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Abstract: In the ever-evolving world of fashion, building the perfect outfit can be a challenge. We propose a fashion
recommendation system, which we call Visual Search, that uses computer vision and deep learning to ensure
that it has a co-ordinated set of fashion recommendations. It looks at photos of incomplete outfits, recognizes
existing items, and suggests the most compatible missing piece. At the heart of our system lies a compatibility
model made of a Convolutional Neural Network and bidirectional Long Short Term Memory to generate a
complementary missing piece. To complete the recommendation process, we incorporated a similarity model,
based on Vision Transformer. This model meticulously compares the generated image to the catalog items,
selecting the one that most closely matches the generated image in terms of visual features.

1 INTRODUCTION

The phenomenal rise of e-commerce has revolution-
ized traditional distribution channels, unleashing a
wave of innovative business models that have funda-
mentally reshaped the retail landscape (Xiao et al.,
2019). However, this transformative digital revolu-
tion has not yet permeated the entire spectrum of
businesses, particularly within the traditional sector,
where many enterprises continue to lag behind in
terms of online visibility and engagement with the
digital marketplace. The COVID-19 pandemic, a
far more recent phenomenon, has had a notably pro-
found impact. The outbreak led to a precipitous de-
cline of sales in traditional retail stores, while world-
wide online sales of clothing and textiles surged to
unprecedented heights (Çiçek and Muzaffar, 2021),
compelling several companies to re-evaluate their di-
rect online sales strategies.

The digital realm is poised to become the primary
driver of growth for the fashion industry, present-
ing a wealth of opportunities for textile companies to
thrive.

This strategic move would enable the sector to
complement its traditional distribution channels with
a direct-to-consumer approach, fostering stronger
customer connections and brand loyalty. Simultane-
ously, the Business-to-Business segment should not

be overlooked, as it represents a significant source of
revenue and growth potential. Regardless of whether
the focus is on Business-to-Consumer or Business-to-
Business, many of the underlying challenges remain
the same, particularly in creating a seamless and per-
sonalized digital experience for both consumer and
business customers. In fashion analysis, visual com-
patibility refers to the extent to which clothing items
complement visually across different categories. For
instance, the compatibility between a “suit” and “ox-
fords” is typically higher than with “trainers”.

Visual Search emerges as a groundbreaking
pipeline of deep learning models for fashion recom-
mendation, ushering in a new era of innovation that
transforms the way individuals curate their sartorial
identities.

It comprises of four key modules. The first han-
dles image prepossessing, ensuring necessary manip-
ulations, the second, utilizing a compatibility model,
assesses features against a fashion dataset, pinpoint-
ing the ideal clothing item. A third module finds real-
world analogs, and the fourth validates predictions.
Users can upload multiple photos of their current out-
fit and the service will swiftly offer suggestions of the
store’s catalog for the missing clothing item to ensure
the overall outfit coordination, or they can simply up-
load an image of the desired piece and find the most
similar item in the store’s catalog. Thus enhancing the
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overall user experience by facilitating the discovery of
items that closely align with their styling preferences.

Our main purpose with Visual Search is to op-
timize the shopping experience by functioning as a
recommendation system through sophisticated image
processing, compatibility and similarity analysis.

Recognizing each user’s distinct style fingerprint,
Visual Search tailors recommendations to the current
wardrobe. This personalized approach ensures that
users receive relevant and useful suggestions, enhanc-
ing their overall shopping experience. In the realm of
online shopping, Visual Search eliminates guesswork
and frustration. By providing tailored recommenda-
tions, the system simplifies the search for the perfect
outfit, reducing the time spent sifting through count-
less options. This heightened convenience fosters
user satisfaction and encourages repeat purchases.

