method is
associated with a characteristic or sub-characteristics
of the standard. A code smell is part of the
maintainability index of the code SQI (Software
Quality Index), addressed in SQALE. This index is
available in SonarQube through the sum of the code
smell's remediation effort (time).

In Silveira Neto et al. (2021), the authors apply
data mining techniques to a source code repository to
identify code smells, defining a process called
TDMining. However, they do not recognize a data
dimension for the developer's personality. The
execution of the TDMining process enables the
acquisition of code smell data by each developer from
the utilized source code repositories. The process
provides SQL and Python scripts for analyzing
association rules, moving averages, and time series of
code smell data using data obtained from SonarQube
(Guaman et al., 2017) and PyDriller (Spadini et al.,
2018). The TDMining process, in addition to
observing code smells by project, also provides a
dimensional data model with which it is possible to
analyze data by the developer.

2.2 Psychological Personality Types

Gulati et al. (2015), the authors investigate the use of
the Myers-Briggs Type Indicator (MBTI) (Myers et
al., 1988) and Five-Factor Model (FFM) (Tupes et al.,
1992) personality models in software engineering.
The MBTI categorizes personalities based on four
dimensions, aiding in understanding approaches to
problem-solving and communication. At the same
time, the FFM focuses on five main traits to
understand their impact on developers' performance

and satisfaction. The research by Gulati et al. (2015)
highlights the importance of these models in
identifying personality traits favorable to specific
roles in industry, contributing to better performance
and effectiveness in teamwork. They emphasize the
need for more studies in this area to enhance
effectiveness in software engineering continually.

The MBTI model will be used in this research
once it is the most utilized model in software
engineering research for personality analysis, as
presented by Cruz et al. (2015). Their systematic
mapping aimed to explore the influence and role of
personality in software engineering. The systematic
mapping does not address why the MBTI is the most
used test in the selected articles.

The study conducted by Delgado et al. (2022)
explores the impact of personality on software
development, highlighting that personality has a
positive effect on various tasks and processes in this
area. However, the lack of consistency in the results
of these studies raises questions about their validity,
emphasizing the importance of more rigorous studies
with the aid of human behavior experts. The research
identifies the most used and reliable psychological
models and instruments for assessing the
personalities of software developers. MBTI is
recognized as the most popular. However, in recent
years, the FFM and its psychometric tools, such as the
Big Five Inventory (BFI) (John, 1991) and NEO Five-
Factor Inventory (NEO-FFI) (Costa et al., 1992),
have gained more relevance in the field. The study
points to the need for a more in-depth and
comparative investigation between these different
instruments and models. This is essential to reduce
contradictions in future research, allowing for a more
precise evaluation of the personality of engineers and
software developers from a psychological
perspective.

MBTI is a tool presented by Myers et al. (1988)
as a self-report instrument designed to identify,
through a questionnaire, how a person perceives the
world and makes decisions. The questionnaire was
based on the typological theory proposed by Carl
Gustav Jung. MBTI divides psychological types into
16 distinct types, each represented by a four-letter
code that describes a person's main preferences in
four dimensions, resulting from the combination of
four pairs of characteristics or psychological traits:

• Extraversion (E) vs. Introversion (I), where
Extraversion (E) refers to people who prefer to
energize by interacting with others and the external
world, and Introversion (I) relates to people who like
to energize by spending time alone or with a small
group of close people.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

198

• Sensing (S) vs. Intuition (N), where Sensing (S)
refers to people who rely on concrete and tangible
information perceived through the five senses, and
Intuition (N) refers to people who rely on instincts
and abstract or theoretical knowledge, looking at the
whole picture.

• Thinking (T) vs. Feeling (F), where Thinking
(T) refers to people who make decisions based on
logic and objective analysis, and Feeling (F) refers to
people who make decisions based on personal values
and how decisions will affect others.

• Judging (J) vs. Perceiving (P), where Judging (J)
refers to people who prefer a structured and decided
lifestyle, and Perceiving (P) refers to people who
prefer a flexible and adaptable lifestyle.

