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Abstract: Microservice Architecture (MSA) is a popular approach to designing, implementing, and deploying complex
software systems. However, MSA introduces inherent challenges associated with distributed systems—one
of them is the detection and mitigation of security smells. This paper draws on recent works that identified
and categorized security smells in MSAs to propose a novel end-to-end approach for resolving security smells
in existing MSAs. To this end, the presented approach extends a modeling ecosystem for MSAs with (i)
reconstruction capabilities that automatically map MSA source code to viewpoint-specific architecture models;
(ii) validations that detect security smells from reconstructed models; and (iii) model refactorings that support
the interactive resolution of security smells and solutions’ reflection back to source code. Our approach allows
for (i) uncovering security smells, which originate from the combination of different places in source code with
possibly heterogeneous purposes, technologies, and software languages; as well as (ii) clustering, reifying,
and fixing smells using a level of abstraction that is directed towards MSA stakeholders. The applicability and
effectiveness of our approach are evaluated utilizing a standard case study from MSA research.

1 INTRODUCTION

Microservice Architecture (MSA) is a popular ap-
proach for developing complex and scalable software
applications (Newman, 2015). MSA involves de-
composing a software architecture into independent
services with distinct functionalities, which leads to
cloud-native applications, leveraging network-based
communication and supporting state isolation, hori-
zontal scaling, and flexible deployment on cloud plat-
forms (Kratzke and Quint, 2017).

The distributed nature of MSAs makes them in-
herently prone to security smells, which denote poor
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(often unintentional) design decisions that harm ap-
plication security (Ponce et al., 2022a). The resolu-
tion of security smells often requires adapting code in
different places of the application with heterogeneous
purposes, technologies, and software languages. For
example, the resolution of the Publicly Accessible
Microservices smell (Ponce et al., 2022b)—a bad
practice in MSA engineering that exposes microser-
vice interfaces to architecture-external callers instead
of hiding them behind API gateways (Balalaie et al.,
2016)—requires (i) introduction of gateway program-
ming and configuration code; (ii) adaptation of mi-
croservice programming and configuration code to
connect with the introduced gateway; and (iii) adap-
tation of deployment code to cover the gateway. This
scattering of smell across heterogeneous architecture
components significantly aggravates their detection
and holistic resolution.

This paper presents an end-to-end approach for re-
solving security smells in existing MSAs that autom-
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atizes smell detection and provides users with an in-
teractive mechanism for smell resolution across the
concerned MSA components. MSA security smells
have been recently proposed in (Ponce et al., 2022b),
and how to automatically detect and resolve them
is still an open issue (Cerny et al., 2023). Our ap-
proach relies on the previous work on MSA secu-
rity smells, as well as stakeholder-oriented Model-
Driven Engineering (MDE) (Combemale et al., 2017)
of MSAs (Rademacher et al., 2020b). More precisely,
it first maps the source code of existing MSAs to
MSA-specific architecture models based on the Lan-
guage Ecosystem for Modeling Microservice Archi-
tecture (LEMMA) (Rademacher et al., 2020b). These
models are then validated to automatically detect se-
curity smells and make them visible to MSA stake-
holders, who can then decide, per smell, for a model
refactoring that solves the smell. In the final step, a
LEMMA-based code generator reflects the refactor-
ings to the original MSA implementation, thereby fix-
ing all places in the application that pertain to a certain
smell. As a result, our approach contributes support
for the following actions in MSA engineering:

• Automated uncovering of security smells that are
scattered across architecture components.

• Automated reporting of those smells via MSA-
oriented architecture models that abstract from
components’ heterogeneity, thus facilitating
stakeholder reasoning about smells.

• Deciding for the most suitable smell resolution
and subsequent automatic reflection back to the
original application code.

We assess the applicability and effectiveness of our
approach by executing it on two microservice-based
applications. First, we use the student management
application to illustrate the steps for resolving secu-
rity smells. Additionally, we validate our results and
demonstrate their applicability on Lakeside Mutual, a
standard case study in MSA research (Sorgalla et al.,
2021). Our results show the effectiveness of recover-
ing a software application design in architecture mod-
els, the capability to detect and resolve security smells
in the recovered models, and the capability to resolve
the smell in implementing the application.

The rest of this paper is organized as follows. Sec-
tion 2 provides the necessary background. Section 3
presents our approach. Section 4 assesses its appli-
cability and effectiveness using the Lakeside Mutual
case study. Sections 5 and 6 present related work and
conclude the paper, respectively.

2 BACKGROUND

We hereafter provide the necessary background
on microservice security smells and LEMMA for
viewpoint-based microservices modeling.
Smells and Refactorings for Microservice Security.
A microservice security smell is a symptom of a po-
tentially bad decision (often unintentional), that can
negatively impact the application’s security (Ponce
et al., 2022b). The effects of security smells can be
resolved by refactoring the application without alter-
ing the functionality provided to external clients. We
hereafter recall two popular MSA security smells that
are part of the taxonomy proposed in (Ponce et al.,
2022b), and the refactorings that allow to resolve
them.
Publicly Accessible Microservices. A microservice
of an application is publicly accessible when exter-
nal clients can directly access it. This increases the
application’s attack surface and reduces its overall
maintainability and usability. Also, if each publicly
accessible microservice performs authentication, the
full set of a user’s credentials is required each time,
increasing the likelihood of confidentiality violations
(e.g., with the exposure of long-term credentials).

