
Validation and Clarification of Critical Success Factors of DevOps
Processes

Michiel van Belzen a, Jos Trienekens and Rob Kusters b
Faculty of Science, Open University, Heerlen, The Netherlands

Keywords: CI/CD-processes, Continuous Delivery, Continuous Deployment, Continuous Integration, Critical Success
Factors, DevOps, Validation.

Abstract: Context: Critical Success Factors (CSFs) may contribute to solve challenges regarding Continuous Integration,
Continuous Delivery and Continuous Deployment processes (CI/CD-processes). Prior research found some
CSFs related to CI/CD and aspects of DevOps, but they are limited regarding validation, clarification and
comprehensiveness. Objective: This study aims to contribute to the success of CI/CD-processes by showing
and clarifying which CSFs determine the success of CI/CD-processes. Method: A three-phase process was
followed. In the first phase, we conducted a systematic literature review in which we identified 144 potential
CSFs. In the second phase, we classified the CSFs found into nineteen potential CSFs. Finally, we conducted
a multiple case study with the following objectives: (1) to find examples of application to show that the
potential CSFs were recognized by experts in the field, (2) to use the examples to validate the potential CSFs
and show how the CSFs could be operationalized, and (3) to clarify why the validated CSFs are important to
the success of CI/CD-processes. Results: Our main contribution to theory is a validated and structured model
of nineteen clarified CSFs of CI/CD-processes, which were understood, recognized and grounded in practice
by examples and clarifications on the importance of CSFs. Conclusions: Presenting a comprehensive model
of CSFs, it appears that we achieved consensus regarding CSFs of CI/CD-processes in literature. In addition,
IT-organizations could apply this model of CSFs to take steps towards successful results of CI/CD-processes.

1 INTRODUCTION

IT-organizations want to continuously provide new
software products and software improvements to
remain competitive. Continuous integration,
continuous delivery and continuous deployment
(CI/CD) is therefore the goal they strive for. CI/CD is
a capability to ensure continuous value provisioning.
With CI/CD they embrace business change, pursue
economic efficiency, create business opportunities
and focus on valuable product features provided in
short cycles (Chen, 2017; Claps et al., 2015;
Rodríguez et al., 2017).

To obtain CI/CD it is important to have processes
in place (Alahyari et al., 2017; Shahin et al., 2017).
Thus, IT-organizations invest in processes of
Continuous Integration, Continuous Delivery or
Continuous Deployment. These processes are
mentioned CI/CD-processes in this study (Rostami

a https://orcid.org/0000-0002-5068-4442
b https://orcid.org/0000-0003-4069-5655

Mazrae et al., 2023). CI/CD-processes provide
software releases continuously by performing
interconnecting steps to achieve the goal of
continuous value provision.

Various disciplines are needed working closely
together to perform the activities of CI/CD-processes.
For example, operations personnel are needed for
deployments of product features. Therefore, an often-
mentioned collaboration in relation to CI/CD is the
collaboration between developers and operations
personnel. This collaboration is called DevOps, a
compound of development and operations (Sebastian
et al., 2017). Through this close collaboration CI/CD
becomes possible. It also enables a short feedback
loop in CI/CD-processes. For example, this feedback
loop ensures that events in a production environment
will soon be known to developers. However, prior
research reports barriers and problems that hinder
success of CI/CD-processes. For example, unclear

222
van Belzen, M., Trienekens, J. and Kusters, R.
Validation and Clarification of Critical Success Factors of DevOps Processes.
DOI: 10.5220/0012685800003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 2, pages 222-231
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

definition of delivery, late scope changes and
dependencies with other teams (Alahyari et al., 2017).

In an attempt to address problems that hinder
success of CI/CD-processes, prior research has been
conducted on factors that determine the success of
CI/CD-processes (Azad & Hyrynsalmi, 2023;
Ramzan et al., 2023). However, we did not find a
comprehensive overview of validated Critical
Success Factors (CSFs) of CI/CD-processes in
literature.

With this study we aim to contribute to the success
of CI/CD-processes by showing and clarifying which
CSFs determine the success of CI/CD-processes.

Our main research question is: What are CSFs of
CI/CD-processes? The sub questions are: (SQ1) What
are CSFs of CI/CD-processes? (SQ2) How are these
CSFs addressed in a DevOps context? (SQ3) Why are
these CSFs important to the success of CI/CD-
processes?

This study is relevant because more rigorous
research and case studies on CI/CD is needed (Azad
& Hyrynsalmi, 2023; Rodríguez et al., 2017).

In Section 2, we describe prior research on the
concepts of Continuous Integration, Continuous
Delivery and Continuous Deployment. In Section 3,
we describe our methodology consisting of a
systematic literature review, a classification and a
multiple case study to validate and clarify the CSFs
found and to show how the CSFs could be
operationalized. We present the results in Section 4.
In Section 5, we discuss the implications of the
results, the limitations of our study and present some
options for further research. Finally, Section 6
contains the conclusions of our research.

2 THEORETICAL
BACKGROUND

Prior studies have attempted to find CSFs of
Continuous Integration (CI), Continuous Delivery
(CDE), Continuous Deployment (CD) and CSFs of
DevOps. Some studies conducted systematic
literature reviews to create overviews of CSFs found.
However, the results differ, since we found different
lists of CSFs that were limited in terms of validation.
Thus, there seems to be no consensus yet. In this
section, we review related research and justify the
need for a comprehensive overview of validated CSFs
of CI/CD-processes.