The paper follows a structured approach consist-
ing of six sections. The second section is focused
in the exploration of related works, elucidating ex-
isting research that has served as the inspiration for
this study. Section three is all about the methodology,
describes the datasets used, and details the architec-
ture and complexity of the two main models, the com-
patibility model and the similarity model. This sec-
tion expounds upon their respective architectures, the
mathematical formulas behind, while also explain-
ing the method employed for performance evalua-
tion. The fourth section showcases the results ob-
tained from the implementation of each model, of-
fering insights and the implications derived from the
findings. This section also highlights the enhance-
ments achieved through the proposed methodologies.
In the fifth section, Conclusion, the accomplishments
of the study are reviewed alongside expectations for
future research. Lastly, the sixth section serves as an
acknowledgment of the contributions and support re-
ceived.

2 RELATED WORK

We explore various strands of research closely
associated with our methodology.

Recommendation Systems in Fashion. Various
methodologies have been proposed for suggesting
fashion items (Hwangbo et al., 2018; Yethindra and
Deepak, 2021; Bellini et al., 2023). (Hwangbo et al.,
2018) introduced a recommendation system that
compiles data from online shopping mall databases,
gather purchase history (offline) and click history
(online) to feed a so called “K-RecSys“ model that
takes in consideration this parameters. (Yethindra

and Deepak, 2021) provide a personalized clothing
recommendations for men using logistic regression
classification and semantic similarity computation
through fashion ontology. (Bellini et al., 2023)
introduced a recommendation system tailored for
fashion retail shops. It employs a multi-clustering
approach, considering items and users’ profiles
across both online and physical stores. By leveraging
mining techniques, the system predicts the purchase
behavior of newly acquired customers.

Visual Compatibility Extraction. In this field
(Yin et al., 2019) proposed a fashion compatibil-
ity knowledge learning method that incorporates
visual compatibility relationships as well as style
information using a Convolutional Neural Network
(CNN), the ‘convolutional‘ part references the use
of convolutional layers, which apply convolution
operations to detect and extract features from input
data. (Han et al., 2017) employed a Bidirectional
Long Short Term Memory (BiLSTM) to capture the
compatibility relationships of fashion items by con-
sidering an outfit as a sequence from top to bottom
and then accessories and images in the collection
as individual time steps, ”named Long Short-Term
Memory (LSTM)” due to its ability to capture
and retain long-term dependencies in data while
handling short-term information through memory
cells. (Revanur et al., 2021) used a semi-supervised
learning approach where was leveraged large unla-
beled fashion corpus to create pseudo positive and
negative outfits on the fly during training. For each
labeled outfit in a training batch, a pseudo-outfit is
obtained by matching each item in the labeled outfit
with unlabeled items. More recently, (Jing et al.,
2023) delved into a fashion compatibility modeling
approach with a category-aware multimodal attention
network, termed as FCM-CMAN. In this paper, the
focus is on the visual compatibility of entire outfits,
where items in a fashion collection are expected to
exhibit similar styles, forming a cohesive and stylish
composition. To achieve this, a BiLSTM model
is employed to discern compatibility relationships
within outfits, capturing the dependencies among
various fashion items. This approach goes beyond by
using a visual-semantic embedding. This capability
enhances individual item recommendations by under-
standing and revealing their relationships within the
given context.

Similarity in Fashion. The focus is on identi-
fying items that have similarity to those shown.
This entails uncovering apparel pieces that share
common visual attributes or style elements, providing
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customers with recommendations that align closely
with their preferences (Dong et al., 2021; Gao et al.,
2020; Manandhar et al., 2018). (Dong et al., 2021).
introduce an Attribute-Specific Embedding Network
to predict fine-grained fashion similarity by jointly
learning multiple attribute-specific embeddings.
(Gao et al., 2020) propose a novel graph reasoning
network (GRNet) on a similarity pyramid, which
learns similarities between a query and a gallery cloth
by using both initial pairwise multi-scale feature rep-
resentations and matching propagation for unaligned
representations. (Manandhar et al., 2018) introduced
a new attribute-guided metric learning (AGML) with
multitask CNN that jointly learns fashion attributes
and image embeddings while taking category and
brand information into account.

3 APROACH/METHODS

In our work, we use this concept of similarity to en-
hance our compatibility learning. After generating a
fashion item that is compatible within a given context,
we use similarity metrics to identify real-world items
that closely resemble our generated prediction.