The suggested refactoring is making such mi-
croservices accessible only through a newly added
API Gateway, which would act as an entry point for
the application. This would enable centralizing au-
thentication, reducing the application’s attack surface
and simplifying the authentication itself.
Insufficient Access Control. This smell occurs on the
microservices of an application that is not enforcing
access control. This can violate the confidentiality
of the microservices where access control is lacking,
as attackers can trick a service and get data that they
should not have access to.

The possible effects of this smell can be resolved
by exploiting OAuth 2.0, which would enable mi-
croservices to control accesses. OAuth 2.0 indeed
provides a token-based access control system that lets
a resource owner grant a client access to a particular
resource on their behalf.
LEMMA. The Model-Driven Engineering ecosystem
LEMMA provides a set of modeling languages to cap-
ture concerns in MSA engineering from stakeholder-
oriented architecture viewpoints (Rademacher, 2022).
MSA models constructed with those languages can
be integrated based on an import mechanism that en-
ables referencing between elements of heterogeneous
models to support reuse and increase the information
content of captured viewpoints in a microservice ar-
chitecture. The presented approach for security smell
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resolution in microservice architectures relies on the
following LEMMA modeling languages.
Domain Data Modeling Language (DDML). The Do-
main Data Modeling Language (DDML) of LEMMA
addresses the concerns of domain experts and mi-
croservice developers in the Domain Viewpoint. To
this end, the language supports the construction of do-
main models that cluster the relevant concepts from
the application domain. These concepts may be
enriched with patterns from Domain-Driven Design
(DDD) (Evans, 2004), which is a popular methodol-
ogy for microservice design (Garriga, 2018, Márquez
et al., 2018, Mazlami et al., 2017, Nadareishvili et al.,
2016, Newman, 2015). The DDML also implements
LEMMA’s type system so that domain concepts are
usable, e.g., for the typing of parameters of modeled
microservice operations. Among others, such typ-
ing relationships identify the portion of the applica-
tion domain on which a microservice operates and for
which it is thus responsible.
Technology Modeling Language (TML). LEMMA’s
TML targets the Technology Viewpoint on microser-
vice architectures and allows for the construction of
technology models that capture technology decisions
related to microservices and their implementation and
deployment, e.g., communication protocols and de-
ployment technologies. Additionally, the TML sup-
ports the definition of technology aspects that apply
to specific elements in LEMMA models, e.g., mod-
eled microservices and their interfaces, or infrastruc-
ture nodes. Given their flexibility, technology aspects
can also be exploited to enable subsequent augmenta-
tion of LEMMA models with additional metadata.
Service Modeling Language (SML). LEMMA’s SML
reifies the Service Viewpoint in MSA engineering and
provides modeling concepts to specify microservices,
their interfaces, operations, endpoints, and dependen-
cies to other microservices in service models. Among
others, the SML integrates with the TML so that
LEMMA service models can import LEMMA tech-
nology models to specify, e.g., protocol-dependent
communication endpoints such as HTTP addresses,
and the available methods to operate on them.
Operation Modeling Language (OML). LEMMA’s
OML focuses on MSA’s Operation Viewpoint sup-
porting the specification and configuration of mi-
croservice containers and infrastructure nodes, e.g.,
for service discovery, in operation models. Similarly
to the SML, the OML integrates with the TML to cope
with MSA’s technology heterogeneity w.r.t. microser-
vice operation and deployment (Knoche and Hassel-
bring, 2019). More precisely, microservice deploy-
ment and infrastructure usage technologies can flexi-
bly be specified in technology models, making them

referenceable from operation models.
Next to the model-based description of microser-

vices and their operation, LEMMA also anticipates
model processing, and in this context has already
been used to foster MSA team integration by model
transformation (Sorgalla et al., 2021) and increase
microservice development efficiency by code gener-
ation (Rademacher et al., 2020a). In the following,
we rely on LEMMA’s capabilities in model process-
ing to identify microservices’ security smells by static
analysis of service and operation models and suggest
resolution actions by interactive model refactoring.

3 END-TO-END SMELL
RESOLUTION

This section introduces our approach for end-to-end
microservice security smell resolution. Figure 1 de-
picts the successive steps of resolving security smells
using existing or specifically for this approach created
LEMMA components.

Microservice Reconstruction
Framework

LEMMA Modeling
Ecosystem

Security Smell
Model Validation

Code 
Generation

Model Refactoring

Reconstruction of
Microservice Architecture

Security Smell Detection In 
Microservice Architecture

Security Smell Resolution in 
Microservice Architecture

Figure 1: Approach to resolve security smells in MSA.

The first step consists of the automated recon-
struction of the MSA of an existing application (Sec-
tion 3.1). For this purpose, we extended LEMMA’s
functionalities by integrating the Microservice Re-
construction Framework (MAR) to recover the ar-
chitecture design of the application with a focus on
domain concepts, API management, and deployment
specifications as LEMMA models.

In the second step, we use LEMMA’s exist-
ing modeling ecosystem to modify the reconstructed
models from the previous step and extend LEMMA’s
model validation functionalities with the capability to
detect microservice security smells (Section 3.2).