The MBTI presents the dichotomy between the
Introverted and Extroverted psychological traits as a
spectrum. At the extreme of Introversion (I), someone
might be very reserved and private, while at the
extreme of Extroversion (E), someone might be
exceptionally open and gregarious. Most people are
not at the extremes but somewhere in the middle of
the spectrum, showing traits of both preferences in
different situations. Concerning the other
psychological characteristics of the MBTI, such as
Sensing-Intuition, Thinking-Feeling, and Judging-
Perceiving, they are also seen as spectrums. Each
person may lean towards one preference over the
other but often exhibits characteristics of both sides,
depending on the context. This complexity reflects
the dynamic nature of personality.

These 16 psychological traits are often grouped
into four categories of personality known as the four
temperaments of the MBTI, based on shared
characteristics:

Sentinels (SJ) value security, stability, tradition,
and being practical, organized, and responsible. ISTJ
- Logistician: practical, reliable, and systematic. ISFJ -
Defender: dedicated, warm, and careful. ESTJ -
Executive: organized, assertive, and efficient. ESFJ -
Consul: sociable, caring, and popular.

Diplomats (NF) are motivated by values and
vision, seeking meaning and possibilities. They tend
to be empathetic, compassionate, and creative. INFJ -
Advocate: idealistic, mystical, and people-oriented.
INFP - Mediator: idealistic, curious, and ethical.
ENFJ - Protagonist: charismatic, inspiring, and
selfless. ENFP - Activist: enthusiastic, creative, and
sociable.

Analysts (NT) are oriented towards knowledge
and competence. They tend to be innovative,
strategic, and logical. INTJ - Architect: strategic,
logical, and innovative. INTP - Logician: innovative,
curious, and theoretical. ENTJ - Commander:

charismatic, leader, and assertive. ENTP - Debater:
inventive, intelligent, and insightful.

Explorers (SP): are realistic and action-oriented.
They tend to be adaptable, spontaneous, and focused
on the present moment. ISTP - Virtuoso:
experimental, bold, and practical. ISFP - Adventurer:
artistic, curious, and exploratory. ESTP - Entrepreneur:
energetic, perceptive, and direct. ESFP - Entertainer:
spontaneous, energetic, and enthusiastic.

The study by Capretz et al. (2010) concludes that
there is a correlation between personality types and
software development and that understanding the
personality types of software developers can be
helpful to team formation, task allocation, and project
management. Moreover, the paper indicates that
specific software development tasks may be more
suitable for certain personality types. The importance
of considering personality types in software
development is also emphasized in the article as
something that can contribute to more effective and
efficient development processes. The report further
highlights that most programmers possess
characteristics of Introversion (I), Sensing (S), and
Thinking (T) and concludes that analyzing these
psychological characteristics when assigning people
to stages of the software life cycle increases the
chances of a successful project outcome.
Additionally, the paper points out that the Sensing (S)
and Perceiving (P) personality types are more suited
for detail-oriented tasks and dealing with the constant
changes inherent in software maintenance.

The study presented by Barroso et al. (2016)
concludes that evidence suggests that the MBTI can
be applied to software developers to understand how
human personality influences the work of
professionals. The research found that developers
with MBTI type INTJ showed lower levels of Depth
of Inheritance Tree (DIT) and slightly smaller
methods (LOC). However, the paper also suggests
that more research is needed to understand the
relationship between personality and object-oriented
software metrics.

3 RELATED WORK

To understand related works, an exploratory, semi-
structured search was conducted on the scientific
databases Scopus, IEEE, ACM, and SpringerLink
with the search string: ("SOFTWARE
ENGINEERING") AND ("PERSONALITY" OR
"MBTI" OR "Briggs MYERS" or "Briggs-MYERS")
AND ("CODESMELL" OR "TECHNICAL DEBT").

Can Personality Types Be Blamed for Code Smells?

199

The search returned two articles: (Graf-Vlachy et al.,
2023) and (Huang et al., 2021).