A CNN approach was employed to capture and
extract features from images, specifically focusing on
generating a unseen image from a given contextual
representation, in this case, an outfit represented as
a sequence. Subsequently, we used a BiLSTM for
fashion compatibility modeling, which processes the
sequential nature of the outfit to generate the final im-
age. Following the generation process, a pre-trained
model was employed to identify the most similar real
image to our generated one, completing the compre-
hensive workflow of our approach.

3.1 Dataset

The Cleaned Maryland dataset was developed by the
Fashion Team at the Laboratory for Artificial and it is
a clean version of the Maryland Polymores dataset. It
was also used in (Han et al., 2017; Zou et al., 2022).
Polyvore, a widely used fashion website, serves as a
platform where users share outfits, providing informa-
tion including images, descriptions, likes, hashtags,
and more. The Cleaned Maryland dataset comprises
21,889 outfits carefully extracted from Polyvore, hav-
ing the fashion items been re-organized into 20 cate-
gories. For the purpose of our specific study, however,
we adopted a more focused approach. Instead of uti-
lizing all 20 categories, we narrowed down our selec-
tion to a more streamlined set of four key categories:
‘top‘, ‘bottom‘, ‘other‘, and ‘feet‘. This reduction was

a deliberate choice aimed at simplifying the dataset
and transforming it into a sequence of items, aligning
with the learning capabilities of our BiLSTM model.
As a result of this, the outfits in our dataset have been
condensed to a more manageable number of 1356.
One notable feature of the dataset is the exclusion of
background information. By removing unnecessary
background details, the dataset minimizes extraneous
noise. An example of an outfit in this categories is
shown in Figure1.

Figure 1: Compatible Outfit from Maryland dataset.

In addition to a evaluation on the datasets, testing
is extended to include another dataset named ‘Com-
munity Pictures‘. This dataset comprises 5000 images
of 20 categories and it was collaboratively constructed
by the community, with members contributing images
of their clothing items.

3.2 Fashion Outfit Compatibility Model

Our compatibility model initiates with a CNN as a
feature extractor. The primary goal of the CNN is to
capture visual features from input images, with a spe-
cific focus on identifying and extracting key features
crucial for understanding the outfit sequence, deter-
mining their importance for future feeding into the
BiLSTM. The CNN model is extended to operate on
each image in the sequence independently. The fea-
ture maps acquired from individual images are subse-
quently either combined or further processed to cap-
ture temporal dependencies.

Let It represent the t-th image in the input se-
quence, and F(It)be the feature map obtained after
passing It through the CNN. The convolutional opera-
tion is as follows:

F(It)i, j,k = σ
(
∑m ∑n ∑p Wm,n,p,k · It,i+m, j+n,p +bk

)
• F(It)i, j,k is the activation at position (i, j) in the

k-th feature map for the t-th image.
– Wm,n,p,k is the weight of the k-th filter at posi-

tion (m,n) in channel p.
– It,i+m, j+n,p denotes the pixel intensity at posi-

tion (i+m, j + n) in channel p of the t-th im-
age.

– bk is the bias term for the k-th filter.
– σ is the ReLU activation function.
The output of the CNN, F(It), serves as input to

the BiLSTM model. The BiLSTM then processes the
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Figure 2: Model architecture.

sequence of feature maps to generate predictions for
the next item in the outfit sequence. The loss func-
tion E f (F ;Θ f ) is computed based on the negative log
probability of observing the next item xt+1 given the
previous items x1, ...,xt . The LSTM equations involve
the use of the ReLU activation function:

E f (F ;Θ f ) =− 1
N ∑

N
t=1 logPr(xt+1|x1, ...,xt ;Θ f )

where Θ f denotes the model parameters of the for-
ward prediction model, and Pr(·), computed by the
LSTM model, is the probability of observing xt+1
conditioned on previous inputs.