To resolve the security smell in the application ar-
chitecture, the final step consists of model refactoring
and code generation. The model refactoring is a new
addition to LEMMA’s functionalities for our security
smell resolution approach to resolve the smell in the
reconstructed models. Moreover, LEMMA’s existing
code generation functionalities also resolve the secu-
rity smell in the existing source code.
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The rest of this section consists of a detailed de-
scription of how our approach enables reconstructing
the MSA of an existing application (Section 3.1), de-
tecting the security smells therein (Section 3.2), and
resolving them in the source code of the application
(Section 3.3) on a concrete MSA-based application.

To illustrate our approach, we will use the MSA-
based student management application, depicted in
Figure 2 to highlight the separate steps to resolve the
security smells and exemplify them with a descriptive
example. The application consists of the Student-
and ExamService as functional microservices. Ad-
ditionally, the services rely on a Database and
Service Discovery to provide their functionalities.

3.1 Reconstruction

Software Architecture Reconstruction (SAR) is a re-
verse engineering approach to recover the architec-
tural design of an application that is outdated or to
ensure conformance between implementation and de-
sign (Bass et al., 2013). Figure 3 depicts the struc-
ture of our toolchain to reconstruct a technology het-
erogeneous software application architecture using an
ecosystem of MDE tools.

Infrastructure

Service
Discovery

Database

Exam
Service

User
Interface

Student
Service

http

http

http

http

Figure 2: MSA-based student management application.

The Framework orchestrates the process of de-
riving architecture information from static develop-
ment artifacts, e.g., Source Code and Deployment
Specification. The framework provides a plugin
functionality to support a heterogeneous technology
stack to reconstruct the architectural design from het-
erogeneous source code artifacts, e.g., Spring annota-
tions and Docker deployment specifications.

For this purpose, the framework manages
the development artifacts and invokes the
Reconstruction Plugins. The plugins im-
plement functionalities for the technology-specific
reconstruction of architectural information. When
the framework invokes the plugins, they derive the ar-
chitecture information and forward the reconstructed
architecture information to the framework.

The next step of the process consists of aggregat-
ing the reconstructed information from the plugins
into a coherent architectural design of the software
application. The framework stores the design in a
database to enable the possibility of enhancing the de-
sign with runtime information, e.g., traces or message

Microservice Reconstruction
Framework

Reconstruction
Plugin - Java

Reconstruction
Plugin - Docker

<<invokes>>

<<invokes>>
 

Reconstruction
Plugin - Spring

<<invokes>>
 

<<stores>><<uses>>Static Source Code Artifacts

Source Code Deployment
Specification

Reconstruction
Database

Model
Extractor

<<uses>>

LEMMA Models

<<creates>>

Data 
Model

Service
Model

Operation
Model

Legend:

Code Artifacts Plugin LEMMA Model Database Framework Extractor

Figure 3: Structure of the reconstruction framework.

1 @Enti ty
2 @Table ( " S t u d e n t " )
3 p u b l i c c l a s s S t u d e n t {
4 @Id
5 @GeneratedValue
6 p r i v a t e Id i d ;
7 p r i v a t e S t r i n g name ;
8 @ Elem e n tCo l l ec t i on
9 p r i v a t e L i s t < S t r i n g > exams ;

10 . . . }

(a) Source code artifact.

1 c o n t e x t S t u d e n t {
2 s t r u c t u r e S t u d e n t < e n t i t y , a g g r e g a t e > {
3 Id id ,
4 s t r i n g name ,
5 Exams exams }
6 c o l l e c t i o n Exams { s t r i n g }
7 . . . }

(b) LEMMA domain data model.

Figure 4: Example of recovered domain concepts.

broker logging information. The data format consists
of the specific concepts for each viewpoint in MSA to
store the reconstructed architecture design.

The final step to recovering the software ap-
plication architecture is to derive viewpoint-specific
models from the architectural design stored in the
database. Therefore, the LEMMA Model Extractor
(Rademacher et al., 2020c) uses the information to
create LEMMA models from it. The recovered mod-
els, with their corresponding viewpoints, address dif-
ferent stakeholders in the software engineering pro-
cess for MSA, e.g., the domain data model captures
domain concepts for service developers and domain
experts. Figure 4 shows the source code artifact
and the recovered domain data model using LEMMA
DDML (Section 2).

Figure 4(a) shows the implementation of the
Student Java class from the student microservice
(Figure 2). The class consists of the two complex at-
tributes id and exams and the primitive data type at-
tribute name. Additionally, the annotations Entity,
Table, and Embedded/Id enrich the class with
technology-specific information, e.g., for database
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1 @ R e s t C o n t r o l l e r
2 @RequestMapping ( " / r e s o u r c e s " )
3 p u b l i c c l a s s S t u d e n t R e s t A p i {
4 @Autowired
5 p r i v a t e f i n a l S t u d e n t S e r v i c e s e r v i c e ;
6 @PutMapping ( " / s t u d e n t " )
7 p u b l i c S t u d e n t c r e a t e S t u d e n t (
8 @RequestBody S t u d e n t s t u d e n t ) {
9 re turn s t u d e n t S e r v i c e

10 . c r e a t e S t u d e n t ( s t u d e n t ) ; } }

(a) Java / Spring source code artifact.