To address the high rate of business changes and
to focus on valuable product features provided in
short cycles, organizations started to embrace

software development agility (Lee & Xia, 2010).
With this capability, software development teams are
able to effectively and efficiently respond to
requirement changes (Lee & Xia, 2010). To move
from cyclic to continuous value provision,
organizations evolved software development agility
to CI/CD-processes (Rodríguez et al., 2017). CI/CD-
processes are typically executed at team level
(Rodríguez et al., 2017), and several DevOps teams
can be involved. A DevOps team may choose to
conduct CDE or CD in which CI is integrated in both
cases. We are aware that by using the term CI/CD we
do not distinguish between CDE and CD in this study.
We do not consider this to be a problem, since our
study focus on CSFs of all these processes. Some
researchers called the combination of these three
concepts simply continuous practices as presented in
Portela & de França (2023). However, it should be
noted that the concept of CI/CD is also used for the
combination of CI and CDE as presented in
Laukkanen et al. (2017). Each CI/CD-process is a
standardized way of work performing the same
activities in the same order each time to provide
software releases and achieve the goal of continuous
value provision. CI/CD-processes are expected to
minimize the time between a changed requirement
and its release in production (Chen, 2017). Therefore,
the CI-process is an inherent part of the processes of
CDE and CD through which software releases are
built, tested and deployed in production (Fitzgerald &
Stol, 2017; Laukkanen et al., 2017; Shahin et al.,
2017).

CI is defined as a process comprising steps such
as, compiling code, running unit and acceptance tests,
validating code coverage, checking compliance with
coding standards, and building deployment packages
(Fitzgerald & Stol, 2017). The CI-process is usually
automatically triggered and highly automated
(Fitzgerald & Stol, 2017; Ståhl & Bosch, 2014a).
Multiple developers are required to integrate their
work frequently to a common code repository,
enabling the system to be built and tested. This
ensures fast feedback to developers and quick
problem solving (Fowler & Foemmel, 2006;
Laukkanen et al., 2017). This feedback loop increases
confidence in the source code as it progresses through
the system (Ståhl & Bosch, 2014a). However,
literature mentioned several issues which threaten the
continuity of the CI-process. Ståhl & Bosch (2014b)
found differences in CI-process implementations.
Humble & Farley (2010) and Ståhl et al. (2017)
mentioned lower continuity in the case of large
software size, big software modules, large
organization size and relatively few developers in the

Validation and Clarification of Critical Success Factors of DevOps Processes

223

organization. In addition, Ståhl et al. (2017) found
that individual developers commit not often as
expected and that larger organizations may be unable
or unwilling to directly integrate with the mainline.
Thus, contextual factors may impact the continuity of
CI/CD-processes. Other researcher report challenges
on tool support (Debroy et al., 2018), test automation
and infrastructure (Azad & Hyrynsalmi, 2023),
continuous monitoring and team dynamics (Ramzan
et al., 2023) and security (Portela & de França, 2023).

We define CDE as a process comprising steps
such as, continuous integration, tests and manual
deployment of a release to production (Laukkanen et
al., 2017). Therefore, the release is kept in a certain
state until a human decides to deploy to production
(Chen, 2017; Humble & Farley, 2010; Laukkanen et
al., 2017). This decision-maker is often a
representative of the customer. CDE requires
continuous integration to obtain the builds (Shahin et
al., 2017). It should be noted that CDE is defined
differently by some researchers. For example, Chen
(2017) considers CDE as a software engineering
approach. Fitzgerald & Stol (2017) and Humble
(2018), however, consider CDE as a capability which
is composed of principles, patterns and practices to
enable reliable deployments to an environment
anytime. Laukkanen et al. (2017) found factors that
negatively impact CDE such as, system design
problems, resource problems and organizational
problems. In line with these results, Humble (2018)
states inadequate architecture and a nongenerative
culture. Caprarelli et al. (2020) found time-waste due
to high workload of operations personnel. Pereira et
al. (2021) reported culture challenges and technical
challenges such as, appropriate technologies.

We define CD as a process comprising steps such
as, continuous integration, tests and the automated
deployment of a release to production (Claps et al.,
2015; Humble & Farley, 2010; Rodríguez et al., 2017;
Shahin et al., 2017). In contrast to CDE, CD is an
automated process (Rodríguez et al., 2017).
Therefore, CD gains feedback much faster reducing
costs and improving quality. Due to the similarities
between CDE and CD and the application of
automation in the CD-process, CDE is considered to
enable CD (Humble, 2018). However, it should be
noted that some researchers do not distinguish
between CDE and CD as presented in Claps et al.
(2015). Some researchers report limitations and
challenges on CD. For example, contrary to CDE
which can be applied in any domain, CD is typically
limited to cloud services or datacenter hosted services
(Humble, 2018). Furthermore, CD requires
parallelization of the process (Rodríguez et al., 2017).

Finally, Saeeda et al. (2023) reports quality
challenges such as, ignored coding standards to rush
deployment and unstructured code.