More specifically, the LSTM model maps an input
sequence {x1,x2, ...,xN} to outputs via a sequence of
hidden states by computing the following equations
recursively from t = 1 to t = N:

it = σ(Wxixt +Whiht−1 +Wcict−1 +bi),

ft = σ(Wx f xt +Wh f ht−1 +Wc f ct−1 +b f ),

ct = ftct−1 + itσ(Wxcxt +Whcht−1 +bc),

ot = σ(Wxoxt +Whoht−1 +Wcoct +bo),

ht = otσ(ct),

where: - xt is the input at time t, - ht is the hidden
state at time t, - ct is the cell state at time t, - it , ft ,
ot are the input, forget, and output gates’ activations,
- σ is the ReLU activation function, - W and b are the
weight matrices and bias vectors for different gates in
the LSTM.

• Forward LSTM:
→
Ht = LSTMforward(Xt ,

→
Ht−1)

where
Xt is the input at time t,
→
Ht is the hidden state at time t.

The forward LSTM processes the input sequence
from the beginning to the end, capturing depen-
dencies in the forward direction.

• Backward LSTM:
←
Ht = LSTMbackward(Xt ,

←
Ht+1)

where
Xt is the input at time t,
←
Ht is the hidden state at time t.

The backward LSTM processes the input se-
quence from the end to the beginning, capturing
dependencies in the backward direction.

• Final Hidden State:

Ht = [
→
Ht ;

←
Ht ]

The final hidden state at time t is the concatena-
tion of the forward and backward hidden states.
This combined representation captures both for-
ward and backward context, enabling the model
to understand the sequential dependencies within
the input sequence.

3.3 Fashion Similarity Model

Our similarity approach, takes in the compatibility
model output, our generated image, to identify the
most visually similar image from a pre-loaded set.
This process is orchestrated with a pre-trained Vision
Transformer (ViT) as the backbone for similarity as-
sessment. The vit base patch16 224.mae follows the
ViT architecture, which represents a departure from
CNN. Vision Transformers use a transformer-based
architecture, originally designed for natural language
processing tasks, to process image data. Notably,
the model employs a patch-based approach, breaking
down the input image into smaller patches and treat-
ing them as sequence for processing.

• Parameters (M): 85.8

• GMACs: 17.6

• Activations (M): 23.9

• Trained Images: 224x224
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The number of parameters (85.8M) indicates the
model’s complexity, while the GMACs (17.6) re-
flect its computational workload in terms of Giga
Multiply-Accumulates. Additionally, the activations
(23.9M) represent the total number of activations dur-
ing inference, offering insights into the model’s com-
putational efficiency. Lastly, the size of trained im-
ages (224x224) underscores the scale at which the
model operates.

One of features of vit base patch16 224.mae is
its pretraining methodology. The Self-Supervised
Masked Autoencoder (MAE) technique involves
training the model to predict masked-out portions of
the input image.

3.4 Performance Evaluation

In evaluating the accuracy of our approach, we em-
ploy the Universal Image Quality Index (UIQI) as the
metric used for this task. The UIQI measures the sim-
ilarity and quality of images, enabling a evaluation
beyond a mere binary comparison (Wang and Bovik,
2002).

The UIQI is calculated using the following for-
mula:

UIQI = 4·covariance(I1,I2)·mean(I1)·mean(I2)
(variance(I1)+variance(I2))·(mean2(I1)+mean2(I2))

Here: I1 and I2 are the intensity values of the
two images being compared.

Approach and Threshold
To evaluate the accuracy of our approach, we consider
the most similar image identified by our similarity
model. We calculate the UIQI of this identified image
with the test image belonging to the outfit in the first
place. Instead of relying on a simplistic comparison
of identical images, we set a threshold for the UIQI.
If the UIQI value exceeds this threshold, we classify
the prediction as accurate.