1 import d a t a t y p e s from " S t u d e n t . d a t a "
2 as S t u d e n t
3 import t e c h n o l o g y from " S p r i n g . t e c h n o l o g y "
4 as S p r i n g
5 @technology ( S p r i n g )
6 p u b l i c f u n c t i o n a l m i c r o s e r v i c e
7 de . fhdo . sep . s t u d e n t . S t u d e n t S e r v i c e {
8 i n t e r f a c e S t u d e n t R e s t A p i {
9 @Spring : : _ a s p e c t s . Pu t

10 c r e a t e S t u d e n t ( sync i n o u t s t u d e n t
11 : S t u d e n t : : S t u d e n t . S t u d e n t ) ; } }

(b) LEMMA service model.

Figure 5: Example of recovered interface specifications.

persistency and to enable the Inversion of Control
(IoC) functionalities from the Spring Framework.
Therefore, the Spring Reconstruction Plugin uses
this information to derive domain concepts from the
source code and maps them to the DDD pattern.

In this case, Figure 4(b) features the technology-
agnostic recovered LEMMA domain data model. The
model contains the Student context in accordance
with the Bounded Context (Evans, 2004) in DDD. The
excerpt of the recovered context includes the complex
data structure Student. The concept is derived from
the Java class with the eponymous name. The Entity
annotation from the Spring Framework, in combina-
tion with the name of the Java class, maps to the com-
plex data structure in the domain data model, includ-
ing the entity and aggregate pattern from DDD.

For the specification of microservices APIs and
service dependencies in the recovered architectural
design, our approach uses LEMMA service models to
display this information for stakeholders such as ser-
vice developers in the development process of MSA.
Figure 5 shows the Java source code for interface
specification from the student microservice, including
technology-specific information and the correspond-
ing LEMMA service model.

Figure 5(a) contains the implementation of a
REST controller by using the RestController and
RequestMapping annotation. The figure shows the
createStudent endpoint of the microservice, in-
cluding URI and method specification. The list-
ing specifies the incoming student data type as a
RequestBody and outgoing student parameter.

The service model in Figure 5(b) features the in-

terface specification of the Student microservice de-
rived from the REST controller specification. The
figure starts with import statements for domain data
and technology models. The datatype statement
imports the student data model from Figure 4(b), used
as data types in the interface specification. Addition-
ally, to enhance the service model with technology-
specific information, the subsequent import state-
ment enables using the Spring technology model
in the microservices interface modeling. Figure 5(b)
is then completed by the modeling of the Student
functional microservice, including the fully qualified
name and technology, including the specification of
the StudentRestAPI interface derive from the Java
source code. The specification includes the REST
method and URI specification. Furthermore, the im-
ported data types from the student domain model de-
fine the incoming and outgoing parameters.

LEMMA operation models contain the deploy-
ment specification for microservices and infrastruc-
ture components of the application and, therefore, ad-
dress the concerns of the service developers and op-
erators. Our approach currently supports the recov-
ery of Docker-specific deployment specifications. It
can, therefore, be used to recover information from
the docker-compose file of the student management
application, an excerpt of which is in Figure 6(a). Fig-
ure 6(a) displays the deployment specification for the
infrastructure component discovery-service and
microservice student-service. The Discovery-
Service and StudentService deployment specifies,
among others, the image, port, and depends_on
dependencies in the software application.

The reconstruction process uses these specifica-
tions for reconstructing operation models, capturing
the architectural design from the operation viewpoint.
The operation model in Figure 6(b) describes the de-
ployment of the Student microservice referencing the
recovered service model from Figure 5(b). The spec-
ification includes Docker as the deployment tech-
nology for the Student microservice and the run-
time dependency to the infrastructure component of
a DiscoveryService (Figure 6(c)). Since Eureka
is part of the Netflix OSS stack and implements the
architecture pattern of a Service Registry (Bass et al.,
2013), the discovery-service is reconstructed as
an infrastructure node named DiscoveryService
with the aspect isServiceRegistry indicating the
reference to the eponymous pattern for microservices.

The result of the end-to-end resolution process of
the reference application is the recovered MSA of
the student management application. The recovered
MSA is in the form of LEMMA models addressing
different software engineering viewpoints used to de-
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1 services:
2 discovery-service:
3 build: discovery-service
4 image: discovery-service
5 ports:
6 -"8761:8761"
7 volumes:
8 -"maven_repo:/root/.m2"
9 student-service:

10 build: student-service
11 image: student-service
12 depends_on:
13 -discovery-service
14 ports:
15 -"8081:8081"

(a) Docker-Compose specification.

1 @technology(Docker)
2 container StudentServiceContainer
3 deployment technology
4 Docker::_deployment.Docker
5 deploys StudentService::
6 de.fhdo.sep.student.StudentService
7 depends on nodes DiscoveryService::
8 DiscoveryService {
9 default values { basic endpoints {

10 Docker::_protocols.http :
11 "localhost:8081"; }}}

(b) LEMMA student microservice operation model.

1 @technology(Eureka)
2 DiscoveryService is
3 Eureka::_infrastructure.Eureka {
4 aspects {Eureka::_aspects
5 .isServiceRegistry;}
6 default values { port = 8761 }}

(c) LEMMA Discovery Service operation model.

Figure 6: Example of our approach to recover deployment
specifications from docker artifacts (a) into a LEMMA op-
eration model with microservice deployments (b) and in-
frastructure components (c).

tect smells, as described in the following section.