Graf-Vlachy et al. (2023) analyzed how the
developer's personality affects the accumulation of
technical debt (TD), suggesting a correlation between
personality traits and decisions leading to TD. The
article does not mention the MBTI concerning the
developer's personality and technical debt. Still, it
examines the relationship between technical debt and
various characteristics of the developers'
personalities, using the Five Factor Model (FFM),
regulatory focus, and narcissism. These personality
characteristics were evaluated in a software
engineering context to understand their influence on
introducing and removing technical debt.

The article by Huang et al. (2021) addresses
developers' feelings about community smell, which is
unrelated to the present research.

The research presented in this article aligns with
the study of Capretz et al. (2010), as it aims to
investigate the psychological traits of the developer
concerning the creation and removal of code smells.
The investigation becomes necessary to collaborate in
identifying the profiles of creators or non-creators of
code smell, thus adapting developers to specific
activities of refactoring or new developments.

4 RESEARCH METHOD

The research was operationalized following the steps
presented in Figure 1, described below.

Figure 1: Research steps.

(1) Define the research goal, questions/hypothesis,
and metrics: the research goal was defined according
to the Goal-Question-Metric (GQM) approach
(Basili et al., 1988) as follows:
Goal: Identify if there is a statistical correlation
between the quality of source code measured by code
smells and the personality types of developers, based
on the MBTI, to investigate whether specific types or

categories of personality tend to create, or not, code
smells, concerning the quality of source code, from
the perspective of software developers, in the context
of personality types in software development.
Question: Is there a statistical correlation between the
quality of source code (code smell) and the
personality types of developers (MBTI)?
The null hypothesis H0 is that there is no correlation
between the quality of the source code and the
developer's personality. The alternative hypothesis
HA is that there is a correlation between the quality
of source code and the developer's personality.
Metric: This involves statistically evaluating the
correlation between code smell and the developer's
personality. In the case of the relationship between the
quality of source code and the developer's personality,
the null hypothesis suggests that there is no correlation
between the variables of interest (the quality of source
code and developer's personality) and that any
observed difference in the data is due to chance or
other factors not related to the variables of interest.
(2) Develop and administer a survey: To conduct the
research, it was necessary to collect the personality
type of software developers. Therefore, a survey was
designed, including questions aimed at discovering
the MBTI profile of the professional. Additionally,
information was collected to characterize the
developers through questions, as shown in Table 1.

Table 1: Survey Questionnaire.

Question Possible
Answers

What type of development do you work
in? (Developer_Specialty)?

BackEnd,
FrontEnd,
Mobile,

FullStack, Other.
What is your career level?
(Developer_Level)?

Junior, middle,
senior, specialist,

Other.
How many months of experience do you
have with software development?
(Developer_Month_Experience)?

Months

How many months have you been
working at the company?
(Developer_Month_In_Company)?

Months

What is your profile on the website
https://www.16personalities.com/
(MBTI)? On the website, developers
answer questions to identify their MBTI
profile. Upon completing the
questionnaire, developers attach an
image showing their MBTI profile to
the form.

Personality

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

200

Data regarding the developers' profiles were extracted
from the questionnaire. The questionnaire was
electronically sent to 50 software developers from a
financial institution. Voluntarily, 40 developers
responded to the questionnaire.

All developers participated voluntarily and signed
an Informed Consent Form (ICF).

(3) Execute the TDMining process: This step
involves mining the source code repository following
the TDMining process Silveira Neto et al. (2021). The
source code was mined from four years across 163
repositories. The mining process was not aimed at
analyzing the types of code smells created by
developers but at quantifying the occurrence of code
smells created and removed. There were 216
developers in the entire source code versioning
history. At the time of the research, the company had
50 developers. We analyzed the code smells of the
company's active developers when the study was
conducted.

(4) Create a dataset for data analysis: In this stage,
the questionnaire data containing developer
personality traits and the data from the mining of code
smells created and removed by the developer were
merged for potential analysis. The merged data were
organized into two types of variables: numerical and
categorical.