In this study we define DevOps as a collaboration
between developers and operations personnel
working together as a team and executing CI/CD-
processes. This is in line with prior research which
consider DevOps as a prerequisite for CI/CD-
processes. For example, Fitzgerald & Stol (2017)
emphasized that continuous integration requires a
collaboration between development and operations.
Furthermore, Chen (2017) present a dedicated multi-
disciplinary team as a strategy to overcome adoption
challenges of CDE.

We define a CSF as a factor leading to successful
results, which is in line with Ram et al. (2013). We
searched for a comprehensive overview of validated
CSFs of CI/CD-processes in the context of DevOps
and we found some lists of CSFs. For example, Dwi
Harfianto et al. (2022) found 20 challenges by a
literature review, yet did not validate the factors
found. Saeeda et al. (2023) conducted an exploratory
case study and identified thirteen challenges in large-
scale agile in two teams. Portela & de França (2023)
conducted a rapid literature review and found 121
challenges. However, they were limited to technical
challenges and they did not validate them. Ramzan et
al. (2023) found 40 success factors related to DevOps
and cloud by means of a systematic literature review,
but did not validate the factors. Azad & Hyrynsalmi
(2023) reviewed literature and found ten CSFs of
DevOps including CI/CD. However, they did not
validate the CSFs. Finally, we published the first
batch of 90 potential CSFs found by a literature
review in Van Belzen et al. (2019). Yet, these
potential CSFs were not validated.
In summary, the lists of CSFs found differ from each
other and there seems to be no consensus.
Furthermore, the CSFs are limited validated and
analyzed yet. Thus, we still need a comprehensive
overview of validated CSFs of CI/CD-processes build
on prior research.

3 RESEARCH METHODOLOGY

To address our research goal, we followed a three-
phase process. In phase 1, we conducted a Systematic
Literature Review (SLR) to obtain a comprehensive
list of CSFs of CI/CD-processes. However, we could
not find a comprehensive list of CSFs. Yet, we found
a lot of different potential CSFs of CI/CD. Therefore,
we classified the potential CSFs found in phase 2 by
means of a metaplan (Schnelle, 1979) session. This

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

224

resulted in a list of potential CSFs manageable for
phase 3. In phase 3, we conducted a multiple case
study to validate the potential CSFs classified, to
show how the CSFs could be operationalized and to
clarify why the validated CSFs are important to the
success of CI/CD-processes.

3.1 Systematic Literature Review

We searched in five digital libraries following the
search process according to Kitchenham et al. (2010).
We used these libraries suggested by Kitchenham &
Brereton (2013): IEEE computer society digital
library, ACM digital library, SpringerLink, Web of
Science and SCOPUS as they contain good quality
papers on the topic of our study. The search queries
were based on ‘All fields’ (ACM, SpringerLink and
Web of Science), ‘abstract’ (IEEE), ‘Title, abstract
and keywords’ (SCOPUS). We started searching
from 2001 because at that moment the agile manifesto
emerged. We used the following search string for
every library: (“Continuous Delivery” OR
“Continuous Deployment” OR “Continuous
Integration”) AND DevOps. We did not add the key
words “Critical Success Factor” or “Factor” to the
search string, because this resulted in fewer relevant
papers. After deduplication and removal of obviously
irrelevant results or papers not in the English
language, we rejected papers based on screening of
title and abstract on the basis that they did not include
CSFs. Next, we read the full texts to find CSFs. In the
cases we found CSFs, we extracted the name of the
CSF and a citation of the corresponding description
from the papers.

3.2 Classification of CSFs Found in
Literature

The systematic literature review resulted in a lot of
potential CSFs with different abstraction levels and
overlap, homonyms and synonyms. Thus, we had to
classify the potential CSFs. The classification also
resulted in an orderly list, which made the potential
CSFs manageable during the multiple case study. We
classified the potential CSFs found based on the
metaplan-method of Schnelle (1979), which is a form
of open card sorting (Lewis & Hepburn, 2010).
Therefore, we made a card of each potential CSF and
a pile of all cards in advance. Subsequently, we sort
the cards into piles based on the descriptions found in
literature in order to obtain groups of similar potential
CSFs. Throughout card sorting we discussed the
grouping of each card and the name of each emerged
potential CSF. Next, we named each pile of emerged

potential CSF. Subsequently, we derived the
descriptions of the emerged potential CSFs from the
grouped potential CSFs using the descriptions found
in literature. This was also a means to verify the
quality of our work.

Although we found potential CSFs, they were not
validated in a consistent way. Furthermore, we did
not know why the CSFs are important to the success
of CI/CD-processes. Therefore, we conducted a case
study in the subsequent phase of our research
methodology.

3.3 Multiple Case Study

A multiple case study was chosen as a relevant
method, because it enables us to obtain depth and
explanation on social phenomena (Verschuren &
Doorewaard, 2010; Yin, 2018). That was important
as we had to validate the emerged potential CSFs and
to explain why these potential CSFs are important to
the success of CI/CD-processes. The multiple case
study enabled us (1) to find examples of application
to show that the potential CSFs were recognized by
experts in the field, (2) to use the examples to validate
the potential CSFs and to show how the CSFs could
be operationalized, and (3) to clarify why the
validated CSFs are important to the success of
CI/CD-processes.

To prepare the multiple case study we followed
these five steps proposed by Yin (2018): (1)
designing the case study, (2) preparing to collect
evidence, (3) collecting evidence, (4) analyzing
evidence and (5) reporting results.