3.2 Smell Detection

The detection step uses the LEMMA models re-
covered in Section 3.1 to identify microservice se-
curity smells. Therefore, our approach leverages
the expressiveness of LEMMA’s aspect functional-
ity (Rademacher et al., 2019) to enhance models with
metadata, enabling the possibility to include architec-
ture and security-specific information into the models
that can be used to identify security smells. Figure 7
represents the LEMMA models associated with the
smell detection process.

Figure 7(a) presents a LEMMA technology model
that contains the specification of metadata to enrich
operation models with information related to archi-

1 technology Architecture {
2 operation aspects {
3 aspect isApiGateway
4 for infrastructure;
5 aspect isServiceRegistry
6 for infrastructure; }}

(a) LEMMA technology model.

1 technology Zuul {
2 infrastructure technologies {
3 Zuul {
4 operation environments =
5 "openjdk:11-jdk-slim";
6 service properties
7 { string hostname;} }}}

(b) LEMMA technology model for Zuul.

1 @technology(Zuul)
2 @technology(Architecture)
3 APIGateway is
4 Zuul::_infrastructure.Zuul {
5 aspects {
6 Architecture::_aspects
7 .isApiGateway; }}

(c) LEMMA operation model for Zuul.

1 @technology(Docker)
2 container StudentServiceContainer
3 deployment technology
4 Docker::_deployment.Docker
5 deploys de.fhdo.sep.student
6 .StudentService
7 depends on nodes
8 DiscoveryService::DiscoveryService
9 APIGateway::ApiGatway {}

(d) Resolved LEMMA student model.

Figure 7: LEMMA technology and operation models for
security smell detection.

tectural patterns, e.g., Service Registries or API Gate-
ways (Richardson, 2019), to enable the identifica-
tion of infrastructural components in the software sys-
tems architecture. To identify those patterns in the
recovered architecture, the model specifies metadata
as operation aspects. Specifically, the epony-
mous infrastructure components isApiGateway and
isServiceRegistry.

Figure 7(b) displays the Zuul technology model
containing the technological specification for a con-
crete implementation for an API Gateway. The Zuul
technology model is created to be used in an opera-
tion model to specify the deployment and operation
of an API Gateway.

Figure 7(c) then imports both the architecture and
Zuul technology models to define the infrastructure
node with the name APIGateway. The node uses the
infrastructure technology Zuul for the implementa-
tion specified in Figure 7(b). The operation aspect
isApiGateway from Figure 7(a) is applied to the
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node, making it identifiable as an API Gateway.
For security smell identification in MSA, the

model validation functionalities of LEMMA allow
one to analyze the models regarding the occurrence
of security smells, e.g., the absence of infrastructure
components that implement specific microservice pat-
terns or the lack of authorization specifications. The
model incorporates these patterns by using LEMMA
technology aspects.

In the case of the deployment specification of
the student management application (Figure 8), the
model validation gives a warning because the student
microservice misses the dependency on an API Gate-
way, which is normally modeled leveraging LEM-
MAs abstract concept (c.f. Figure 7a). Therefore, the
missing gateway may lead to the Publicly Accessible
Microservices smell. Figure 9 shows the interactive
user interface that presents the smell resolution strate-
gies.

Figure 8: LEMMA Eclipse editor presenting the student
microservice operation model with the Publicly Accessible
Microservices smell detection.

Figure 9: LEMMA Eclipse editor presenting the student
microservice operation model with the Publicly Accessible
Microservices smell with the resolution strategy.

LEMMA provides the functionality to refactor the
models automatically to resolve the identified mi-
croservice smells. Figure 7(d) presents the automati-
cally refactored operation model with the dependency
on an API Gateway. In addition to the refactored oper-
ation model, the refactoring process also creates tech-
nology (b) and operation (c) models if they are not
already present in the software architecture, including
architectural and infrastructure components.

3.3 Smell Resolution

The security smell resolution uses the refactored
LEMMA models to implement the refactoring in the
application’s source code. Since we have detected
the Publicly Accessible Microservices security smell
in the student management application, our approach
provides three strategies as shown in Figure 9.

The first strategy explicitly ignores the security
smell, e.g., because the software architect intention-
ally exposed the microservice, which implements
some gateway functionality. The second and third
strategies resolve the security smell by exposing the
microservices interfaces via an API Gateway or con-
figuring the microservice not to expose it externally
(e.g., by removing its external network access con-
figuration). Hereafter, we assume that the user se-
lected the second strategy to integrate an API Gate-
way into the student management application auto-
matically. The implementation of this refactoring re-
quires the following tasks:

1. Source code generation for the API Gateway.

2. Enable the request routing by the API Gateway.

3. Adapt the deployment specification of the mi-
croservices.

To execute these tasks, LEMMA model process-
ing functionalities provide the Deployment_Base and
Spring Cloud Zuul code generators to adapt or create
source code artifacts. The Zuul code generator uses
the technology model from Figure 7(b) and the op-
eration model from Figure 7(c) to generate the API
Gateway implementation, including source code and
configuration files based on the Spring Cloud tech-
nology stack and using Java as a programming lan-
guage. Moreover, the Deployment_Base generator
adapts or creates deployment specifications for the
refactored architecture for Docker technology, e.g.,
docker-compose files for service composition and a
Dockerfile for containerization.