The numerical variables are:
• Developer_Month_Experience
• Developer_Month_In_Company
• Code_Smell_Created
• Code_Smell_Removed
• Code_Smell_Balance
• Developer Age

The dataset is available at https://doi.org/10.
5281/zenodo.10072712. The variables that make up
the dataset are:

• Type_MBTI: Developer's MBTI personality
type.

• Developer_Gender: Developer's gender.
• Developer_Specialty: Developer's specialty.
• Developer_Level: Developer's experience

level in the company.
• Developer_Month_Experience: Number of

months of developer's experience.
• Developer_Month_In_Company: Number of

months the developer has been with the
company.

• Developer Age: Age of developer.
• MBTI: Detailed information about

Type_MBTI.
• E_I: Extroversion/Introversion dimension of

MBTI.

• S_I: Sensing/Intuition dimension of MBTI.
• T_F: Thinking/Feeling dimension of MBTI.
• J_P: Judging/Perceiving dimension of MBTI.
• Code_Smell_Created: Number of code smells

created by the developer.
• Code_Smell_Removed: Number of code

smells removed by the developer.
• Code_Smell_Balance: Code smells balance,

i.e., the difference between code smells
created and removed.

• Code_Smell_Action: Classification of the
developer as a creator, neutral, or remover of
code smells.

While creating the dataset, data anonymization
was carried out, which consisted of removing names
and data that could identify the developers.

(5) Apply statistical tests: Descriptive statistics
were used to characterize the developers, and the chi-
squared test was used to analyze the correlation
between the variables. The chi-squared test is a
standard statistical tool for analyzing contingency
tables. It is often used to assess whether observed
patterns or outcomes are due to chance or a real
relationship, which is necessary when seeking
associations in categorical data. In addition to the chi-
squared test, Cramer's V, a measure of association
between two nominal (categorical) variables based on
the chi-squared test, was used. It helps determine the
strength and significance of the association between
two categorical variables. Regarding the
interpretation of Cramer's V values, a measure close
to 0 suggests either no or very little association
between the variables, and a value close to 1 indicates
a strong association between the variables.

The correlation between Code_Smell_Action and
Type_MBTI, Developer_Gender,
Developer_Specialty, Developer_Level, MBTI, E_I,
S_I, T_F, and J_P was analyzed.

(6) Analyze the results: Examine the statistical test
results and either confirm or reject the hypotheses
based on these results.

5 RESULTS

The results are organized based on participant
characteristics, the statistical correlation between
code smell action (Code_Smell_Action) and
personality, and developers' personality concerning
code smell action.

Can Personality Types Be Blamed for Code Smells?

201

5.1 Characterization of the Developers

Table 2 presents the characterization results of the
software developers who participated in the research.
The first column of Table 2 displays the name of the
analyzed variable, as obtained in the dataset. In
contrast, the second column shows the mean,
followed by the minimum and maximum values for
the variable.

Table 2: Characterization of the developers.

Feature Mean Min Max STD

Developer Month
Experience 98.5 5 252 69.3

Developer Month
In Company 23.5 2 140 22.5

Code Smell
Created 188.2 0 4767 754.13

Code Smell
Removed 27.8 0 325 57.8

Code_Smell
Balance 160.3 185 4609 732

Developer Age 30.6 21 45 6.1

It can be observed that, on average, developers
have 98.5 months of experience, and the time these
developers have been with the researched company is
23.5 months. Developers, on average, created 188.22
code smells and removed an average of 27.87 code
smells. The average age of developers is 30 years.

Out of the 40 developer records available in the
dataset, 14 psychological traits out of 16 possible
were identified. The two unidentifiable traits were the
Activist (ENFP) and Entrepreneur (ESTP), and the
most frequent psychological trait is ESFJ (Consul),
accounting for 8 cases, which represents 20% of the
developers.