In the first step, we designed the multiple case
study in order to assure the evidence to be collected
corresponds with the research question (Yin, 2018).
Thus, we chose an inductive approach and carried out
cross-sectional semi-structured interviews to validate
the potential CSFs. This approach enabled us to
achieve depth, elaboration, clarification and
improvisation (Runeson & Höst, 2009; Verschuren &
Doorewaard, 2010). Furthermore, it allowed us to
address real-life experiences.

In the second step, we prepared to collect the
evidence needed to answer our research questions.
Therefore, we defined criteria to select experienced
organizations and interviewees and to obtain real-life
examples elaborating and validating the potential
CSFs. After that, we searched for organizations
willing to participate. We used the following criteria
to select case organizations: (1) provide IT services
including software development, (2) has preferably
an organization size of more than 1000 employees,
(3) established DevOps teams which consists of

Validation and Clarification of Critical Success Factors of DevOps Processes

225

software developers and operation personnel, (4) has
implemented CI, CDE and/or CD at least 2 - 3 years
ago, (5) CI, CDE and/or CD process steps, role
distribution and responsibilities could be clearly
explained by representatives of the organization, (6)
has established shared goal(s) concerning CI, CDE
and/or CD, and (7) could provide at least six
interviewees willing to participate. We contacted
gatekeepers of appropriate organizations and verified
whether they were willing to participate. Therefore,
we explained our study, the criteria to select
organizations and interviewees and compiled a list of
potential interviewees. To select interviewees, we
used the following criteria: (1) member of a DevOps
team, (2) at least seven years of work experience, (3)
at least five years of work experience in current role
inside the case organization, (4) at least three years of
relevant work experience concerning DevOps and
CI/CD, (5) at least two years of relevant work
experience concerning DevOps and CI/CD inside the
case organization, (6) is willing to participate. We
used the list of potential interviewees to contact them.
We explained our study and asked whether they are
willing to participate.

To guide the interviews and to assure reliability,
we developed an interview protocol. The protocol
described the steps to take from invitation up to
coding the transcriptions and had an invitation letter,
letter of consent, list of definitions of our research
concepts, the list of potential CSFs (table 1) and the
questionnaire attached. We sent the invitation letter
together with the definitions, potential CSFs, letter of
consent and questionnaire to the interviewees willing
to participate. We did this in order to enable the
participants to prepare for the interview, which saved
us time during the interviews. The questionnaire
contained the following interview questions: (1) Do
you understand the description of this CSF? (2) Have
you ever experienced this CSF and can you give an
example? (3) Can you indicate on a scale of 1 to 5
what the degree of importance is of this CSF? (4)
Why is this CSF important? Question one was asked
to verify whether the interviewee had read and
comprehended the corresponding CSF. This was
important to answer question two. Question two
validated the potential CSFs by appealing to their
expert knowledge and experience. We asked question
three to stimulate an answer on question four.
Therefore, we used a five-level scale with the
following values: (1) Not important, (2) Somewhat
important, (3) Reasonable important, (4) Important,
(5) Very important. The answer on question four
clarified the importance of a particular CSF. We
asked in-depth questions when appropriate. To test

the interview protocol, we conducted a pilot
interview. We defined codes for recognized potential
CSFs and corresponding examples, the degree of
importance and the corresponding clarifications.

In the third step, we collect the evidence
according to our interview protocol. We conducted
the interviews accordingly, took notes as appropriate,
recorded each interview and transcribed them upon
completion. We gave the interviewees the
opportunity to amend the transcriptions.

In the fourth step, we analyzed the evidence to
achieve two objectives. First, we had to verify the
validation of the potential CSFs. Second, we had to
verify the clarification. To obtain the first objective,
we first determined that a potential CSF is validated
when we found at least one example. To find
examples per CSF, we applied open coding (Saldaña,
2013). Therefore, we defined a code per CSF,
familiarized ourself with the content of the
transcriptions, selected relevant text and coded
examples mentioned using ATLAS.ti
(https://atlasti.com/). We did not classify the
examples. To obtain the second objective, we applied
open coding and subsequently axial coding to analyze
the clarifications on the importance per CSF
(Saldaña, 2013). To apply open coding, we defined an
additional code per CSF, familiarized ourself with the
content of the transcriptions, selected relevant text
and coded clarifications mentioned using ATLAS.ti.
Next, we conducted axial coding on the coded
clarifications mentioned using a metaplan session to
prevent the bias of an individual. During the metaplan
session, we classified all similar clarifications found
into types of clarifications. Therefore, we made a card
of each clarification and a pile of all cards in advance.
Subsequently, we sorted the cards into piles based on
the citation of the clarification in order to obtain
groups of similar clarifications. Throughout card
sorting we discussed the grouping of each card and
the name of each emerged type of clarification. Next,
we named each pile of emerged type of clarification.
Subsequently, we derived the descriptions of the
emerged types of clarifications from the grouped
clarifications using their citations. This was also a
means to verify the quality of our work.

In the fifth and last step, we made a table in which
we put the name, definition and references of the
validated CSFs, the types of clarifications, the
description of each type and the corresponding
specific clarifications mentioned during the
interviews, and the corresponding examples
mentioned.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

226

4 RESULTS OF THE SLR,
CLASSIFICATION AND
MULTIPLE CASE STUDY

After conducting the SLR, we found potential CSFs
in literature. The CSFs were subsequently classified
into potential CSFs of CI/CD-processes. We
validated these CSFs based on real-life examples
mentioned during a multiple case study. Furthermore,
we clarified the CSFs through classification of the
clarifications mentioned by the interviewees.