Why UIQI over Image Similarity
The choice of UIQI over a straightforward image sim-
ilarity check is motivated by the nature of fashion.
Similar images may exhibit subtle differences, such as
distinct patterns or textures, yet still be suitable for the
same outfit. For instance, two white t-shirts might dif-
fer in design but share compatibility within the con-
text of an outfit. The UIQI accounts for it, providing
a more refined assessment of image quality and simi-
larity (Wang and Bovik, 2002). This approach allows
us to capture the essence of fashion compatibility be-
yond strict visual identity.

4 RESULTS

In this section, we discuss the benchmark and con-
clusions aimed at enhancing the accuracy of our ap-
proach.” We systematically compare results across
various variables, offering insights into the effective-
ness of our method.

4.1 Compatibility

Table 1: Comparison between different datasets.

CNN + BiLSTM Maryland CP
top 91.18% 42.64%

bottom 84.24% 49.49%
other 79.56% 82.64%
feet 77.06% 83.74%

Based on the evaluation results, it is evident that the
model’s performance varies significantly across the
two datasets, Maryland and Community Pictures, and
their respective categories.

In the Maryland dataset, where outfits are made
with purpose and exhibit a logical and consistent com-
position, the model consistently demonstrates accu-
racy ranging from 75% to 90% across all four cat-
egories (‘top‘, ‘bottom‘, ‘other‘, and ‘feet‘). This
consistent performance suggests that the model ef-
fectively generalizes to the structured composition of
the Maryland dataset. The variation in accuracy from
‘top‘ and ‘bottom‘ to ‘feet‘ and ‘other‘ could be from
the fact that feet and other have more variability in
their shapes and colors.

On the other hand, in the Community Pictures
dataset, which involves randomly assembled outfits
without a predetermined logic, due to the fact that the
dataset was just made out of random images from the
community, the model exhibits notable differences in
accuracy among the categories. Remarkably high ac-
curacy is observed for ‘other‘ and ‘feet‘, where in-
terpolation was applied due to a reduced number of
images in these categories. The interpolation led
to the model encountering the same images multiple
times, enabling it to recognize and classify these cat-
egories effectively, resulting in high accuracy. How-
ever, the categories ‘top‘ and ‘bottom‘ show consid-
erably lower accuracy. This can be attributed to the
inherent randomness and lack of consistency in the
outfit compositions within the Community Pictures
dataset. As outfits were generated by mixing clothes
without a structured approach, the model struggled to
find meaningful patterns in these categories, leading
to low accuracy.

We present the results obtained from our exper-
imental evaluation of different compositional models
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applied to the task at hand. Table 2 showcases the per-
formance metrics in terms of accuracy for each model
configuration.

VGG is a CNN architecture introduced by the Vi-
sual Geometry Group at the University of Oxford.
The key characteristic of VGG is its simplicity and
uniform architecture. The network consists of multi-
ple layers with small receptive fields Proposed by (He
et al., 2016), ResNet introduces a concept of residual
learning, where shortcut connections allow the net-
work to learn the residual functions, making it easier
to train extremely deep networks.

Table 2: Models Benchmark Accuracy Results.
Comp Model CNN ResNet Resnet+CNN VGG VGG+CNN

LSTM 81,33% 80,29% 78,56% 80,29% 78,45%
BiLSTM 91,18% 85,65% 80,92% 84,56% 79,37%

No LSTM 65,29% 64,56% 62,11% 62,35% 61,98%

The LSTM model performs significantly better
than the No LSTM counterpart across all the com-
pared models. This suggests that the inclusion of
LSTM layers in the model architecture contributes
positively to the overall accuracy. Models with-
out LSTM exhibit lower accuracy compared to their
LSTM counterparts. This indicates that the tempo-
ral dependencies captured by LSTM layers are bene-
ficial for this task. BiLSTM consistently outperforms
LSTM, achieving the highest accuracy among all the
models. This indicates that bidirectional temporal
context is crucial for the task, as BiLSTM considers
information from both past and future time steps (Han
et al., 2017). The use of pre-trained models (ResNet
and VGG) did not lead to an improvement in accu-
racy compared to the standalone CNN model. This
unexpected result suggests that, in this particular task,
the transfer learning process may not have effectively
leveraged the pre-learned features from these archi-
tectures. It could be related to the domain of the pre-
trained models, the specifics of the transfer learning
process, or the characteristics of the dataset.