Regarding the gender of the developers
(Developer_Gender), out of the 40 developers, 33
(82.5%) are male. Regarding the specialty of the
developers (Developer_Specialty), out of the 40
developers, 29 work with Backend, 3 with FrontEnd,
4 with Mobile development, and 4 with FullStack
development. Analyzing the developer's level
(Developer_Level), out of the 40 developers, 3 are
specialists, 3 are interns, 2 are juniors, 13 are
intermediate (middle), and 19 are senior developers.

Concerning standard deviation (STD), data reveals
a comprehensive picture of the dynamics of
developers and code quality in a company. On
average, developers accumulate around 98.5 months

of experience, with a moderate dispersion around this
average, while their average stay in the company is
approximately 23.5 months, with a relatively low
variability. About code smells, the average creation is
significantly high, with considerable dispersion,
suggesting a wide range in the amount created per
developer. In contrast, the average number of code
smells removed is moderate, with a more controlled
variation between developers. Finally, the average
balance between "code smells" created and removed
is positive, indicating a general trend towards
accumulation, with considerable variability in the
difference between developers.

5.2 Examining the Impact of
Personality on Code Smell:
A Statistical Analysis

Table 3 presents the result of all categorical variables
concerning the variable Code_Smell_Action. For all
categorical variables (column variable), the null
hypothesis (column Rejected_H0) of no association
was not rejected, which means that there is not
enough evidence to assert a significant relationship
between Code_Smell_Action and the other
categorical variables. In other words, creating or
removing code smells is unrelated to the developer's
personality, specialty, or seniority.

The data were also evaluated for correlation using
Cramer's V test (Table 3, Cramer's V column), which
indicated that rejecting the null hypothesis is

Table 3: Statistical correlation between Code_Smell
_Action and MBTI and other variables.

Variable Cramer's
V

p_valu
e

Rejected_
H0

Chi_Squa
re

Type_MBTI 0.000 0.954 False 15.152
Developer_Gend
er 0.000 0.425 False 1.706
Developer_Speci
alty 0.247 0.094 False 10.805
Developer_Leve
l 0.233 0.136 False 12.351
MBTI 0.000 0.954 False 15.152
E_I 0.283 0.074 False 5.188
S_I 0.000 0.438 False 1.646
T_F 0.000 0.570 False 1.123
J_P 0.273 0.083 False 4.976

impossible. The Cramer's V result, being less than 0.3
for all variables, suggests a weak association between
all the variables and Code_Smell_Action. According
to the chi-squared test, this means there is a weak

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

202

statistical relationship between the analyzed
variables.

The results shown in Table 3 were obtained using
the IBM SPSS tool, where, in addition to the Cramer's
V, p_value, Rejected_H0, and Chi_Square variables,
it was possible to get contingency tables. Given this
article's limited number of pages, the result can be
replicated using the data available on Zenodo.

5.3 Personality Types and Their Role
in Code Smell Creation and
Removal: Insights from MBTI
Analysis

Table 4 presents the quantitative result of personality
types concerning code smell creation (creator,
neutral, remover).

It is noticeable that the MBTI type "Consul"
stands out in code smell removal, with the highest
count of three (3) developers as code smell removers.
Additionally, two developers remained with
Code_Smell_Action equal to "Neutral." Being
classified as "Neutral" for code smell creation does
not imply that they have not contributed code to the
source code repository. It means the same amount of
code smell created equals the amount removed.

The TDMining process by Silveira Neto et al.
(2021) requires source code analysis for each commit
to the source code repository.

Therefore, submitting code to the source code
repository does not necessarily imply the presence or
removal of code smell.

Table 4: Type_MBTI x Code_Smell_Action.

Type_MBTI Code_Smell_Action
 Creator Neutral Remover

Advocate (INFJ) 4
Entertainer (ESFP) 1
Architect (INTJ) 2 1
Adventurer (ISFP) 1
Commander (ENTJ) 1
Consul (ESFJ) 4 1 3
Defender (ISFJ) 4 2
Executive (ESTJ) 1
Debater (ENTP) 1
Logician (INTP) 3
Logistician (ISTJ) 2 1
Mediator (INFP) 2
Protagonist (ENFJ) 2 1 2
Virtuoso (ISTP) 1

6 DISCUSSIONS

The results generally indicate no statistical
correlation between a developer's personality and
whether they are a code smell creator.