4.1 Results of the Systematic Literature
Review

We applied the search strings according to our
systematic literature review approach and we found
2011 papers in total. After deduplication and removal
of obviously irrelevant results or papers not in the
English language a total of 1476 papers remained.
Next, we rejected papers based on screening of title
and abstract on the basis that they did not include
potential CSFs. We also rejected papers due to limited
access to library records as we were limited to the
subscription of our institution. This resulted in 29
remaining papers. After reading the full texts, we
found 19 papers containing potential CSFs.
Furthermore, we added two additional and relevant
papers of which we were aware: Yaman et al. (2016)
and Laukkanen et al. (2017).

We extracted the following data from the 21
papers found: name of the potential CSF and a
citation of the corresponding description. However,
we found that some potential CSFs were missing a
description. Therefore, we extracted explanations or
examples mentioned. After data extraction, we
removed duplicate potential CSFs and condensed the
description of the remaining 144 potential CSFs.

4.2 Results of the Classification

During preparation of the metaplan-session, we used
descriptions, explanations or examples of potential
CSFs to create cards. Next, we conducted card sorting
according to our methodology. We found that this
went well, because we had a lot of data on potential
CSFs extracted from literature. For the new emerged
CSF preconditions, we chose to adopt a description
from Smyth (2018) since it corresponded with a
variety of potential CSFs found in literature.

The classification resulted in nineteen classified
potential CSFs and corresponding descriptions. This
answered the first sub research question. Each potential

CSF mentioned was provided with a name and initial
description, both of which may be improved based on
new insights after validation during the multiple case
study in the next phase of our research method.

4.3 Results of the Multiple Case Study

After conducting the classification, we started to
collect the evidence. This means that we searched for
organizations and corresponding interviewees willing
to participate, tested the interview protocol prepared,
and conducted the remaining steps according to the
multiple case study approach.

We found two large IT service providers
producing software willing to participate meeting our
selection criterion 1. We discussed our remaining
criteria with the gatekeepers of both organizations.
Both organizations provide IT services including
software development. Case organization 1 (CO1)
has approximately 3000 employees and 45 DevOps
teams, and case organization 2 (CO2) has
approximately 1800 employees and 28 DevOps
teams. CO1 implemented CI years ago and prior to
CDE. CD to production was deliberately not
implemented for security reasons and because there is
no business need. CO2 implemented CI/CD, but it
was not known exactly when. They implemented
DevOps 6-7 years ago. Process steps, role distribution
and responsibilities could be clearly explained by
representatives of CO1. CO2 had defined roles, goals
and performance requirements.

In cooperation with the gatekeepers, we found six
interviewees willing to participate in each
organization. We contacted the interviewees,
explained our study, verified the extent to which they
meet the selection criteria and asked whether they
were actually able and willing to participate. In CO1
we found four developers, one architect and one
software engineer, whom were members of a DevOps
team. In CO2 we found two developers, one tester,
one information engineer, one database administrator
(DBA) and one integration specialist, whom also
were members of a DevOps team. All interviewees
had at least seven years of work experience. Five
interviewees of CO1 had at least seven years of work
experience in their current role. One interviewee had
four years of work experience in his current role. All
interviewees of CO1 had at least three years of
experience with DevOps and CI/CD and four
interviewees had even more than five years of
experience. All interviewees of CO1 had at least three
years of experience concerning DevOps and CI/CD
inside the case organization. All interviewees of CO2
had at least five years of work experience in their

Validation and Clarification of Critical Success Factors of DevOps Processes

227

current role and they had at least three years of
experience with DevOps and CI/CD. All interviewees
had at least two years of experience concerning
DevOps and CI/CD inside the case organization.
Interviewee 2 (I2) was a member of a so-called
continuous delivery team in CO1. This team
supported other DevOps teams by providing and
managing the software development life cycle.

We tested our interview protocol in both
organizations and found no alterations were
necessary. Next, we started to interview the selected
interviewees in both organizations. We used video
conferencing tools to conduct and record the
interviews. The interviews took approximately 45-90
minutes. After the interviews we transcribed the
recordings and asked the interviewees to amend the
transcriptions if appropriate. Finally, we anonymized
the transcriptions.

After conducting open coding, we analyzed the
data. In both case organizations all interviewees
understand the description of each potential CSF. We
also found that all nineteen potential CSFs could be
elaborated by at least one real-life example. Thus, all
nineteen CSFs were validated and no changes
regarding name or description of the CSFs were
required. We present the nineteen CSFs of CI/CD-
processes in table 1.

Table 1: CSFs of CI/CD-processes.

Nr Potential CSF Description

1 Preconditions

Establishing the optimal provision
of value (e.g., generating new

capabilities, supporting routines and
competencies, restructuring) for

realization in use and context where
standardization and routinization do
not currently exist (Smyth, 2018).

In other words, affairs which are not
under direct control of CI/CD-

processes.

2 Goals
Clear goals for the teams migrating

towards CI/CD-processes and
assimilation metrics.