Figure 10(a) shows the source code of
the API Gateways implementation using the
@EnableZuulProxy annotation to enable the rout-
ing functionalities of the node. In addition to that, the
code generator for the API gateway also generates a
configuration file containing the routing information
based on the depends_on dependencies between the
functional service and the API gateway in LEMMA
operation models (Figure 7(d)).

For service composition, the Deployment_Base
generator adapts the docker-compose file from Fig-
ure 6(a) to address the resolved security smells in the
source code. Therefore, the code generator removes
the exposure of the ports for the student service for
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1 @SpringBootApplication
2 @EnableZuulProxy
3 @EnableDiscoveryClient
4 public class APIGateway {
5 public static void main(String[] a){
6 SpringApplication.run(APIGateway
7 .class, args);}}

(a) Java / Spring API Gateway.

1 services:
2 student-service:
3 depends_on:
4 -discovery-service
5 -api-gateway
6 api-gateway:
7 build: api-gateway
8 ports:
9 -"8080:8080"

10 depends_on:
11 -discovery-service

(b) Adapted Docker-Compose artifact.

1 server.port=8080
2 spring.application.name=APIGateway
3 zuul.routes.student.path=/STUDENT/**
4 zuul.routes.student.serviceId=STUDENT

(c) Generated API Gateway configuration artifact.

Figure 10: Artifacts created by the Deployment_Base and
Zuul code generators.

accessing the endpoints. The code generator adds the
api-gateway component to enable further access to
the microservices interfaces. The code generator cre-
ates executable source code that is runnable without
further configuration, so the end-to-end security smell
resolution provides all artifacts needed for the refac-
toring implementation.

4 VALIDATION

In this section, we validate our approach to model-
driven end-to-end resolution of security smells in
MSA-based applications. For validation purposes, we
use the Lakeside Mutual1 microservice reference ap-
plication (Figure 11) to assess our proposed approach
since the Publicly Accessible Microservices and the
Insufficient Access Control security smells occur in its
implementation. Moreover, we raise research ques-
tions (RQ) to investigate the results of the different
stages of the presented approach.

1https://github.com/Microservice-API-Patterns/
LakesideMutual
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Figure 11: Architecture of the Lakeside Mutual application.

4.1 Research Questions

In the validation process for our presented approach,
we aim to answer the following research questions:
RQ1: How accurate is the reconstructed architecture
design of the application? This research question ad-
dresses the accuracy of the reconstructed architecture
design related to concepts, e.g., recovered microser-
vices, interfaces, endpoints, data structures, deploy-
ment specifications, and infrastructure components.
RQ2: Could the security smells be detected in the
reconstructed models? The detection of the Pub-
licly Accessible Microservices and Insufficient Access
Control security smell in the reconstructed models is
addressed by this research question.
RQ3: Could the security smell be resolved in the re-
constructed models? We verify if the detected se-
curity smell can be resolved in the recovered mod-
els capturing the application’s architectural design.
RQ4: Is resolving the security smell in the appli-
cation’s source code possible? This research ques-
tion addresses the end-to-end smell resolution, and we
check if the smell is also resolved in the application’s
source code.

4.2 Validation Implementation

As described in Section 3.1, the end-to-end security
smell resolution process starts by recovering an appli-
cation’s MSA, whose modeling in LEMMA is then
used to enact smell resolution. Therefore, it is impor-
tant to assess the effectiveness of the reconstruction
step, and here, we measure it for the reference appli-
cation we considered in our case study.

Table 1 presents the results of the reconstruc-
tion process by relying on Recall(eq. (1)), Preci-
sion(eq. (2)), and Fmeasure to measure its overall ef-
fectiveness.
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Table 1: Results from the reconstruction process.

Element Expected TP FP FN Recall Precision Fmeasure

Microservices 5 4 0 1 80% 100% 88%
Interfaces 16 14 0 2 87% 100% 93%
Endpoints 61 50 3 8 86% 94% 90%

Data Structures 161 117 29 14 89% 80% 84%
Deployment 5 4 0 1 80% 100% 88%

Infrastructure 2 2 0 0 100% 100% 100%

Sum 250 191 32 26 88% 86% 87%

Figure 12: Accessibility of running microservices in the
original Lakeside Mutual application.

Recall =
T P

T P+FN
, Precision =

T P
T P+FP

(1)

Fmeasure = 2∗ Recall ∗Precision
Recall +Precision

(2)

The table shows that the reconstruction framework
and plugins effectively supported the reconstruction
of the microservices composing the Lakeside Mutual
application but for the case of the Risk-Management
server, which is developed in NodeJS, which is not
yet supported by our approach, but could be seam-
lessly integrated with a plugin. A similar considera-
tion applies to the reconstructed data structures, viz.,
the operation’s in- and outgoing data types. The dis-
crepancy in the data structures results from the fact
that the plugins do not support the reconstruction of
external dependencies, where the source code is not
present for the reconstruction, e.g., Spring dependen-
cies. The framework and plugins also recover com-
plex data types as data structures with LEMMA’s do-
main models. Moreover, we recover the deployment
specifications for all Spring-based microservices, in-
cluding infrastructure components, e.g., the Eureka
Server or the Spring Boot Admin application.