4.2 Similarity

To determine the best-performing model among a
batch of 600 backbones, an evaluation process was
undertaken. The evaluation aimed to assess each
model’s ability to identify the five most similar im-
ages from a large batch of diverse data. For each eval-
uation instance, a single image was provided as input
to the model, which was then tasked with retrieving
the five most similar images from the given dataset.
This process was repeated for multiple images, to
quantify the performance of each model, the Univer-
sal Quality Index (UIQI) was employed to compute
the mean similarity index for the top five retrieved im-

ages across all input images. The decision to evalu-
ate the top five images comes from the nature of rec-
ommending items for outfits. In fashion, there of-
ten exist multiple suitable clothing options that can
complement a particular look. By considering the
top five recommendations, the evaluation process ac-
knowledges the variability and subjective nature of
those recommendations. Based on the evaluation re-
sults of the similarity models, the performance varies
across different resolutions and models. The table be-
low presents the UIQI mean values for the top four
similarity models at various image resolutions.

Figure 3: Generated Image as input of Similarity model.

In Figure 3 its a representation of the generated
image being compared with real world images, the
similarity model compares it against a database of
real images, evaluating features, textures, colors, and
overall composition to determine the closest match, in
this example, the model determined that the most sim-
ilar image had a UIQI of 0.71 in comparison to ours.
Since this value exceeds our threshold, the image is
labeled to be well predicted.

Table 3: Similarity Accuracy.

Sim Models vit tresnet convnext efficientnet
128x128 0.8729 0.8646 0.8634 0.8603
256x256 0.8744 0.8678 0.8659 0.8625
364x364 0.8749 0.8691 0.8662 0.8634
512x512 0.8749 0.8693 0.8674 0.8640

While higher resolutions generally lead to better
UIQI mean values (Wang and Bovik, 2002), it’s es-
sential to note that the improvements in model accu-
racy may not always justify the increased complexity
and time consumption associated with handling those
highest resolutions. Notably, the observations indi-
cate that the 512x512 resolution tends to exhibit the
highest UIQI mean, underscoring the influence of res-
olution on model performance, however the improve-
ment is not enough to justify the use of higher resolu-
tions since it will slow down the pipeline too much.

5 CONCLUSION

This paper uses a approach to fashion compatibility
learning by simultaneously training a CNN and a Bi-
LSTM model. the method treats an outfit as a se-
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quence, with each item serving as a time step. What’s
new about this approach is the fact that this model
task is to generate an image via pixel predicting val-
ues, a regression. Additionally, a similarity model is
used on top of this generated image to recommend
a real-world image. To validate the accuracy of this
approach, the Universal Image Quality Index is em-
ployed on the recommended image and the actual im-
age. This metric serves as a measure of how closely
our recommendation aligns with real outfits.

The outcomes showcase the effectiveness of this
approach in learning the compatibility of fashion out-
fits. Recognizing that fashion compatibility is sub-
jective, varying from one individual to another, our
future research will explore modeling user-specific
compatibility and style preferences, our goal is to con-
struct a more personalized system that caters to indi-
vidual tastes and preferences, thereby enhancing the
overall user experience.

Expanding our approach to include keywords like
style, mood, artist, material, texture, and brand adds
depth to our model’s decision-making process im-
proving our latent space of features extracted. This
approach holds immense promise in the realm of gen-
erative AI, particularly in the domain of image gen-
eration. Our aspirations go beyond outfits because
compatibility isn’t exclusive to fashion. Just as there
are compatible pieces in clothing, there are combi-
nations in other industries too. By exploring diverse
fashion domains, we’re talking of compatibility that
exists beyond clothing. Moreover, our curiosity ex-
tends beyond fashion, by the potential for compati-
bility in other sectors, recognizing that the principles
guiding our recommendation system can be applied
across various industries. Whether it’s in home goods,
technology, or beyond.
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