3
Strategy and

approach

Approaches to drive CI/CD-
processes assimilation, and

branching strategies.

4 Architecture
Diverse aspects on architecture of

the product and related
infrastructure.

5 Process design

Institutionalizing CI/CD-processes
and aspects of the process e.g.,

design, effort to initially setting up
the process, management, planning,
sufficient time/resources, waste in

the process and accuracy of the
process.

Nr Potential CSF Description

6 Motivation

Motivation to adopt CI/CD-
processes and to get past early

difficulties and effort, and discipline
to commit often, test diligently,
monitor the build status and fix

problems as a team.

7
Resistance to

change
Difficulty to change established

organizational policies and cultures.

8

Complexity
across

customer
organization

boundary

No access to or control on a
production environment or diversity

and complexity of customer sites,
which make it harder to fully
automate CI/CD-processes.

9
Acceptance by

customer

Adopting the practice of continuous
releases. Customer perception of
their involvement in development
and customer behaviour. Domain

constraints. Feature discovery.

10
Sales and

intermediaries
When user data is not accessible

due to intermediaries.

11 Quality
Preserving quality and adequate

documentation.

12
Customer

involvement

Preparing and receiving customer
input, establishing a customer

sample group, and providing feature
growth.

13

Test
complexity &
source code

control

Aspects on automating, configuring
and using test environments, and

source code control. Due to higher
demands as compared to traditional

(not agile) ways of work.

14 Coordination

Increased need for coordination
between team members and

multiple teams. Organizational
structure. Co-locate by feature not

discipline.

15
Communicatio

n

Intra and inter team communication,
the right communication tools,
awareness and transparency.

16
Knowledge
and training

Sufficient proficiency, knowledge,
skills and experience.

17 Tooling

Maturity of the tools and their
surrounding infrastructure that

sufficiently support CI/CD-
processes, including security, access
controls and consensus among users

about the choice of tools.
Heterogeneous programming

languages, operating systems and
communication tools.

18 Pace
Improving the speed of providing

deployments to the customer.

19 Pressure

Increased pressure on the team to
have code ready to be deployed

immediately, and too much
transparency which causes
customers to interfere with

developers' work.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

228

Some examples mentioned are: the
implementation of release automation (example of
CSF Precondition), a gradual change to CI/CD
(example of CSF Strategy and approach) and
architecture was used to explain why a register was
needed and to make clear what the boundaries are
(example of CSF Architecture). The CSF sales and
intermediaries was considered relevant by only two
interviewees and appear to be dependent on the local
context. The interviewees were able to explain why
each potential CSF is important to the success of
CI/CD. We classified all similar clarifications found
into 74 types of clarifications. For example, CSF
Preconditions contains three types: (1) Efficiency,
described as ‘To ensure the production of desired
results without waste such as, incurring costs,
frustration and unavailability’, (2) Dependencies,
described as ‘Others deliver services on which the
team depends. Vendor lock-in’, (3) Legacy, described
as ‘Addressing preconditions is more important when
dealing with legacy systems instead of systems build
on modern technologies. Every migration to a modern
technology decreases the importance of preconditions
and dependencies’. Next, we made a table of CSFs,
corresponding definitions and references, the
classified clarifications (type of clarification) and
corresponding clarifications on the importance
mentioned by the interviewees.

5 DISCUSSION

Considering the results of our study, we are able to
answer our research question and discuss their
implications.

The results show a structured model of nineteen
validated CSFs of CI/CD-processes. Therefore, it
answers our main research question.

The results have several theoretical implications.
First, it appears that we achieved consensus regarding
CSFs of CI/CD-processes since the resulting model
of CSFs is more comprehensive compared to previous
literature. Furthermore, it includes CSFs found
previously based on an extensive and structured
literature review. For example, Azad & Hyrynsalmi
(2023) found technical factors, organizational factors,
and social and cultural factors which are included in
our model by several CSFs. To illustrate the overlap,
they found integration, build and test automation, and
infrastructure as factors which were mainly included
in our model by the CSFs process design and tooling.
A second example is the study of Harfianto et al.
(2022), who found the following factors: project
documentation, internal policy, cultural behavior, top

level management and IT infrastructure. We included
these factors in our model by the CSFs quality,
resistance to change and tooling. Second, all CSFs on
CI/CD found in literature are valid for CI/CD-
processes. This confirms existing literature on CSFs
of CI/CD used in our study. Third, our study clarified
why these CSFs are relevant based on clarifications
of experts in the field of CI/CD and DevOps.

The results also have several practical
implications. First, our model shows which CSFs
effectively lead to the success of CI/CD-processes.
Second, it clarifies why these CSFs are relevant.
Third, the real-life examples show how the CSFs
could be operationalized. Thus, organizations may
take advantage of these clarifications and examples
and could apply this model of CSFs to take steps
towards a successful CI/CD-process.

We have strived to make the model of CSFs as
complete as possible by using a well-defined
methodology to address study selection validity threat
(Ampatzoglou et al., 2019). However, we can not
ensure the completeness of the model of CSFs.
Another concern on internal validity is that there may
be a bias in selecting interviewees in cooperation with
the gatekeepers. There may also be accidental coding
errors and processing errors. However, we applied a
well-defined methodology to minimize these threats
(Verschuren & Doorewaard, 2010).