We used the reconstructed LEMMA models to au-
tomatically detect the microservices’ security smells
present in the application (Section 3.2), by focus-
ing on the two smells currently supported by our ap-
proach, viz., Publicly Accessible Microservices and
Insufficient Access Control, which we observed on the
application by inspecting its source code and a run-
ning instance of the system security smells (Ponce
et al., 2022a) (while also proposing resolution strate-
gies for both of them). However, due to the expres-

Figure 13: Accessibility of running microservices in the
refactored version obtained with our approach.

siveness of LEMMA’s aspect functionality to include
metadata in the models, we believe it is possible to ex-
tend our current approach to detect and resolve other
security smells. For instance, while running the Lake-
side Mutual application, we observed that all its mi-
croservices were configured to be exposed on dif-
ferent ports of the hosts, therefore all being affected
by instances of the Publicly Accessible Microservices
smell, and possibly subject to direct attacks by ex-
ternal, malicious clients. We also observed that no
access control was configured in Lakeside Mutual,
meaning that its microservices were all affected by
instances of the Insufficient Access Control smell.

With the above knowledge in mind, we checked
whether the smell detection and refactoring featured
by our approach was capable of detecting and resolv-
ing the Publicly Accessible Microservices and Insuf-
ficient Access Control smells affecting Lakeside Mu-
tual’s microservices by processing the reconstructed
LEMMA models of its MSA. Notably, all smell in-
stances were detected by our LEMMA-based frame-
work, and we selected the suggested refactorings
to resolve them. More precisely, we first selected
the resolution of Insufficient Access Control smells,
which adapted the LEMMA models by specifying
that all microservices should use OAuth 2.0, as rec-
ommended in the literature (Ponce et al., 2022b). We
then selected the introduction of an API gateway to
resolve the Publicly Accessible Microservices smells,
and this adapted the LEMMA models by introduc-
ing the infrastructural components implementing the
gateway itself, and configuring the Lakeside Mutual’s
microservices not to be exposed externally.
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The resolution of Publicly Accessible Microser-
vices smells was also automatically implemented
by our LEMMA-based framework by adapting the
Docker-based deployment to reflect what is specified
in LEMMA. This can be observed in Figure 13, which
shows that (a) Lakeside Mutual’s microservices were
all publicly accessible in the original version of the
application, whereas (b) they were reachable only in-
ternally after the refactoring by relying on an API
gateway to expose them externally. As a result, Lake-
side Mutual’s microservices were no more exposed to
direct attacks by malicious external clients, with the
gateway allowing the enforcement of further security
measures, e.g., firewalling or rate limiting.

4.3 Answer to Research Questions

This subsection elaborates on the results of the vali-
dation processes related to RQ1 to RQ4.
Answer to RQ1: The overall accuracy of the recov-
ered architecture design of the Lakeside Mutual appli-
cation is 87 percent. Table 1 shows the results of the
reconstructed microservice-specific concepts for the
architecture design of the software application. The
unrecovered concepts, e.g., the missing microservice,
occurred due to a yet unsupported technology of the
MAR framework. However, due to the extensibility
of the plugin functionality, the technology can be inte-
grated seamlessly. The reconstructed LEMMA mod-
els, adapted source code and recovery results for the
student management application are provided in the
auxiliary materials2.
Answer to RQ2: LEMMA’s validation functional-
ities can detect both security smells in the recon-
structed models. Our approach extended the valida-
tion functions (c.f. Figure 8) of LEMMA to detect
the microservice security smell of Insufficient Access
Control and Publicly Accessible Microservices in the
reconstructed models of capturing the architecture de-
sign of the Lakeside Mutual Application.
Answer to RQ3: LEMMA’s model refactoring func-
tionality enables the resolution of both security smells
in the reconstructed models. For the end-to-end secu-
rity smell resolution approach, we extended LEMMA
with the functionality to resolve the detected secu-
rity smells (c.f. Figure 7) by using a model-to-model
transformation (Combemale et al., 2017) and, there-
fore, adapt the model automatically to resolve the
smell by a given smell-specific refactoring strategy.
Answer to RQ4: The security smells are also re-
solved in the source code using code generation based

2https://drive.google.com/drive/folders/1W1WE0P_
YSc_xx-q_DWHSAaTcRpLngjGG?usp=drive_link

on the refactored models (c.f. Figure 13) The final
step of our approach uses code generation to resolve
the security smell in the implementation of the ap-
plication. The security smell of Publicly Accessi-
ble Microservices is resolved automatically without
manual adaption of the source code. However, to re-
solve the security smell of Insufficient Access Con-
trol, LEMMA functionality provides a guide to en-
force sufficient access control by manually adapting
the source code.

5 RELATED WORK

Microservice security smells have been recently pro-
posed in (Ponce et al., 2022b), and how to auto-
matically detect and refactor them is still an open
issue (Cerny et al., 2023). Indeed, to the best of
our knowledge, the only available work in this di-
rection are (Dell’Immagine et al., 2023) and (Ponce
et al., 2022a). (Dell’Immagine et al., 2023) intro-
duces KubeHound, a tool for detecting security smells
in MSAs deployed with Kubernetes. (Ponce et al.,
2022b) instead proposes a trade-off analysis to sup-
port deciding whether to refactor smells, assuming
them to have already been detected. Our approach is,
therefore, the first enabling to automatically detect se-
curity smells and to support deciding how to refactor
them, while also enabling the automatic implementa-
tion of chosen refactorings.