However, the Consul personality type (ESFJ)
appeared more attentive to resolving code smells.

While this article focuses on the absence of a direct
correlation between code smells and personality,
related studies suggest that the influence of
personality extends far beyond, affecting aspects such
as technical debt, team effectiveness, and
development process efficiency.

This indicates that, despite the specific findings of
the article, the relationship between personality and
software development is diverse and deserves further
investigation, especially in the context of human
factors in software engineering.

Graf-Vlachy et al. (2023) investigated the
relationship between developers' personality traits
(focusing on narcissism, using the FFM) and their
influence on technical debt. The study examined
2,145 source code commits from 19 developers and
aimed to answer how a developer's personality relates
to introducing and removing technical debt.

The authors concluded that personality influences
the introduction of technical debt, but they noted that
the sample size was insufficient.

For the present study, there were no issues
regarding the validity of the research since there were
23,628 commits, including 31,754 code smells
involving 216 developers. Of these 216 developers,
50 were active in the company at the time of the
research, and 40 responded to the personality survey.

Among the 40 developers who responded to the
survey, 38 created or removed code smells (the other
two developers neither created nor removed code
smells, indicating a neutral role). These 38 developers
accounted for 7,529 code smells created and 1,115
code smells removed in 5,046 commits.

Regarding Silveira Neto et al. (2021) work, the
authors do not address the developer's personality as
an additional dimension in the TDMining data model.
Their work is limited to the relationship between code
smells and personality, unlike the research presented
in this article, which adds a data dimension for
developer personality to the TDMining data model to
correlate personality information.

The study by Capretz et al. (2010) demonstrates a
correlation between personality types and software
development, emphasizing the importance of
personality in team formation and project
management.

Can Personality Types Be Blamed for Code Smells?

203

Capretz expands this discussion, suggesting that
personalities can significantly influence the
efficiency and effectiveness of software
development. However, the provided sources did not
mention specific details about the number of
developers involved in the research or the study's
evidence and weaknesses.

The research conducted by Dutra et al. (2021) does
not find a direct correlation between code smells and
personality profiles. Still, it suggests that the
influence of personality in software development
should be explored, particularly concerning human
factors in software engineering.

Like Dutra et al. (2021), the present article
suggests that software organizations, researchers, and
professionals can benefit from understanding human
factors to improve software quality.

7 THREATS TO VALIDITY

Regarding internal validity, given the size of the
target population, with 40 developers representing
80% of the developers in the researched company, it
is considered that the research is valid, primarily due
to the difficulty in finding companies with a
significant number of developers willing to respond
to the questionnaire and possessing source code
repositories for code smell mining and static code
analysis tools.

Regarding external validity, it cannot be asserted
that the results will be the same in other companies.
About the conclusion validity, for the analyzed
context and the population of developers, it is
possible to state that the obtained results fulfill the
objective within the scope of addressing the research
question and hypotheses presented.

Concerning the construct validity, the result
cannot be generalized; however, the applied approach
can be replicated in other contexts.

Finally, concerning reliability, the research is
reliable as it aligns with the body of work on
personality in software engineering, using the MBTI,
which Capretz has studied for decades. All the
necessary steps for executing the process, along with
anonymized data, have been provided, and the
TDMining process is also available on GitHub.

8 CONCLUSIONS

Since there is not enough evidence to reject the null
hypothesis, it is concluded that there is no significant

association between MBTI profile variables and the
action of creating code smells, meaning that
personality types cannot be held accountable for code
smells.

However, when examining the dataset and the
sample size and conducting quantitative comparisons
between profile groups, there are indications that the
Consul profile type (ESFJ) shows concern regarding
code smells. This research can help identify suitable
personality profiles to assist project managers in
assigning tasks related to refactoring or new
functionalities to specific profiles.