The results of this study may not just be
generalized to other organizations, because the extent
to which the CSFs are relevant depends on the local
context. However, the results are based on two case
organizations and therefore appear to be more broadly
applicable.

Finally, we mention some opportunities for future
research. First, we could not discuss all aspects of
each CSF during the interviews due to the
comprehensiveness of the model of CSFs. Therefore,
future research could focus on interrelations between
CSFs or a specific dimension of CI/CD-processes and
corresponding aspects of relevant CSFs.
Furthermore, the model of CSFs and descriptions
could be used to further develop consistent and
uniform definitions of CSFs based on the examples
and clarifications presented. This could ease the
application of the CSFs and enables research on
measuring the impact of the CSFs.

6 CONCLUSIONS

CI/CD enables IT-organizations to continuously
provide new software products and software
improvements to remain competitive. To obtain

Validation and Clarification of Critical Success Factors of DevOps Processes

229

CI/CD they invest in CI/CD-processes. To address
challenges, barriers and problems that hinder success
of CI/CD-processes, this study presents a
comprehensive overview of CSFs based on literature
and real-life examples which validated them.
Furthermore, we clarified the CSFs through
classification of the clarifications mentioned by the
experts in the field.

IT-organizations could apply this model of CSFs
to take steps towards successful results of CI/CD-
processes. Therefore, they may take advantage of the
clarifications on the importance of CSFs and the real-
life examples which elaborate the CSFs.

All data emerged during the research process are
available on request.

REFERENCES

Alahyari, H., Berntsson Svensson, R., & Gorschek, T.
(2017). A study of value in agile software development
organizations. Journal of Systems and Software, 125,
271–288. https://doi.org/10.1016/j.jss.2016.12.007

Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., &
Chatzigeorgiou, A. (2019). Identifying, categorizing
and mitigating threats to validity in software
engineering secondary studies. Information and
Software Technology, 106, 201–230. https://doi.org/
10.1016/j.infsof.2018.10.006

Azad, N., & Hyrynsalmi, S. (2023). DevOps critical succes
factors—A systematic literature review. Information
and Software Technology, 107150. https://doi.org/
10.1016/j.infsof.2023.107150

Caprarelli, A., Di Nitto, E., & Tamburri, D. A. (2020).
Fallacies and Pitfalls on the Road to DevOps: A
Longitudinal Industrial Study. In J.-M. Bruel, M.
Mazzara, & B. Meyer (Eds.), Software Engineering
Aspects of Continuous Development and New
Paradigms of Software Production and Deployment
(Vol. 12055, pp. 200–210). Springer International
Publishing. https://doi.org/10.1007/978-3-030-39306-
9_15

Chen, L. (2017). Continuous Delivery: Overcoming
adoption challenges. Journal of Systems and Software,
128, 72–86. https://doi.org/10.1016/j.jss.2017.02.013

Claps, G. G., Berntsson Svensson, R., & Aurum, A. (2015).
On the journey to continuous deployment: Technical
and social challenges along the way. Information and
Software Technology, 57, 21–31. https://doi.org/
10.1016/j.infsof.2014.07.009

Debroy, V., Miller, S., & Brimble, L. (2018). Building lean
continuous integration and delivery pipelines by
applying DevOps principles: A case study at Varidesk.
Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and
Symposium on the Foundations of Software
Engineering - ESEC/FSE 2018, 851–856.
https://doi.org/10.1145/3236024.3275528

Dwi Harfianto, H., Raharjo, T., Hardian, B., & Wahbi, A.
(2022). Agile Transformation Challenges and Solutions
in Bureaucratic Government: A Systematic Literature
Review. Proceedings of the 2022 5th International
Conference on Computers in Management and
Business, 12–19. https://doi.org/10.1145/3512676.351
2679

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software
engineering: A roadmap and agenda. Journal of
Systems and Software, 123, 176–189.
https://doi.org/10.1016/j.jss.2015.06.063

Fowler, M., & Foemmel, M. (2006). Continuous
integration. Thought-Works. http://www.thought
works. com/Continuous Integration. pdf, 122, 14.

Humble, J. (2018). Continuous delivery sounds great, but
will it work here? Communications of the ACM, 61(4),
34–39. https://doi.org/10.1145/3173553

Humble, J., & Farley, D. (2010). Continuous delivery:
Reliable software releases through build, test, and
deployment automation. Addison-Wesley.

Kitchenham, B., & Brereton, P. (2013). A systematic
review of systematic review process research in
software engineering. Information and Software
Technology, 55(12), 2049–2075. https://doi.org/
10.1016/j.infsof.2013.07.010

Kitchenham, B., Pretorius, R., Budgen, D., Pearl Brereton,
O., Turner, M., Niazi, M., & Linkman, S. (2010).
Systematic literature reviews in software engineering –
A tertiary study. Information and Software Technology,
52(8), 792–805. https://doi.org/10.1016/j.infsof.20
10.03.006

Laukkanen, E., Itkonen, J., & Lassenius, C. (2017).
Problems, causes and solutions when adopting
continuous delivery—A systematic literature review.
Information and Software Technology, 82, 55–79.
https://doi.org/10.1016/j.infsof.2016.10.001

Lee, G., & Xia, W. (2010). Toward Agile: An Integrated
Analysis of Quantitative and Qualitative Field Data.
MIS Q., 34(1), 87–114.