Methods and tools for securing MSAs exist, how-
ever. For instance, (Ünver and Britto, 2023) pro-
poses Pomegranate, a fully automated test tool suite
that can help developers detect security issues in
MSAs. Pomegranate essentially encapsulates open-
source vulnerability scanning tools into one suite,
exploiting them to detect security vulnerabilities in
MSAs. We differ from Pomegranate in our objectives,
as we focus on detecting security smells in MSAs and
on supporting developers in choosing the refactoring
for resolving detected smells while also enabling the
implementation of chosen refactorings automatically.

Other solutions for securing MSAs are given by
the production-ready tools for security analysis, e.g.,
Kubesec.io, Checkov, and SonarQube. These analy-
sis tools provide validated solutions for vulnerability
assessment and security weaknesses detection, which
can also be used for microservices applications. Our
proposal complements the analyses enacted by the
above-listed tools, enabling the detection and refac-
toring of the microservice security smells proposed in
(Ponce et al., 2022b), in addition to the vulnerabilities
and security weaknesses they identify. Additionally,
production-ready tools such as Fortify and Coverity
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analyze the source code for the occurrence of code
smells, whereas our proposed solution addresses se-
curity and architecture smells, resulting from a bad
design.

Additional existing approaches provide the possi-
bility to identify and resolve other types of smells for
microservices. (Pigazzini et al., 2020), (Walker et al.,
2020), and (Soldani et al., 2021) propose two different
solutions for detecting architectural smells in MSAs.
They both share our baseline idea of starting from
smells identified with industry-driven reviews, with
(Pigazzini et al., 2020) and (Walker et al., 2020) pick-
ing those from (Taibi and Lenarduzzi, 2018), while
(Soldani et al., 2021) picking those from (Neri et al.,
2020). (Soldani et al., 2021) also shares our baseline
idea of using MDE to detect and refactor smells. The
main difference between (Pigazzini et al., 2020), (Sol-
dani et al., 2021), and our proposal however relies on
the considered types of smells, with (Pigazzini et al.,
2020) and (Soldani et al., 2021) focusing on archi-
tectural smells. We rather complement their results
by enabling the automatic detection and refactoring
of microservice smells from (Ponce et al., 2022b).

Similar considerations apply to (Balalaie et al.,
2018) and (Haselböck et al., 2017), which both or-
ganize information retrieved from practitioners or
industry-scale projects into guidelines for designing
microservice applications while avoiding the inclu-
sion of well-known architectural smells. We com-
plement these works by enabling the detection of mi-
croservices’ security smells and refactoring them to
resolve their possible effects.

Finally, it is also worth relating our microservice-
oriented proposal with existing solutions for detect-
ing smells in classical services. For instance, (Ar-
celli et al., 2019), (Garcia et al., 2009), and (Sanchez
et al., 2015) present three different MDE approaches
to detect architectural smells in a service, with (Ar-
celli et al., 2019) and (Garcia et al., 2009) relying on
UML to model services, while (Sanchez et al., 2015)
relying on Archery. (Arcelli Fontana et al., 2017) and
(Vidal et al., 2015) instead allow to analysis of the
source code of a service to detect the smells therein,
also supporting refactoring to resolve the occurrence
of identified smells. Similarly to the above-discussed
approaches, the difference between our proposal and
those in (Arcelli et al., 2019), (Arcelli Fontana et al.,
2017), (Garcia et al., 2009), (Sanchez et al., 2015),
and (Vidal et al., 2015) resides in the considered
smells, with our proposal complementing their results
by enabling to detect and refactor microservices’ se-
curity smells.

6 CONCLUSIONS

We have introduced an end-to-end model-driven ap-
proach for resolving microservices security smells in
MSAs. Our approach recovers the software applica-
tion architectural design using LEMMA models. The
models address different viewpoints in the MSA de-
velopment process and contain, among others, infor-
mation about security aspects of Java-based MSAs
and to automatically detect the two most recognized
security smells for microservices (viz., Publicly Ac-
cessible Microservices and Insufficient Access Con-
trol). We demonstrated that our approach enables se-
lecting the refactorings to apply to resolve detected
security smells, as well as how it automatically up-
dates LEMMA models and adapts the microservices’
source code by implementing the selected refactoring
when it is possible or providing detailed information
about manual refactoring possibilities. We have also
validated our approach in practice, by illustrating its
use in a case study based on a third-party application.

For future work, we plan to extend the current im-
plementation into a full-fledged prototype, featuring
model-driven detection and refactoring of all the mi-
croservice security smells from (Ponce et al., 2022b).
We also plan to exploit the full-fledged prototype to
validate our method on real-world applications, to
demonstrate how our approach facilitates the develop-
ment process of MSAs by providing means for secu-
rity smell resolution. Finally, we plan to further assist
developers by supporting them in deciding whether to
refactor a detected security smell, e.g., by integrating
with trade-off analyses like that proposed in (Ponce
et al., 2022a), and by extending our approach to work
with other microservice-related smells, e.g., the archi-
tectural smells from (Neri et al., 2020) or (Taibi and
Lenarduzzi, 2018). Moreover, we aim to allow for the
generic extensibility of our approach in that develop-
ers can add new resolutions of security smells based
on the abstracted specification of (i) model traversals
and element filtering; and (ii) operations for model-
based refactorings on traversed elements.
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