Despite statistical tests showing no correlation, the
profile identification procedure (survey) and the
TDMining process can be used by other companies,
and the provided data can be utilized for comparisons.

As prospects for future work, we are replicating
the research with a more significant number of
developers to enable potential results generalization.

ACKNOWLEDGEMENTS

The present work was conducted with the support of
the Coordination for the Improvement of Higher
Education Personnel (CAPES) - Funding Code 001,
Brazil.

REFERENCES

Barroso, A. S., Madureira, J. S., Melo, F. S., Souza, T. D.
S., Soares, M. S., & do Nascimento, R. P. C. (2016). An
evaluation of influence of human personality in
software development: An experience report. 2016 8th
Euro American Conference on Telematics and
Information Systems (EATIS), 1–6. https://doi.org/
10.1109/EATIS.2016.7520108

Basili, V. R., & Rombach, H. D. (1988). The TAME Project:
Towards Improvement-Oriented Software Environ-
ments. IEEE Transactions on Software Engineering,
14(6), 758–773. https://doi.org/10.1109/ 32.6156

Beecham, S., Baddoo, N., Hall, T., Robinson, H., & Sharp,
H. (2008). Motivation in Software Engineering: A
systematic literature review. In Information and Software
Technology (Vol. 50, Issues 9–10, pp. 860–878).
https://doi.org/10.1016/j.infsof.2007.09.004

Bourque, P., & Fairley, R. E. (2014). SWEBOK v.3 - Guide
to the Software Engineering - Body of Knowledge. In
IEEE Computer Society. https://doi.org/10.123
4/12345678

Capretz, L. F. (2003). Personality types in software
engineering. In Int. J. Human-Computer Studies (Vol.
58, pp. 207–214).

Capretz, L., Fernando, A., & Dr, F. (2010). Making Sense of
Software Development and Personality Types.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

204

https://ir.lib.uwo.ca/electricalpubhttps://ir.lib.uwo.ca/ele
ctricalpub/2

Costa, P., & Mccrae, R. (1992). Neo PI-R professional
manual. Psychological Assessment Resources, 396.

Cruz, S., Da Silva, F. Q. B., & Capretz, L. F. (2015). Forty
years of research on personality in software
engineering: A mapping study. Computers in Human
Behavior, 46, 94–113. https://doi.org/10.1016/j.chb.20
14.12.008

Cunningham, W. (1992). The WyCash portfolio
management system. Proceedings of the Conference on
Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA, Part F1296(October), 29–
30. https://doi.org/10.1145/157710.157715

Delgado Jojoa Juan David and Revelo Sánchez, O. and C.
S. V. (2022). Psychological Models and Instruments
Employed to Identify Personality Traits of Software
Developers: A Systematic Mapping Study. In P. H. and
C.-M. O. Agredo-Delgado Vanessa and Ruiz (Ed.),
Human-Computer Interaction (pp. 146–161). Springer
International Publishing.

Dutra, E., Diirr, B., & Santos, G. (2021). Human Factors
and Their Influence on Software Development Teams -
A Tertiary Study. Proceedings of the XXXV Brazilian
Symposium on Software Engineering, 442–451.
https://doi.org/10.1145/3474624.3474625

Feldt, R., Angelis, L., Torkar, R., & Samuelsson, M.
(2010). Links between the personalities, views, and
attitudes of software engineers. Information and
Software Technology, 52(6), 611–624.
https://doi.org/10.1016/j.infsof.2010.01.001

Fernández-Sanz, L., & Misra, S. (2011). Influence of
Human Factors in Software Quality and Productivity.
Proceedings of the 2011 International Conference on
Computational Science and Its Applications - Volume
Part V, 257–269.

Fowler, M. (2019). Refactoring Improving the Design of
Existing Code Second Edition.