Lewis, K. M., & Hepburn, P. (2010). Open card sorting and
factor analysis: A usability case study. The Electronic
Library, 28(3), 401–416. https://doi.org/10.1108/0264
0471011051981

Pereira, I. M., Carneiro, T. G. de S., & Figueiredo, E.
(2021). Investigating Continuous Delivery on IoT
Systems. Proceedings of the XX Brazilian Symposium
on Software Quality. https://doi.org/10.1145/
3493244.3493261

Portela, A., & de França, B. B. N. (2023). Empirical
Evidence on Technical Challenges When Adopting
Continuous Practices. Proceedings of the XXXVII
Brazilian Symposium on Software Engineering, 11–20.
https://doi.org/10.1145/3613372.3613390

Ram, J., Corkindale, D., & Wu, M.-L. (2013).
Implementation critical success factors (CSFs) for
ERP: Do they contribute to implementation success and
post-implementation performance? International
Journal of Production Economics, 144(1), 157–174.
https://doi.org/10.1016/j.ijpe.2013.01.032

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

230

Ramzan, S., Khan, S.-U.-R., Hussain, S., Wang, W.-L., &
Tang, M.-H. (2023). Identification of Influential
Factors for Successful Adoption of DevOps and Cloud.
Proceedings of the 27th International Conference on
Evaluation and Assessment in Software Engineering,
423–429. https://doi.org/10.1145/3593434.3594239

Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E.,
Teppola, S., Suomalainen, T., Eskeli, J., Karvonen, T.,
Kuvaja, P., Verner, J. M., & Oivo, M. (2017).
Continuous deployment of software intensive products
and services: A systematic mapping study. Journal of
Systems and Software, 123, 263–291. https://doi.org/
10.1016/j.jss.2015.12.015

Rostami Mazrae, P., Mens, T., Golzadeh, M., & Decan, A.
(2023). On the usage, co-usage and migration of CI/CD
tools: A qualitative analysis. Empirical Software
Engineering, 28(2), 52. https://doi.org/10.1007/s106
64-022-10285-5

Runeson, P., & Höst, M. (2009). Guidelines for conducting
and reporting case study research in software
engineering. Empirical Software Engineering, 14(2),
131–164. https://doi.org/10.1007/s10664-008-9102-8

Saeeda, H., Ahmad, M. O., & Gustavsson, T. (2023).
Identifying and Categorizing Challenges in Large-Scale
Agile Software Development Projects: Insights from
Two Swedish Companies. SIGAPP Appl. Comput. Rev.,
23(2), 23–43. https://doi.org/10.1145/3610409.3610
411

Saldaña, J. (2013). The Coding Manual for Qualitative
Researchers (Second Edition). SAGE.

Schnelle, E. (1979). The Metaplan-Method communication
tools for planning and learning groups. Metaplan-
GmbH.

Sebastian, I. M., Ross, J. W., Beath, C., Mocker, M.,
Moloney, K. G., & Fonstad, N. O. (2017). How Big Old
Companies Navigate Digital Transformation. MIS
Quarterly Executive, 16(3), 197–213.

Shahin, M., Ali Babar, M., & Zhu, L. (2017). Continuous
Integration, Delivery and Deployment: A Systematic
Review on Approaches, Tools, Challenges and
Practices. IEEE Access, 5, 3909–3943. https://doi.org/
10.1109/ACCESS.2017.2685629

Smyth, H. (2018). Projects as creators of the preconditions
for standardized and routinized operations in use.
International Journal of Project Management, 36(8),
1082–1095.
https://doi.org/10.1016/j.ijproman.2018.08.004

Ståhl, D., & Bosch, J. (2014a). Automated software
integration flows in industry: A multiple-case study.
Companion Proceedings of the 36th International
Conference on Software Engineering - ICSE
Companion 2014, 54–63. https://doi.org/10.1145/25
91062.2591186

Ståhl, D., & Bosch, J. (2014b). Modeling continuous
integration practice differences in industry software
development. Journal of Systems and Software, 87, 48–
59. https://doi.org/10.1016/j.jss.2013.08.032

Ståhl, D., Mårtensson, T., & Bosch, J. (2017). The
continuity of continuous integration: Correlations and

consequences. Journal of Systems and Software, 127,
150–167. https://doi.org/10.1016/j.jss.2017.02.003

Van Belzen, M., Trienekens, J., & Kusters, R. (2019,
August 28). Critical Success Factors of Continuous
Practices in a DevOps Context. Information Systems
Development: Information Systems Beyond 2020
(ISD2019 Proceedings). Information Systems
Development: Information Systems Beyond 2020,
Toulon, France: ISEN Yncréa Méditerranée.

Verschuren, P., & Doorewaard, H. (2010). Designing a
Research Project (2nd edition). Eleven International
Publishing.

Yaman, S. G., Sauvola, T., Riungu-Kalliosaari, L.,
Hokkanen, L., Kuvaja, P., Oivo, M., & Männistö, T.
(2016). Customer Involvement in Continuous
Deployment: A Systematic Literature Review.
Requirements Engineering: Foundation for Software
Quality, 9619, 249–265. https://doi.org/10.1007/978-3-
319-30282-9_18

Yin, R. K. (2018). Case study research and applications:
Design and methods (Sixth edition). SAGE.

Validation and Clarification of Critical Success Factors of DevOps Processes

231