Gilal, A. R., Jaafar, J., Abro, A., Umrani, W. A., Basri, S.,
& Omar, M. (2017). Making programmer effective for
software development teams: An extended study.
Journal of Information Science and Engineering, 33(6),
1447–1463. https://doi.org/10.6688/JISE.2017.33.6.4

Graf-Vlachy, L., & Wagner, S. (2023). The Type to Take
Out a Loan? A Study of Developer Personality and
Technical Debt. 2023 ACM/IEEE International
Conference on Technical Debt (TechDebt), 27–36.
https://doi.org/10.1109/TechDebt59074.2023.00010

Guaman, D., Sarmiento, P. A. Q., Barba-Guamán, L.,
Cabrera, P., & Enciso, L. (2017). SonarQube as a tool
to identify software metrics and technical debt in the
source code through static analysis. 2017 7th
International Workshop on Computer Science and
Engineering, WCSE 2017, July, 171–175.
https://doi.org/10.18178/wcse.2017.06.030

Gulati, J., Bhardwaj, P., & Suri, B. (2015). Comparative
Study of Personality Models in Software Engineering.
Proceedings of the Third International Symposium on
Women in Computing and Informatics, 209–216.
https://doi.org/10.1145/2791405.2791445

Huang, Z., Shao, Z., Fan, G., Gao, J., Zhou, Z., Yang, K.,
& Yang, X. (2021). Predicting Community Smells'
Occurrence on Individual Developers by Sentiments.
IEEE International Conference on Program
Comprehension, 2021-May, 230 – 241.

Iso, I. O. F. S. (2011). Iso/Iec 25010:2011. Software
Process: Improvement and Practice.

John, O. P. (1991). The Big Five inventory—versions 4a
and 54. (No Title).

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical
debt: From metaphor to theory and practice. IEEE
Software, 29(6), 18–21. https://doi.org/10.110
9/MS.2012.167

Letouzey, J. L. J. L. J.-L., & Ilkiewicz, M. (2012).
Managing technical debt with the SQALE method.
IEEE Software, 29(6), 44–51. https://doi.org/10.1109/
MS.2012.129

Martin, R. C. (2014). Clean Code - A Handbook of Agile
Software Craftmanship. In Igarss 2014. https://doi.org/
10.1007/s13398-014-0173-7.2

McConnell, S. (2013). Managing Technical Debt (White
Paper). In Workshop on Managing Technical Debt
(part of ICSE 2013).

Myers, I. B., & McCaulley, M. H. (1988). Myers-Briggs
Type Indicator: MBTI. Consulting Psychologists Press.

Rios, N., Mendonça, M., Seaman, C., & Spínola, R. O.
(2019). Causes and effects of the presence of technical
debt in agile software projects. 25th Americas
Conference on Information Systems, AMCIS 2019.

Rios, N., Spínola, R. O., Mendonça, M., & Seaman, C.
(2018). The most common causes and effects of
technical debt: First results from a global family of
industrial surveys. International Symposium on
Empirical Software Engineering and Measurement.
https://doi.org/10.1145/3239235.3268917

Ronald Laughery, K., & Laughery, K. R. (n.d.). Human
Factors in Software Engineering: A Review of the
Literature.

Silveira Neto, M. V., Reinehr, S., & Malucelli, A. (2021).
TDMINING Process. In GitHub repository.
https://github.com/manoelvsneto/tdmining.

Spadini, D., Aniche, M., & Bacchelli, A. (2018). PyDriller:
Python framework for mining software repositories.
ESEC/FSE 2018 - Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering. https://doi.org/10.1145/32360
24.3264598

Sturdee, M., Ivory, M., Ellis, D., Stacey, P., & Ralph, P.
(2022). Personality Traits in Game Development. ACM
International Conference Proceeding Series, 221–230.
https://doi.org/10.1145/3530019.3530042

Tupes, E. C., & Christal, R. E. (1992). Recurrent
personality factors based on trait ratings. Journal of
Personality, 60 2, 225–251.

Can Personality Types Be Blamed for Code Smells?

205

